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Abstract We consider the Navier–Stokes–Fourier
(N SF) system for a class of compressible fluids that
exhibit a gas-liquid phase transition at low tempera-
tures. For the initial-boundary value problem corre-
sponding to thermally insulated end-points that are held
at a constant pressure, we establish the existence and
uniqueness of temporally global classical solutions.
A novel feature of the analysis presented here is the
derivation of uniform point-wise apriori estimates on
the specific volume,which refines the non-uniformesti-
mates framework developed in Watson (Arch Ration
Mech Anal 153:1–37, 2000).

Keywords Navier–Stokes–Fourier system · A priori
estimates · Thermoviscoelasticity · Phase transitions

1 Introduction

This article is concerned with an initial-boundary
value problem IBVP for a compressible viscous heat-
conducting fluid that exhibits a gas-to-liquid phase
transition at sufficiently low temperatures. The gov-
erning equations, which encode the balance of mass,
momentum and energy, take the form of a modified
Navier–Stokes–Fourier system, which may be written
in dimensionless Lagrangian form as
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where the specific volume ξ(x, t), velocity ν(x, t), and
absolute temperature ϑ(x, t) are scalar functions of
material point x ∈ [0, 1] and time t ∈ [0, T ) (where
0 < T ≤ ∞), while the subscript x and t , as well as
∂x and ∂t , denote partial derivatives with respect to x
and t respectively: note that here the bounded refer-
ence configuration has been scaled to [0, 1]. Last, the
coefficients of viscosity μ and heat-conductivity κ are
both assumed to be positive constants, μ, κ > 0, as is
the specific heat cv > 0, while the asymptotic exponent
q > 1.

We also impose two additional global physical
constraints on the Navier–Stokes–Fourier system (G).
First, the Third Law of Thermodynamics demands that
absolute zero is never attained

ϑ(x, t) > 0 . (T )

Second, to preclude the interpenetration of matter, we
assume that the Eulerian mass density

ρ := 1

ξ
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is pointwise finite, or equivalently that the specific vol-
ume is point-wise bounded away from zero,

ξ(x, t) > 0. (F)

Toobtain a closedproblem,we take thermo-mechanical
boundary conditions associated with a prescribed con-
stant pressure P0 > 0 acting at the boundary of the
material body (the outer-pressure problem), namely

S(0, t) = −P0 = S(1, t), (M)

where the stress S is given by

S = −ϑ

ξ
− ξ

ξq+1 + 1
+ μ

νx

ξ
. (1)

We also impose the Neumann condition on ϑ

ϑx (0, t) = 0 = ϑx (1, t), (N )

which encodes thermal insulation at the endpoints of
thematerial body. Last, we prescribe the initial velocity
ν0(x), temperature ϑ0(x) and specific volume ξ0(x) at
time t = 0, namely

ξ(x, 0) = ξ0(x),

ν(x, 0) = ν0(x),

ϑ(x, 0) = ϑ0(x).

(IC)

Remark 1 The key analytical challenge to establish-
ing a global existence and uniquess theory of classical
solutions to a Navier–Stokes–Fourier system in one-
space dimensions, such as for our elastogas IBVP , is
the demonstration of a pointwise a priori estimate on
the specific volume.Namely, one needs to prove that for
every finite-time T > 0, any classical solution (ξ, ν, ϑ)

on [0, 1] × [0, T ) is necessarily uniformly bounded
away from 0 and ∞: i.e., there exists ξ, ξ ∈ (0,∞)

such that for all (x, t) ∈ [0, 1] × [0, T )

0 < ξ ≤ ξ(x, t) ≤ ξ < ∞. (2)

Given that by assumption any such classical solution
meets the physical constraint (F) on its domain of defi-
nition, here [0, 1]×[0, T ), the key issue being resolved
by such an a priori estimate is that the specific volume
cannot approach 0 (no interpenetration of matter) nor
can it go to infinity (no creation of a vacuum) as time
t approaches T from below (t ↗ T ). Note also that

if one only wishes to establish the existence of tempo-
rally global solutions these bounds need not be inde-
pendent of T . However, if one also wishes to study the
asymptotic behaviour of solutions, one generally needs
a uniform a priori estimate on the specific volume.

2 Results

Theorem 1 (Uniform a priori estimate on ξ ) If
(ξ, ν, ϑ) is a temporally global classical solution to
the initial-boundary value problem (IBVP) given by
(G), (IC) (M), (N ) with the physical constraints (T )
and (F), then there exists ξ, ξ ∈ (0,∞) such that for
all (x, t) ∈ [0, 1] × [0,∞)

0 < ξ ≤ ξ(x, t) ≤ ξ < ∞. (3)

The proof of Theorem 1, which is presented in Sect.
4, 5, 6, involves a non-trivial refinement of the gen-
eral theoretical approach developed by Watson [1,2]
for initial-boundary value problems in 1-D thermovis-
coelasticity [3],which itselfwas inspired byKazhikhov
and Shelukin’s seminal analysis of the Navier–Stokes–
Fourier system for a viscous heat-conducting ideal
gas [4]. We note that Theorem 1 extends previous
results on the outer-pressure problem for a viscous heat-
conducting ideal gas [5] to the elastogas setting.

Remark 2 TheNavier–Stokes–Fourier system in one-
space dimension may be viewed as a special case of the
equations of thermoviscoelasticity [1,2] [3, p. 32]. In
this more general setting, the role of specific volume ξ

of the compressible fluid is replaced by the deformation
gradient χx of the thermoelastic material. In this wider
context, the key analytical challenge to well-posedness
of theIBVP is likewise to establish a pointwise a priori
estimate on the deformation gradient χx of classical
solutions [1,2,6], namely

0 < ξ ≤ χx (x, t) ≤ ξ < ∞.
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Given Theorem 1, one may then employ the general
analytical framework of [1,2] to formulate a complete
existence and uniqueness theory for the IBVP of The-
orem 1 in terms of the spaces of Holder continuous
functions

C2+α[0, 1] and Cα, α
2
([0, 1] × [0,∞)

)
.

which arise naturally in the theory of parabolic partial
differential equations [7].

Theorem 2 (Global Existence and Uniqueness) Con-
sider the initial-boundary value problem given by (G),
(F), (T ), (M), (N ) and (IC). Let α > 0 and let the ini-
tial data ξ0, ν0, θ0 ∈ C2+α[0, 1] satisfy the physical
constraints (F) and (T ), and be compatible with the
boundary conditions (M) and (N ). Then there exists
a unique classical solution (ξ, ν, ϑ) on [0, 1]× [0,∞)

with the regularity

ξ ∈ C1+α,1+ α
2

(
[0, 1] × [0,∞)

)
,

ν, ϑ ∈ C2+α,1+ α
2

(
[0, 1] × [0,∞)

)
,

and, furthermore, for which there exists ξ, ξ ∈ (0,∞)

such that

0 < ξ ≤ ξ(x, t) ≤ ξ < ∞. (4)

3 The ideal elastogas

We now elucidate the thermodynamic structure of the
compressible fluid that underlies the Navier–Stokes–
Fourier system (G), since it will play a key in the proof
of Theorem 1, and hence Theorem 2.

The equilibrium pressure law P̂(ξ, θ) of an ideal
elastogas takes the dimensionless form,

P̂(ξ, θ) = θ

ξ
+ ξ

ξq+1 + 1
, (W1)

with asymptotic exponent q > 1, while its specific
internal energy law ê(ξ, θ) is given by

ê(ξ, θ) := cvθ + Ŵ (ξ), (W2)

with a constant specific heat cv > 0 and a purely elastic
stored-energy Ŵ (ξ) given by

Ŵ (ξ) :=
∫ +∞

ξ

u

uq+1 + 1
du. (5)

Remark 3 The definite integral appearing in (5) is
well defined since the integrand is both continuous on
[0,∞) and absolutely integrable on [0,∞): the latter
point follows upon noting the asymptotic property

u

uq+1 + 1
∼ 1

uq
as u ↗ ∞

and the assumption q > 1.

The entropy law of the ideal elastogas η̂(ξ, θ) is
defined to be the unique solution of the systemof partial
differential equations

∂ξ η̂(ξ, θ) = ∂θ P̂(ξ, θ),

∂θ η̂(ξ, θ) = 1

θ
∂θ ê(ξ, θ),

(6)

where ∂ξ and ∂θ denote partial derivatives with respect
to ξ and θ respectively, and which additionally satisfies
the algebraic constraint1

η̂(1, 1) = 0.

By direct calculation, one readily finds

η̂(ξ, θ) = cv ln θ + ln ξ. (W3)

Remark 4 Note that the system of partial differential
equations of the form (6)will generally admit a solution
η̂(ξ, θ) provided the pressure law P̂(ξ, θ) and internal
energy law ê(ξ, θ) satisfy the thermodynamic compat-
ibility relation

∂ξ ê(ξ, θ) = θ∂θ P̂(ξ, θ) − P̂(ξ, θ). (7)

In this case, one also obtains the 1-form relation [8]

dê = θdη̂ − P̂dξ, (8)

which matches the classical thermodynamic relation
between internal energy, temperature, entropy, pressure
and (specific) volume [9]. Indeed, it is readily shown
that (8) is logically equivalent to (6) and (7). Given that
the pressure law P̂(ξ, θ) and internal energy law ê(ξ, θ)

of the elastogas do indeed satisfy (7), it is thereby ther-
modynamically justified to identify the constitutive law
appearing in (W3) as an entropy.
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Fig. 1 Plot of the isotherms P = P̂(ξ, θ) for (W1) with q = 3
for the temperatures θ = 0.05, 0.1, 0.25, 0.35

We plot in Fig. 1 a representative sequence of
isotherms P=P̂(ξ, θ) for the ideal elastogas to illus-
trate that its isotherms are monotone decreasing in
ξ above a certain critical temperature θc, but non-
monotone in ξ below θc. This breaking of monotonic-
ity in the isotherms of the ideal elastogas pressure
law (W1) “reveal and define a phase transition” [10,
p. 234] in exactly the same manner as for the van
der Waals equation of state [11]: a classical model
for a gas-liquid phase transition. The critical isotherm
P = P̂(ξ, θc) is itself monotone decreasing in ξ while
also possessing a unique point of horizontal inflection
at ξc. It follows that the critical state (ξc, θc) is the
unique solution of the coupled algebraic equations

∂ξ P̂(ξ, θ) = 0,

∂2ξ P̂(ξ, θ) = 0,
(9)

with ξc > 0 and θc > 0. By direct calculation one finds
the following explicit formulae for the critical volume

ξc =
(
q(q + 5) − √

(q2(q + 5)2 − 8(q2 − q)

2(q2 − q)

) 1
q+1

,

and critical temperature

θc =
ξ2c

(
1 − qξ

q+1
c

)
(
1 + ξ

q+1
c

)2 (10)

Remark 5 The pressure law (W1) with its associated
phase-transition at low temperaturemimics key aspects

1 The algebraic constraint merely fixes an arbitrary constant.

of the famous Lennard-Jones fluid, which serves as a
model for liquid helium at low densities. The pressure
P of a Lennard-Jones fluid [12, pp. 100–104] is related
to the specific volume ξ and temperature θ by

P = R

(
θ

ξ
+ B(θ)

ξ2
+ C(θ)

ξ3
+ · · ·

)
, (11)

where R is the universal gas constant, and B(θ) and
C(θ) are the temperature-dependent second- and third-
virial coefficients, respectively. The second virial coef-
ficient of Helium is empirically determined to be posi-
tive above θc ∼ 23 K and increasingly negative below
[12, p. 103], thus opening the door to a gas-liquid phase-
transition for sufficiently low temperatures. The pres-
sure law (W1) also connects in spirit to certain quan-
tum mechanically inspired hydrodynamic models for
nuclear matter [13]. One may also view (W1) within
the wider context of thermoelasticity with phase transi-
tions: e.g., thermoelasticmodels of TiNi shapememory
alloys [14], which undergo an austenite-to-martensite
phase transition [15] below a critical temperature.

4 Energy and entropy bounds

We may recast the second and third equations of (G)
as the conservation of momentum and energy of a lin-
early viscous, Fourier heat-conducting ideal elastogas,
namely

∂tν = ∂xS, (12)

∂t

(
e + 1

2
ν2

)
= ∂x (Sν − q) , (13)

where the stress field S is given by

S = −P̂(ξ, ϑ) + μ
νx

ξ
, (14)

the heat flux q by,

q := −κ
ϑx

ξ
, (15)

and the internal-energy field e(x, t) by

e := ê(ξ, ϑ) = cvϑ + Ŵ (ξ). (16)

Last, recalling the definition of the entropy response
function (W3), and then defining the associated entropy
field η(x, t) of a solution (G) by

η := η̂(ξ, ϑ) = cv ln ϑ + ln ξ,
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one also furthermore obtains by direct calculation the
entropy identity

∂tη = μ
νx

2

ξϑ
+ κ

ϑx
2

ξϑ2 + κ∂x

(
ϑx

ϑ

)
. (17)

The balance laws of momentum (12) and energy (13),
in combination with the entropy identity (17), play a
crucial role in the analysis that follows.

Here we begin the proof of the pointwise apriori
estimate of Theorem 1 by first establishing some basic
integral estimates of the internal energy, kinetic energy
and entropy. In what follows, we suppose (ξ, ν, ϑ) is
a globally defined classical solution of the elastogas
IBVP . To minimise notational clutter, we adopt the
convention of letting λ > 0 and  > 0 denote generic
“small” and “large” positive constants that depend at
most on the initial-data (IC), the outer-pressure P0, and
the parameters of (G), namely cv ,μ and κ . In particular,
we will generally use the same symbol λ and  within
a sequence of inequalities, even though the precise con-
stants will generically differ through such inequalities,
provided that doing so does not cause any ambiguity.
On those rare occasions when different constants need
to be carefully distinguished, we will do so either by
carefully tracking the algebraic relationships between
such constants or by introducing indexed symbols λi
or i .

First, note that the elastic stored-energy response
Ŵ (ξ) (5) is strictly positive and asymptotic to zero at
infinity: i.e.,

0 < Ŵ (ξ) < ∞ and lim
ξ→∞ Ŵ (ξ) = 0.

Recalling the positivity of the temperature field ϑ (T ),
one thus immediately finds that the internal energy field
e = ê(ξ, ϑ) (16) is pointwise bounded below by 0:

e(x, t) > 0. (18)

Integrating the conservation of mass equation ξt = νx
over the region [0, 1] × [0, t], we find∫ 1

0
(ξ(x, t) − ξ0(x)) dx

=
∫ t

0
(ν(1, τ ) − ν(0, τ )) dτ. (19)

Now integrating the balance law for energy (13) over
the region [0, 1] × [0, t], and utilising the zero-flux
boundary condition (N ), the outer-pressure boundary
condition (M) and (19), we thereby find the effective
conservation of energy:∫ 1

0

(
e + P0ξ + 1

2
ν2

)
dx = E0, (20)

where the initial-data sets the constant E0 ≥ 0:

E0 =
∫ 1

0

(
ê(ξ0, ϑ0) + P0ξ0 + 1

2
ν20

)
dx .

We will now show how global bounds on both the
total internal energy and kinetic energy, and the largest
spatial extent of the solution, which is encoded in∫ 1
0 ξ dx , naturally follow from (20).

Lemma 1 (Energy bounds)

(i)
∫ 1

0
e(x, t)dx ≤ .

(i i)
∫ 1

0
ν2(x, t)dx ≤ .

(i i i)
∫ 1

0
ξ(x, t)dx ≤ .

(iv)

∫ 1

0
ϑ(x, t)dx ≤ .

Proof Noting the positivity of the constant P0 > 0,
the specific internal energy e > 0, the specific volume
ξ > 0 and the kinetic energy term 1

2ν
2, we see from

(20) that (i) and (ii) immediately follow. Similarly, we
find∫ 1

0
ξ(x, t)dx ≤ E0

P0
≤ . (21)

Last, from (W2), the positivity of Ŵ and (i), we con-
clude∫ 1

0
ϑ(x, t)dx ≤ 1

cv

∫ 1

0
e(x, t)dx ≤ . (22)

	

Turning now to the entropy identity (17), we inte-

grate it over [0, 1] × [0, t] and utilise the zero-flux
boundary condition (N ) to find the entropy-production
identity

∫ t

0

∫ 1

0

(
μ

νx
2

ξϑ
+ κ

ϑx
2

ξϑ2

)
dxdτ =

∫ 1

0
η(x, t)dx − N0,

(23)

with the initial total entropy N0 being determined by
the initial data:

N0 =
∫ 1

0
η̂(ξ0(x), ϑ0(x))dx .
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Lemma 2 (Entropy and entropy production bounds)

(i)
∫ 1

0
η(x, t)dx ≤ .

(i i) 0 < λ ≤
∫ 1

0
ϑ(x, t)dx .

(i i i) 0 < λ ≤
∫ 1

0
ξ(x, t)dx .

(iv)

∫ t

0

∫ 1

0

ϑx
2

ξϑ2 (x, τ )dxdτ ≤  .

Proof Integrating (W3) over the reference domain
[0, 1] and then utilising Jensen’s inequality for concave
functions and incorporating Lemma 1 (iii) and (iv), we
obtain∫ 1

0
ηdx =

∫ 1

0
(cv ln ϑ + ln ξ) dx

≤ cv ln

(∫ 1

0
ϑdx

)
+ ln

(∫ 1

0
ξdx

)
≤ .

(24)

Since (23) guarantees the total entropy
∫ 1
0 η(x, t)dx is

bounded below by N0, we also have

N0 ≤ cv ln

(∫ 1

0
ϑdx

)
+ ln

(∫ 1

0
ξdx

)
, (25)

which,when taken togetherwithLemma1 (iii) and (iv),
allows one to immediately deduce (ii) and (iii). Last, by
utilising the global bound on the total entropy (i) within
the entropy production identity (23), we arrive at the
boundon the entropy production due to heat conduction
(iv). 	


5 Temperature estimates

We now turn to the proof of Theorem 1. The approach
taken to obtain this pointwise a priori estimate on the
specific volume involves a refinement of the general
theoretical approach developed in [1,2], which itself
was inspired by [4].

Since ϑ and ξ are continuous on [0, 1] × [0,∞) -
ϑ, ξ ∈ C

([0, 1] × [0,∞),R
)
- we may define their

spatial-maximum functions ϑm : [0,∞] → (0,∞)

and ξm : [0,∞] → (0,∞) by

ϑm(t) := max
x∈[0,1] ϑ(x, t),

ξm(t) := max
x∈[0,1] ξ(x, t).

(26)

Note that both ϑm and ξm are necessarily continuous
functions: ϑm, ξm ∈ C

([0,∞), (0,∞)
)
.

We first formulate a preliminary analysis lemma that
links pointwise control of the temperature at (x, t) ∈
[0, 1]× [0,∞) to the total entropy production induced
by heat conduction at time t and the maximum specific
volume at t .

Lemma 3 (Temperature bounds)

(i) ϑm(t) ≤ 

(
1 + ξm(t)

∫ 1

0

ϑx
2

ξϑ2 (x, t) dx

)
.

(i i) λ − 

∫ 1

0

ϑx
2

ϑ2 (x, t)dx ≤ ϑ(x, t) .

(27)

Proof By applying the standard Sobolev inequality
associated with the embedding W 1,1(0, 1) ↪→ C[0, 1]
to ϑ1/2, and then utilising Jensen’s inequality, Lemma
1 (iv), and the Cauchy-Schwarz inequality with a judi-
cious choice of pairing, we obtain

ϑ
1/2
m (t) ≤

∫ 1

0
ϑ1/2(x, t)dx + 1

2

∫ 1

0

|ϑx |
ϑ1/2 (x, t)dx

≤
(∫ 1

0
ϑdx

)1/2

+
∫ 1

0
(ξϑ)1/2

|ϑx |
ξ1/2ϑ

dx

≤  +
(∫ 1

0
ξϑ dx

)1/2 (∫ 1

0

ϑx
2

ξϑ2 dx

)1/2

≤ 

[
1 + ξ

1/2
m (t)

(∫ 1

0

ϑx
2

ξϑ2 dx

)1/2
]

.

Taking squares of the first and last term in the
above inequality, which preserves the inequality since
ϑm(t) > 0, and then utilising the elementary alge-
braic inequality (a + b)2 ≤ 2(a2 + b2), we immedi-
ately arrive at (i).

From the fundamental theoremof calculus to applied
to ϑ1/2, we naturally find that for any x, y ∈ [0, 1]

ϑ1/2(x, t) ≥ ϑ1/2(y, t) − 1

2

∫ 1

0

|ϑx |
ϑ1/2 dx . (28)

Utilising the Cauchy-Schwarz inequality and Lemma
1 (iv), we also deduce∫ 1

0

|ϑx |
ϑ1/2 dx =

∫ 1

0
ϑ1/2 |ϑx |

ϑ
dx

≤
(∫ 1

0
ϑ dx

)1/2 (∫ 1

0

ϑx
2

ϑ2 dx

)1/2

≤ 

(∫ 1

0

ϑx
2

ϑ2 dx

)1/2

.

(29)

From (28) and (29) we immediately find

ϑ1/2(x, t) ≥ ϑ1/2(y, t) − 

2

(∫ 1

0

ϑx
2

ϑ2 (x, t)dx

)1/2

. (30)
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Applying the elementary algebraic implication

a ≥ b − c and b ≥ 0 �⇒ a2 ≥ 1

2
b2 − c2, (31)

to (30), we arrive at

ϑ(x, t) ≥ 1

2
ϑ(y, t) − 2

4

∫ 1

0

ϑx
2

ϑ2 (x, t)dx . (32)

Now integrating the both sides of the inequality (32)
with respect to y over the interval [0, 1], and then recall-
ing Lemma 2 (ii), we arrive at (ii). 	


6 Proof of Theorem 1

Noting the conservation-of-mass relation ξt = νx , we
see that the viscous contribution to the stress involves
a total time derivative, namely
νx

ξ
= ξt

ξ
= ∂t (ln ξ) . (33)

Now integrating the balance of momentum equation
(G) over [0, x]× [0, t], and utilising the outer-pressure
boundary condition (M) and (33), we then find

μ ln ξ(x, t) − Y (x, t) = b(x, t), (34)

where

Y (x, t) =
∫ t

0

[
P̂

(
ξ(x, τ ), ϑ(x, τ )

) − P0
]
dτ, (35)

b(x, t) =
∫ x

0

(
ν(r, t) − ν0(r)

)
dx + μ ln ξ0(x). (36)

Byutilising theboundon thekinetic energyprovided
by Lemma 1 (ii), we find, after a simple application of
the Cauchy-Schwarz inequality, that
∣∣∣∣
∫ 1

0
νdx

∣∣∣∣ ≤
∫ 1

0
|ν|dx ≤

(∫ 1

0
ν2dx

) 1
2

≤ . (37)

It follows that the function b appearing in (36) is
bounded on [0, 1] × [0,∞): i.e,

‖b‖∞ := max
(x,t)∈[0,1]×[0,∞)

|b(x, t)| ≤ . (38)

Note that we may re-write (34) as

ξ(x, t) = e
1
μ
b(x,t)e

1
μ
Y (x,t)

. (39)

Differentiating (35) with respect to t , and then inserting
(39), we arrive at

∂t Y = P̂
(
e

1
μ
be

1
μ
Y
, ϑ

)
− P0. (40)

Remark 6 It is worth noting that (34) and (40) mir-
ror [2, Eqns. 3.20 and 3.21]. Now the general ana-
lytical approach developed in [1,2], which as previ-
ously noted was inspired by [4], is sufficient to obtain
a priori bounds on the deformation gradient (specific
volume) for a broad class of thermoviscolastic materi-
als - linearly viscous, Fourier heat conducting thermo-
elasticmaterials - and awide rangeof physically natural
boundary conditions. However those bounds are per-
force non-uniform due to the generality treated there,
and it is precisely that shortcoming that we resolve in
this article.

Given that the equilibrium pressure law P̂(ξ, θ)

(W1) is algebraically bounded above and below as fol-
lows
θ

ξ
≤ P̂(ξ, θ) ≤ 1 + θ

ξ
, (41)

we therefore deduce from (40) and (41) that

∂t Y ≤ (1 + ϑ)e− 1
μ
be− 1

μ
Y − P0 (42)

and

∂t Y ≥ ϑe− 1
μ
be− 1

μ
Y − P0. (43)

Recalling (38), we readily obtain

0 < λ = e− 1
μ

‖b‖∞ ≤ e− 1
μ
b ≤ e

1
μ

‖b‖∞ =  < ∞. (44)

Combining (44) with the inequalities (42) and (43), we
naturally find

λϑe− 1
μ
Y ≤ ∂t Y + P0 ≤ (1 + ϑ)e− 1

μ
Y
, (45)

or equivalently

λ

μ
ϑ ≤ ∂t

(
e

1
μ
Y
)

+ P0
μ
e

1
μ
Y ≤ 

μ
(1 + ϑ). (46)

Multiplying the above inequality by e
P0
μ
t and noting

the appearance of a total time derivative in the middle
term, we then find that

λ

μ
ϑe

P0
μ
t ≤ ∂t

(
e

P0
μ
t e

1
μ
Y
)

≤ 

μ
(1 + ϑ)e

P0
μ
t
, (47)

or equivalently

λϑeαt ≤ ∂t

(
eαt e

1
μ
Y
)

≤ (1 + ϑ)eαt , (48)

where

α := P0
μ

> 0,

and we have replaced λ
μ
and 

μ
with our generic sym-

bols for a small constant λ > 0 and a large constant
0 < , as per our convention.
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Integrating the right inequality appearing in (48)
over the time interval [0, t], and then rearranging terms
and calculating a definite integral, we find

e
1
μ
Y ≤ e−αt + 

∫ t

0
(1 + ϑ)e−α(t−τ) dτ

≤ 1 + 

∫ t

0
e−α(t−τ) dτ + 

∫ t

0
ϑe−α(t−τ)dτ

≤ 1 + 

α

(
1 − e−αt) + 

∫ t

0
ϑe−α(t−τ)dτ

≤ 

(
1 +

∫ t

0
ϑm(τ )e−α(t−τ)dτ

)
.

(49)

Multiplying through (49) by e
1
μ
b and recalling (39) and

(44), we thus obtain

ξ(x, t) ≤ 

(
1 +

∫ t

0
ϑm(τ )e−α(t−τ)dτ

)
, (50)

and hence

ξm(t) ≤ 

(
1 +

∫ t

0
ϑm(τ )e−α(t−τ)dτ

)
. (51)

The estimate for the maximum temperature ϑm(t)
appearing in Lemma 3 (i) may be utilised to estimate
the second term on the right-hand side of (51) as fol-
lows. First, introduce the shorthand D(t) for the posi-
tive thermal entropy production term, namely

D(t) :=
∫ 1

0

ϑx
2

ξϑ2 (x, t) dx ≥ 0. (52)

We now calculate∫ t

0
ϑm(τ )e−α(t−τ)dτ

≤ 

(∫ t

0

(
1 + ξm(τ )D(τ )

)
e−α(t−τ)dτ

)

≤ 

(∫ t

0
e−α(t−τ)dτ +

∫ t

0
ξm(τ )D(τ )dτ

)

≤ 

α

(
1 − e−αt) + 

∫ t

0
ξm(τ )D(τ )dτ

≤ 

(
1 +

∫ t

0
ξm(τ )D(τ )dτ

)
.

(53)

Extracting the resulting estimate between the first and
last termof (53) and injecting it into (51),we thus obtain

ξm(t) ≤ 

(
1 +

∫ t

0
ξm(τ )D(τ )dτ

)
. (54)

Recalling that ξm : [0,∞) → (0,∞) is a continuous
function and D(t) ≥ 0, which thereby permits one to
apply Gronwall’s inequality to (54), we conclude

ξm(t) ≤ e
∫ t
0 D(τ )dτ . (55)

Now utilising the bound of the total thermal entropy
production given by Lemma 2 (iv), namely∫ ∞

0
D(t)dt =

∫ ∞

0

∫ 1

0

ϑx
2

ξϑ2 (x, t) dxdt < ∞, (56)

we conclude from (55) that there exists ξ > 0 that uni-
formly bounds the specific volume from above, namely

ξ(x, t) ≤ ξ ∀ (x, t) ∈ [0, 1] × [0,∞). (57)

Turningnow to the demonstrationof a uniform lower
bound for ξ(x, t), we will draw on an idea that orig-
inated with Nagasawa [16]: see also [17]. We first
replace the technical lemma appearing in [16, Lemma
3.1] with a more direct result that follows from the
Lebesgue dominated convergence theorem, namely the
following Lemma.

Lemma 4 Let α > 0 and g : [0,∞) → R be a con-
tinuous and absolutely integrable function: i.e.,∫ ∞

0
|g(τ )| dτ < ∞.

It then follows that

lim
t→∞

∫ t

0
g(τ )e−α(t−τ)dτ = 0. (58)

Proof For each t ∈ (0,∞), we introduce the indicator
function I[0,t] : [0,∞) → R defined by

I[0,t](τ ) =
{
1 τ ∈ [0, t]
0 τ ∈ (t,∞)

(59)

Note that for all t ∈ (0,∞)∫ t

0
g(τ )e−α(t−τ)dτ =

∫ ∞

0
g(τ )e−α(t−τ)I[0,t](τ )dτ.

(60)

Note that the t-dependent integrand on the right-hand
side of (60), namely g(τ )e−α(t−τ)I[0,t](τ ), is domi-
nated uniformly in t by the L1 function g:∣∣∣g(τ )e−α(t−τ)I[0,t](τ )

∣∣∣ ≤ |g(τ )| ∀ t, τ ∈ [0,∞).

(61)

Furthermore, this integrand converges pointwise to
zero as t → ∞: i.e., for all τ ∈ [0,∞)

lim
t→∞ g(τ )e−α(t−τ)I[0,t](τ ) = 0. (62)

Recalling Lebesgue’s dominated convergence theorem
and noting (61) and (62), we may therefore deduce

lim
t→∞

∫ ∞

0
g(τ )e−α(t−τ)I[0,t](τ )dτ

=
∫ ∞

0
lim
t→∞

[
g(τ )e−α(t−τ)I[0,t](τ )

]
dτ = 0,

(63)
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from which, upon noting (60), we may then conclude
(58). 	


We may now utilise Lemma 4 to establish the fol-
lowing global lower bound.

Lemma 5 With α = P0
μ

> 0, there exists λ > 0 such
that∫ t

0
ϑ(x, τ )e−α(t−τ)dτ ≥ λ > 0

Proof Recalling the spatially uniformpoint-wise lower-
bound on the temperature given in Lemma 3 (ii), we
obtain a corresponding lower-bound for the minimum
temperature, namely for all t ∈ [0,∞)

min
x∈[0,1] ϑ(x, τ ) ≥ λ − 

∫ 1

0

ϑx
2

ϑ2 (x, τ )dx . (64)

For notational convenience, we introduce the function
f : [0,∞) → R defined by

f (t) :=
∫ 1

0

ϑx
2

ϑ2 (x, t)dx ∀τ ∈ [0,∞). (65)

Now combining (56) and (57), we find
∫ ∞

0

∫ 1

0

ϑx
2

ϑ2 (x, t) dxdt < ∞, (66)

and hence

f ∈ L1(0,∞). (67)

Multiplying each sides of the inequality (64) by
e−α(t−τ), before integrating in τ over the time-interval
[0, t], and then explicitly calculating a definite integral,
we obtain∫ t

0
min

x∈[0,1] ϑ(x, τ )e−α(t−τ)dτ

≥ λ

∫ t

0
e−α(t−τ)dτ − 

∫ t

0
f (τ ) e−α(t−τ)dτ

= λ

α

(
1 − e−αt) − 

∫ t

0
f (τ ) e−α(t−τ)dτ.

(68)

Recalling Lemma 4 and (67), we may now take the
limit inferior as t → ∞ ( lim inf t→∞) of the inequality
appearing in (68) to arrive at

lim inf
t→∞

∫ t

0
min

x∈[0,1] ϑ(x, τ )e−α(t−τ)dτ ≥ λ

α
> 0. (69)

Given (69), we may now choose λ1 > 0 and T̃ > 0
such that

∫ t

0
min

x∈[0,1] ϑ(x, τ )e−α(t−τ)dτ ≥ λ1, ∀t ∈ [T̃ ,∞).

(70)

Noting that∫ t

0
min

x∈[0,1] ϑ(x, τ )e−α(t−τ)dτ

is a positive and continuous function of t ∈ [0,∞), we
may identify its necessarily positive minimum λ2 > 0
on the compact set [0, T̃ ], i.e.,

λ2:= min
t∈[0,T̃ ]

(∫ t

0
min

x∈[0,1] ϑ(x, τ )e−α(t−τ)dτ

)
>0. (71)

Setting λ = min{λ1, λ2} > 0, we may combine (70)
and (71) to deduce the global lower bound∫ t

0
min

x∈[0,1] ϑ(x, τ )e−α(t−τ)dτ ≥ λ, ∀t ∈ [0,∞),

from which the Lemma immediately follows. 	

Returning to the lower inequality appearing in (48),

we find, upon integrating over the time interval [0, t],
and then rearranging terms that

e
1
μ
Y ≥ e−αt + λ

∫ t

0
ϑ(x, τ )e−α(t−τ) dτ. (72)

Utilising Lemma 5 in (72), we readily obtain

e
1
μ
Y ≥ λ > 0. (73)

Now recalling (39) and (44), we have

ξ = e
1
μ
be

1
μ
Y ≥ e− 1

μ
‖b‖∞e

1
μ
Y ≥ λe

1
μ
Y
. (74)

Combining the inequalities (73) and (74), we now see
that there exists a constant ξ > 0 that uniformly bounds
the specific volume from below, namely, for all (x, t) ∈
[0, 1] × [0,∞)

ξ(x, t) ≥ ξ > 0,

which concludes the proof of Theorem 1.

Declaration

Conflict of Interest The authors declare that they have no con-
flict of interest.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s

123



1172 Meccanica (2023) 58:1163–1172

Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Watson SJ (1997) Unique global solvability for initial-
boundary value problems in one-dimensional nonlinear
thermoviscoelasticity with phase transitions. PhD thesis,
Carnegie Mellon University

2. Watson SJ (2000) Unique global solvability for initial-
boundary value problems in one-dimensional nonlinear
thermoviscoelasticity. Arch Ration Mech Anal 153:1–37.
https://doi.org/10.1007/s002050050007

3. Dafermos CM (2000) Hyperbolic Conservation Laws in
Continuum Physics. Springer, Berlin Heidelberg New York

4. Kazhikhov AV, Shelukhin VV (1977) Unique global
solutions with respect to time of initial-boundary value
problems for one-dimensional equations of a viscous
gas. Prikl Mat Mekh 41:282–291. https://doi.org/10.1016/
0021-8928(77)90011-9

5. Nagasawa T (1983) On the outer pressure problem of the
one-dimensional polytropic ideal gas. Jpn J Appl Math
5(1):53–85. https://doi.org/10.1007/BF03167901

6. Dafermos CM (1982) Global smooth solutions to the
initial-boundary value problem for the equations of one-
dimensional nonlinear thermoviscoelasticity. SIAM J Math
Anal 13:397–408. https://doi.org/10.1137/0513029

7. Krylov NV (1996) Lectures on Elliptic and Parabolic Equa-
tions in Hölder Spaces. Graduate Studies in Mathematics.
American Mathematical Society, Boston

8. Frankel T (2012) The Geometry of Physics: an Introduction.
Cambridge University Press, Cambridge

9. Goddard JD (2021) The second law of thermodynam-
ics as variation on a theme of carathéodory. Proc R Soc
A 477(2253):20210425. https://doi.org/10.1098/rspa.2021.
0425

10. Callen HB (1985) Thermodynamics and an Introduction to
Thermostatics. John Wiley and Sons Inc, New York

11. Kontogeorgis GM, Privat R, Jaubert J-N (2019) Taking
another look at the Van der Waals equation of state - almost
150 years later. J ChemEngData 64:4619–4637. https://doi.
org/10.1021/acs.jced.9b00264

12. FeynmanRP (1988) StatisticalMechanics: a Set of Lectures.
Advanced book program. West View Press, Princeton

13. Siemens PJ (1983) Liquid-gas phase transition in nuclear
matter.Nature 305(5933):410–412. https://doi.org/10.1038/
305410a0

14. Sewak R, Dey CC (2019) Martensitic phase trans-
formation in TiNi. Sci Rep. https://doi.org/10.1038/
s41598-019-49605-z

15. Bhattacharya K (2003) Microstructure of Martensite.
Oxford University Press, Oxford

16. NagasawaT (1988)Global asymptotics of the outer pressure
problem with free boundary. Jpn J Appl Math 5:205–224.
https://doi.org/10.1007/BF03167873

17. Lewicka M, Watson SJ (2003) Temporal asymptotics for
the p’th power Newtonian fluid in one space dimension.
Z Angew Math Phys 54:633–651. https://doi.org/10.1007/
s00033-003-1149-1

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s002050050007
https://doi.org/10.1016/0021-8928(77)90011-9
https://doi.org/10.1016/0021-8928(77)90011-9
https://doi.org/10.1007/BF03167901
https://doi.org/10.1137/0513029
https://doi.org/10.1098/rspa.2021.0425
https://doi.org/10.1098/rspa.2021.0425
https://doi.org/10.1021/acs.jced.9b00264
https://doi.org/10.1021/acs.jced.9b00264
https://doi.org/10.1038/305410a0
https://doi.org/10.1038/305410a0
https://doi.org/10.1038/s41598-019-49605-z
https://doi.org/10.1038/s41598-019-49605-z
https://doi.org/10.1007/BF03167873
https://doi.org/10.1007/s00033-003-1149-1
https://doi.org/10.1007/s00033-003-1149-1

	Navier–Stokes–Fourier system with phase transitions
	Abstract
	1 Introduction
	2 Results
	3 The ideal elastogas
	4 Energy and entropy bounds
	5 Temperature estimates
	6 Proof of Theorem 1
	References




