
Received 8 November 2022, accepted 21 November 2022, date of publication 28 November 2022,
date of current version 5 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3225399

Adaptive Model Verification for Modularized
Industry 4.0 Applications
XIN XIN 1,2, SYE LOONG KEOH 1, (Member, IEEE), MICHELE SEVEGNANI 1,
MARTIN SAERBECK 2, AND TECK PING KHOO2
1School of Computing Science, University of Glasgow, G12 8RZ Glasgow, U.K.
2Digital Service, TÜV SÜD Asia Pacific, Singapore 609937

Corresponding author: Xin Xin (x.xin.2@research.gla.ac.uk)

The work of Xin Xin was supported in part by the Singapore Economic Development Board (EDB) through the Industrial Postgraduate
Programme (IPP) Grant. The work of Michele Sevegnani was supported in part by the Engineering and Physical Sciences Research
Council (EPSRC) under Grant EP/F033206/1, in part by the Formal Methods for Agritech Resilience Modelling (FARM) under Grant
EP/S035362/1, in part by the Multi-Perspective Design of IoT Cybersecurity in Ground and Aerial Vehicles (MAGIC), and in part
by the Amazon Research Award.

ABSTRACT Cyber-Physical Systems (CPSs) are the core of Industry 4.0 applications, integrating advanced
technologies such as sensing, data analytics, and artificial intelligence. This kind of combination typically
consists of networked sensors and decision-making processes in which sensor-generated data drive the
control decisions. Hence, the trustworthiness of the sensors is essential to guarantee performance, safety
and quality during operation. Formal model verification techniques are a valuable tool allowing strong
reasoning about the high-level design of CPSs. However, the uncertainty exhibited by the underlying sensor
networks is often ignored. Manufacturing processes typically involve composition of various modular CPSs
that work as a whole, such as multiple Collaborative Robots (cobots) working together as a production
line, which improves the flexibility and resilience of the production process. It is still challenging to verify
this class of compositional process while also considering uncertainty. We propose a novel verification
framework for modular CPSs that combines sensor-level data-driven fault detection and system-level model-
driven probabilistic model checking. The resulting framework can rigorously quantify sensor readings’
trustworthiness, enabling formal reasoning for system failure prediction and reliability analysis.We validated
our approach on a cobots-based manufacturing process.

INDEX TERMS Probabilistic model checking, sensor networks, trustworthiness, cyber-physical system,
collaborative robot, industry 4.0.

I. INTRODUCTION
Cyber-Physical Systems (CPSs) connecting physical devices
into a cyber-network are emerging as an efficient Industry
4.0 paradigm to enable many industrial manufacturing use
cases [1], [2], [3]. Industry 4.0 aims to integrate operational
technologies (OT) and information technologies (IT) to
connect industrial assets, including machines and control
systems, with the information systems and business processes
to quickly and dynamically respond to demand changes [4],
[5], [6]. This has accelerated the adoption of collaborative
robots (cobots) working together on production lines. CPSs

The associate editor coordinating the review of this manuscript and

approving it for publication was Agostino Forestiero .

provide the capability of decentralisation, modularity and
interoperability to enable advanced industrial automation.

With the utilisation of Artificial Intelligence (AI), machine
learning and data analytics, operators are now able to
collect large volumes of data from operational systems
and equipment at run time. Subsequently, computers can
simulate human decisions with complex algorithms to derive
insights and enable self-control actions. Such an integration
significantly accelerates the automation processes to improve
the operation quality, ensure process safety and predict
potential failures. Although all of these technologies are
connected, there are still challenges that have not been
addressed in real-world deployments. Firstly, the system
model used to define the operational behaviour of the system

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 125353

https://orcid.org/0000-0003-4703-7356
https://orcid.org/0000-0003-3640-5010
https://orcid.org/0000-0001-6773-9481
https://orcid.org/0000-0001-5664-5586
https://orcid.org/0000-0002-3025-7689

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

is typically static and does not accurately reflect the actual
behaviour of the equipment or sensors forming the CPS over
time. It is thus important to identify any deviation from the
expected behaviour to reduce equipment down time and to
effectively plan for component replacement as well as to
ensure compliance with safety regulations. Secondly, there
is a strong dependency between the accurate prediction of
an equipment’s behaviour and the data collected from the
sensors instrumenting the equipment. This means that it is
extremely important to acquire trustworthy sensor readings
to ensure the accurate prediction of the system behaviour.
Most of the systems deployed on the field currently assume
that the acquired sensor readings are accurate, which may
lead to inaccuracy in their predictive algorithms. However,
the uncertainty exhibited by the underlying sensor networks
is difficult to determine while the sensor network is deployed.
For instance, unreliable connectivity or hardware failures is
one of the most common issues, which results in intermittent
readings. Another common issue is the environment being
out of range of the transducer due to manufacturing process
changes, e.g., the environment light is too bright for the
camera sensor compared to the initial deployment condition.
We advocate the idea that all decisions made are only as
good as the sensor data that they are based on. Lastly, CPSs
typically involve composition of various sensor networks,
e.g., cobots andAutomatedGuidedVehicles (AGVs)working
together. This means that the system can be flexibly formed
with multiple independent functional components, thus
achieving modularity. Although each component’s behaviour
can be verified independently through formal verification,
it is challenging to reflect on their behaviour when plugged
in as a modular component at the system level.

In this paper, we propose a component-based run-time
model verification approach for Industry 4.0 applications.
Two different model cobots are used to evaluate this
approach. Firstly, these two cobots are verified independently
based on our previous work [7]. Subsequently, the verified
two cobot models can be dynamically composed into
a manufacturing process. Afterwards, this manufacturing
process is abstracted as a system-level model that can be
verified at run time using probabilistic model checking
techniques. We built on our previous work on an approach
to determine the trustworthiness of sensor readings at run
time. Subsequently, this quantified trustworthiness value is
fed back as sensor networks’ confidence score to reflect the
impact at model level though probabilistic model checking,
this allows for the accurate prediction of failures. The
contributions of this paper are as follows:
• A new method to create a component-based system
probabilistic model including interacting sub-modules
as child models and higher level system abstraction.
This method allows independently verified child models
(e.g., individual cobots) to form a system-level proba-
bilistic model according to the changing requirements of
Industry 4.0 applications that can be verified at a higher
level.

• Integrating data-driven models that are based on quan-
tified trustworthiness of the sensor readings with a
probabilistic model to enable run-time verification of
the system behaviour. With this, a more accurate
reflection of the system behaviour at run-time can be
achieved, therefore enabling the prediction of failures
more accurately.

This paper is organised as follows: Section II provides the
background of this research and related work. Section III
describes the proposed run-time compositional probabilistic
model checking design, with the ability to verify a CPS
consisting of multiple cobots at run time. Section IV presents
an implementation to predict the failure probability of a
painting system using two cobots. The experiment and results
are presented in Section V. Section VI provides further
insights on the experiment results. Finally, we conclude the
paper with future work in Section VII.

II. RELATED WORK
A. CPS VERIFICATION
Model checking is widely used to verify modern system
behaviour and analyse system reliability. Calder and Seveg-
nani [8] introduced a stochastic probabilistic model checking
framework for failure prediction of a critical communication
system. This framework is based on a discrete space model
and temporal logic to predict likelihood of service failure
within a given time bounds, and quantify the impact of
lower level components on service availability. However, the
proposed framework is difficult to model run time behaviours
due to the unreliable readings from sensors. Filieri et al. [9]
introduced a run-time probabilistic model checking approach
to evaluate the satisfaction of reliability requirements at run
time. The authors defined two phases, namely design-time
phase and run-time phase. At design-time, a Discrete-Time
Markov Chain (DTMC) model is pre-computed, and a set
of symbolic expressions is defined to represent satisfaction
of the requirements. As this model transition values are
known only at run time and may change over time, a set of
variables are used to represent the transition probabilities.
Subsequently, the verification is performed at run time
by replacing the transition variables with the real values
gathered by a monitoring system. However, the performance
of this approach is not only the DTMC model itself, but
also depends on the monitoring system inputs which is
hard to apply to more general scenarios. Li et al. [10]
presented a dynamic adaptation probabilistic model checker
approach to improve self-adaptive systems’ utility. They
define a Markov Decision Process (MDP) [11] model as the
system abstraction and operator provides initial transition
parameters according to experiment results and experience.
Subsequently, the transition parameters are updated onto the
MDP model according to the operation parameters at run
time. Over time, the MDP model adapts itself with the self-
adaptive system’s behaviour. This approach relies on the
operator’s actions and the effect to the system model can
be accurately measured. Epifani et al. [12] proposed another

125354 VOLUME 10, 2022

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

novel dynamic probabilistic model checking framework
based on KAMI (Keep Alive Models with Implementations).
This framework is based on the Bayesian Estimation Theory
(BET) to estimate the transition matrix according to the run-
time system. Subsequently, the estimated transition matrix is
applied to a DTMC model to increase the failure prediction
accuracy. Even so, to quantify the run-time variables is still a
challenge, e.g., system embedded sensors’ trustworthiness.

Considering the complexity and tight interactions of
CPSs, Statistical Model Checker (SMC) is proposed
[13], [14] to tackle two obstacles [15] of modern CPSs.
SMC is a simulation-based approach to sample the
behaviours and check conformance to the temporal formula.
Younes et al. [16] compared two probabilisticmodel checking
techniques, Numerical- and Statistical-probabilistic model
checking. The result showed that both techniques have
similar performance, but the statistical approach scales better
with the size of the state space and requires less memory.
Zarei et al. [17] proposed another SMC approach to verify
learning-based CPSs. This kind of CPSs employs machine
learning algorithm-based controllers, e.g., Neural Network,
that increases complexity and non-linearity. Traditional
verification techniques face state-space search and scalability
challenges. Thus, they built the SMC based on the
Clopper-Pearson confidence levels and defined specifications
using Signal Temporal Logic (STL) to verify the reachability,
safety and performance. The results showed that it is feasible
to use statistical verification for learning-based CPSs. Even
so, determining the CPS’s run-time characteristics is still a
challenge as the sensor readings are unreliable which will
significantly affect the reliability of the verification.

Apart from the SMC approach, ModelPlex [18] provides
correctness guarantees for CPSs at run time. It combines
Model Monitor to check the previous state and current
state for compliance with the model, Controller Monitor
checks the output of a controller implementation against
the controller model, while Prediction Monitor checks the
impact of deviation from the model to predict the eventual
state that might cause failures. ModelPlex is based on
differential dynamic logic dL [19] and has been applied in
robotic applications [20], [21], [22] using the tool KeYmaera
X [23], [24]. However, the run-time trustworthiness of the
sensors’ readings are not reflected through the Controller
monitor and Prediction monitor.

Together with model checking, temporal logic is a
popular formalism language for specifying reactive system
behaviours. Traditionally, temporal logic language has been
used for formal verification, such as LTL to capture
safety and reachability requirements over Boolean predicates
defined over the state space. Computation Tree Logic (CTL)
allows the expression of requirements over all computations
branching from a given state [25]. Kamide and Yano [26]
introduced a sequential Linear Temporal Logic (sLTL) and a
sequential Computation Tree Logic (sCTL) by extending LTL
and CTL to represent hierarchical information and structures.
This research work defined the translations from sLTL and

sCTL into LTL and CTL to verify hierarchical systems by
reusing the standard LTL- and CTL-based model checking
algorithms.

Over the last few years, the Robot Operating System (ROS)
has become a popular software framework for distributed
robotics and CPSs. A ROS-based Run-time Verification
(ROSRV) framework is an approach that incorporates a
middle layer to intercept messages in order to verify the
run-time system behaviour [27], [28]. The ROSRV provides
a functional layer to intercept all messages between the
slave layers to master layers, and by understanding the
communication between them, the system is able to enforce
the desired system behaviour based on the safety policies.
However, such verification systems only results in the system
conforming to the behaviour and safety policies, but it has no
ability to predict failures in advance. Furthermore, the middle
layer is actually incurring overheads and it can become a
bottleneck when there are large number of messages being
exchanged in a large scale deployment.

Ferrando et al. [29] introduced another ROS-based runtime
verification framework, ROSMonitoring. This framework
automatically verifies messages against formally specified
properties by adding a monitor through ROS node instrumen-
tation instead of creating a middle layer. It provides the flex-
ibility to scale up and to choose the specification formalism,
such as Linear Temporal Logic (LTL) or Signal Temporal
Logic (STL). However, the ROSMonitoring approach can
only be applied to ROS-based CPSs.

To describe and analyse distributed systems rigorously,
Paul and Nancy [30] presented a Dynamic Input/Output
Automata (DIOA) that allows create and destroy components
dynamically. Civit and Potop-Butucaru [31] extended DIOA
to a probabilistic framework to model a dynamic probabilistic
systems, for instance an industry 4.0 application using
multiple CPSs to work on one manufacturing process.
However, the DIOA models analyse a system only. It lacks
an approach to verify such dynamic systems.

B. SENSOR FAULT DETECTION
The current research works tend to assume that the sensor
readings are accurate and reliable of modern CPSs. However,
a sensor might behave with uncertainties in real-world
deployments due to complex environmental conditions or
incidentally placement, such as unreliable connectivity,
irregular power supplies or calibration errors. In order to
analyse sensor reliability, three sensor fault categories are
systematically classified by Ni et al. [32]. This classification
is defined according to the nature of sensor attributes,
which are environment features, system features or speci-
fications, and data features. Furthermore, these categories
are widely employed in sensor fault detection algorithms.
Sharma et al. [33] proposed four methods to detect the above
sensor faults, which are rule-based, time-series analysis-
based, learning-based and estimation methods. Apart from
statistical approaches, Park et al. [34] proposed a data-
driven light-weight real-time sensor fault detection system.

VOLUME 10, 2022 125355

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

FIGURE 1. Architecture of run-time model verification.

This system employs a Long Short-Term Memory (LSTM)
Recurrent Neural Network (RNN) deep learning model
to detect sensor faults. It overcomes the limitation of a
pure mathematical approach, which is sensitive to noise
and system complexity. However, the quality of machine
learning-based techniques depends on the dataset that covers
a wide variety of use cases. To get high-quality training
data sets is always the challenge in sensor network-based
applications. Li et al. [35] summarised recent advances in
sensor fault diagnosis. The authors classified sensor faults
into two categories: incipient failure and abrupt failure.
Together with three fault diagnosis techniques: model-
based approaches, knowledge-based approaches and data-
driven approaches, the sensor reliability can be verified and
quantified.

In this research, we extend the existing research works to
embed quantified sensor trustworthiness into a system-level
model to analyse the reliability of the CPS. Moreover, our
approach provides a practical methodology to quantify the
sensor reading’s trustworthiness to enable accurate system
impact analysis at run time. In addition, a real test-bed
environment consisting of painting operation by cobots was
set up to validate our approach.

III. RUN-TIME COMPOSITIONAL MODEL VERIFICATION
We present a run-time compositional verification framework
that combines data- and model-driven approaches to analyse
the reliability of CPSs. Fig. 1 illustrates the architecture of the
proposed framework.

First, a formal system model is defined according to the
specification of the CPS, expert knowledge and experiment
data. This system model represents a static system-level
abstraction that is required to bootstrap the model verification
at run time. It also specifies the initial state transition
probability matrix of the system to reflect the overall
system behaviour. The sensor fault detection module then
continuously learns about the sensor behaviour and quantifies

the sensor’s trustworthiness against expectation. A set of
sensor data is first collected under the operator supervision
to ensure the system works as expected. Subsequently, this
dataset is used to profile the sensor as its normal behaviour
using time series analysis, estimation and rule-based methods
following data-driven approach. If any deviation from the
normal behaviour profile is detected, the quantified sensor
trustworthiness will be updated at run time, this is termed
as the sensor confidence. Subsequently, the confidence
score is fed into the system model to update the transition
probabilistic matrix to form a run-time system model to
reflect the dynamic nature of a CPS. For instance, if a
sensor fault is detected, the transition probability matrix of
the system model is updated with lower confidence in the
trustworthiness of the sensor data, which will in turn increase
the probability of transition from a working state to an error
state, thus leading to a system failure. With this, the system
model evolves over time through this process continuously,
taking into consideration the trustworthiness of run-time
sensor readings to derive the appropriate probability of state
transitions.

The proposed framework also supports modularity in
that the top-level system model can be decomposed into
lower-level child models to provide flexibility to verify the
system at different levels of abstraction. Each child model
can be verified independently through traditional model
checking during the design phase. Subsequently, the proposed
approach updates the transition probability matrix at run time.
With this, it is now feasible for the verified child model to be
reused and composed dynamically to form a higher level CPS.
Fig. 2 shows how the child model is defined with interfaces of
input and output states such that they can be integrated with
each other or with a higher level system model easily.

A. RUN-TIME PROBABILISTIC SYSTEM MODEL
In line with a traditional formal model, the system states and
transitions are defined according to the system specification,

125356 VOLUME 10, 2022

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

FIGURE 2. Structure of compositional model verification.

which means that they will not change during the operation
phase. In a real-life scenario, the transition probability matrix
will change over time due to sensor wear-and-tear and drift.
In our run-time probabilistic model, we take into account the
accuracy of the sensor reading, hence termed trustworthiness
(a.k.a. sensor confidence), which will then be used to update
the transition matrix of the system model dynamically.

In order to quantify the sensor’s trustworthiness, our
approach [7] builds a Sensor Normal Behaviour profile
based on the historical data extracted from the sensors.
This includes sensors’ run-time statistical characteristics,
estimated reading range and drift trend. In essence, the
profile is based on the number of readings received, the
mean value and the standard deviation of each working
state. In the operational phase, the sensor’s run-time readings
are then compared against the Sensor Normal Behaviour
using a rule-based engine, subsequently deriving a Sensor
Confidence Score to be fed into the probabilistic model to
update the transition probability matrix dynamically. A run-
time probabilistic model,Mrt is defined as follows:

Mrt = (S, sinit ,Pruntime,L) (1)

where S is a finite set ofmachine states of the system, sinit ∈ S
is the initial state, Pruntime : S × S × T → [0, 1] is the
run-time transition probabilitymatrix that the transition keeps
updating over the finite time period T ⊂ {0, . . . , n}, where∑

s′∈S P(s, s
′, t) = 1 for all s ∈ S, t ∈ T , and L : S → 2AP

are function-labelling states with atomic propositions.

B. CHILD MODEL
A child model is an abstraction of a minimum fully functional
system in a production process, e.g., a turn-mill machine,
a reaction vessel, or a cobot. Normally, it is defined during the
design phase to verify all system behaviours that satisfy the
specification. In this paper, we define a child model, Mchild
by extending the run-time probabilistic model as a six-tuple
to provide the capability to be integrated with other models
to form a larger system model.

Mchild = (S, sinit ,Pchild ,L, Sin, Sout) (2)

where S, sinit , Pchild and L are defined as the run-time
probabilistic model Mrt and two new elements, Sin and Sout
are added. Sin ⊂ S is the entry state of the model, while
Sout ⊂ S is the exit state of the model.

C. SYSTEM-LEVEL MODEL
Multiple child models can be added to form a system-level
model at run time and this fits well with Industry 4.0 appli-
cations as the manufacturing process is formed dynamically
by multiple fully functional sub-systems with a centralised
control system. For instance, two collaborative robots form
a sequential painting process in a production line in which
one cobot moves the workpiece to the designated zone, while
the other cobot performs the painting task. In this context, the
cobot is defined as a child model and it is used as part of the
system-level manufacturing process defined as:

Msystem = (S, sinit ,Psystem,L,Mchild1 || . . . ||Mchildk) (3)

where Msystem is the top level system model, S, sinit , Psystem
and L are defined as in Mrt , while Mchild1 || . . . ||Mchildk is a
set of the child models (Eq. 2) representing the sub-system of
the top level system.

Consider the relationship between the child model and the
system model, the following constraints should be satisfied:

1) Ssystem ∩ Schildi = Sini ∪ Souti ∀ i ∈ {1, . . . , k}
2) Sini ∩ Souti = ∅ ∀ i ∈ {1, . . . , k}
3) Schildi ∩ Schildj = ∅ ∀i 6= j
4) Psystem(s, s′, t) = 0
∀ s ∈ Sini , s

′
∈ Ssystem, t ∈ T and i ∈ {1, . . . , k}

5) Psystem(s, s′, t) = 0
∀ s ∈ Ssystem, s′ ∈ Souti , t ∈ T and i ∈ {1, . . . , k}

The conjunction of system model Ssystem and child models
Schildi must only contain interface-states Sini and Souti as
illustrated in constraint 1. Secondly, there cannot be any
overlap states between Sini and Souti (constraint 2). Similarly
for all the child models, there cannot be any overlap states
between them (constraint 3). Lastly, constraint 4 and 5 do not
allow Ssystem transition, that is from Sini states, and to Souti
states at any time t ∈ T , and i ∈ {1, . . . , k}, respectively.
At the top level of the system model, there should not have

input state(s) and output state(s) to ensure finite states of the
system.

Semantics of the proposed approach are stated as follows:
1) S = Ssystem ∪ Schildi ∀ i ∈ {1, . . . , k}
2) P = [Psystem Pchild1 || . . . ||Pchildk]
3) P(s, s′, t) = Psystem(s, s′, t)
∀s ∈ (Ssystem/Sini), s

′
∈ S, t ∈ T , and i ∈ {1, . . . , k}

4) P(s, s′, t) = Pchildi (s, s
′, t)

∀s ∈ (Schildi/Souti), s
′
∈ S, t ∈ T , and i ∈ {1, . . . , k}

In order to verify the system as a whole, the global state
space is represented as S, which is the union set of all the
system model’s states Ssystem and all child models’ states
Schildi (semantic 1). Similarly, the global transition matrix P
concatenates the transitions of both the system model and
the child models (semantic 2). If the run-time state is a
system-level state Ssystem and is not an interface Sini state,
the system transition Psystem is applied (semantic 3). If the
run-time state is a child state Schild and is not an interface Souti
state, the system transition Pchild is applied (semantic 4).
With the semantics of the proposed approach and the

five constraints above, the design guarantees that there

VOLUME 10, 2022 125357

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

FIGURE 3. The collaborative workspace.

are no overlapped states between the system-level model
and the child models except the interface-states. Therefore,
this allows the high-level system and child modules to
be modelled separately and verified as a whole system
sequentially at run time.

D. TEMPORAL LOGIC PROPERTY QUERY
Once the system level model has been defined, it can be
verified and then queried to predict the system’s potential
failure at run time. Computation Tree Logic (CTL) is
used to evaluate the failure probability. The probability of
system failure is expressed by the following Probabilistic
Computation Tree Logic (PCTL) [36] formula:

Pfailure =? [F ≤t (Sfailure)]

where Pfailure is the system failure in the next t time. The
failure state Sfailure is defined in the system model in Fig. 5.

IV. EXPERIMENT DESIGN
We designed an experiment using two cobot arms as a
testbed to evaluate the proposed run-time compositional
verification framework. These two cobots synchronise their
actions automatically to complete the painting task of one
workpiece.

Fig. 3 illustrates three working zones in the collaborative
workspace. Cobot I is in charge of moving the workpiece
from the pending zone to the painting zone, while Cobot II
executes the painting work at the painting zone. When the
painting work is completed, Cobot I must then move the
workpiece to the ready zone. During the painting process,
one cobot must be in the standby zone with standby position
when another cobot is working. Each cobot is equipped with a
depth-camera to detect the working zone andworkpiece using
image processing techniques.

The electrical current in Amperes (A) of the cobots is the
key indicator to determine the machine’s working condition.
For instance, if the cobot is obstructed, the current reading
will be out of the normal reading range. We monitored
the current reading of the base joint, shoulder joint, elbow
joint and wrist joint in this experiment first to build the
cobot’s Sensor Normal Behaviour profile and determine the
Sensor Confidence Score in order to evaluate the proposed
approach.

A. ASSUMPTIONS
In order to focus on the main actions and to simplify
the painting process model, the following assumptions are
defined according to the expertise:
• All cobots are working in the collaborative workspace,
including pending zone, ready zone, painting zone and
standby location.

• There is no shared space between pending zone, ready
zone, painting zone and standby location.

• The three critical parameters, zone detection accuracy,
workpiece detection accuracy and current readings of
cobot’s joints, can be queried through the painting
system and cobot-system’s Application Programming
Interfaces (APIs).

• Five sensor fault types were used to compute the Sensor
Confidence Score at run time. In addition, we assigned
the following weight for each fault type based on the
occurrence and severity.
– Intermittent fault: 0.1
– Stuck-at fault: 0.1
– Spike fault: 0.1
– Follow estimated reading range: 0.1
– Sensor data pattern match: 0.6

• The servicing cycle is twenty days.
• The cobot’s safe working range is defined according
to ISO/TS 15066:2016. The pressure should be within
160 N/cm2 of quasi-static contact and 2 N/cm2 of
transient contact. Additionally, the force should be
within 210 N of quasi-static contact and 2 N of transient
contact [37].

B. CHILD MODEL – COBOT ARM
As shown in Fig. 4, an operating cobot can be represented by
eleven states to illustrate its working status.
S1 Standby is the entry state in which a cobot is ready for

the duty. In this state, the force and pressure should be
in the safe working range.

S2 Idle is the state that cobot prepares to move its arm from
standby location to working zone, e.g., painting zone,
pending zone. In this state, the force and pressure are
kept in safe range. The cobot turns on the camera and
triggers its image processing engine to determine the
position of the workpiece.

S3 Zone detection detects and confirms the target zone
location. The cobot should move the gripper to a more
precise position.

S4 Workpiece detection detects and calculates the precise
location and the size of workpiece. The cobot operates
its gripper to grip and pick up the workpiece accord-
ingly.

S5 Execute missionmeans that the cobot performs the task
as instructed.

S6 Controlled parking is the state that the cobot reduces
the Tool Centre Point (TCP) [38] speed safely, stop
working and moves as commanded by the controller.

125358 VOLUME 10, 2022

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

FIGURE 4. The cobot child model Mcobot .

In this state, the force and pressure are kept in the safe
range.

S7 Stop is an exit state in which the cobot is stationary and
does not work for any purpose. In addition, the force
and pressure are in safe range.

S8 Out of safety barrier is the state that one or both force
and pressure is out of the safe range. In this state, the
cobot must stop working immediately.

S9 Low-level e-stop means the cobot triggers the
emergency-stop function.

S10 Error is a state indicating that there is a zone or
workpiece detection error.

S11 Collision is a state that cobot stopped and one or both
force and pressure is still out of the safe range.

In order to abstract the cobot system as a child model,
we extend the DTMC as a 6-tuple as described in Section III.
In this experiment, we use Mcobot to represents the child
modelMchild .

Mcobot = (S, sinit ,Pcobot ,L, Sin, Sout)

where Mcobot is a DTMC model of the cobot system, S is
the set of eleven cobot states, sinit is the initial state S1.
The initial transition matrix is defined according to the
specification in the design phase. Subsequently, during the
operation phase, the state transition matrix Pcobot (c.f. Eq. 4),
shown at the bottom of the page, will be updated based on
three factors according to the run-time condition, namely

zone detection accuracy, workpiece detection accuracy and
sensor confidence score.

The resulting model is used to verify the cobot system
behaviour individually. With the sensor confidence score
derived at run time to update the transition matrix, Pcobot ,
it will accurately reflect the behaviour of the cobot at the
operational phase.

C. SYSTEM MODEL - PAINTING SYSTEM
The system model is an abstraction of the painting process
that includes five machine states, and is composed of two
instances of the cobotmodel as the childmodels. In particular,
Cobot I is responsible for moving the workpiece between
the pending zone, painting zone, and ready zone; while
Cobot II paints the workpiece in the painting zone only.
In this system, both cobots should not execute their tasks
concurrently, in order to avoid a potential collision. For
example, while Cobot I is moving a workpiece to the painting
zone, Cobot II should be stationary at the standby location
with a safe standby pose.

Fig. 5 illustrates the system model that defines the five
system states and two child cobot models,
S1 Idle is the initial state of the painting process, the

system checks all the modules’ status and waits for the
task to be executed.

S2 Plan is the state that the system retrieves the
task details, plans the steps and adjusts running
parameters.

Pcobot =

0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 zoneacu 0 0 0 0 0 1− zoneacu 0
0 0 0 0 wpacu 0 0 0 0 1− wpacu 0
0 0 0 0 0 snconf 0 0 1− snconf 0 0
0 0 0 0 0 0 snconf 0 1− snconf 0 0
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 snconf 0 0 0 0 1− snconf
1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0

(4)

VOLUME 10, 2022 125359

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

FIGURE 5. The painting system model.

S3 Waiting workpiece is a state that keeps detecting the
workpiece in the pending zone. If there is a workpiece
detected, the system should trigger the planned action.

S4 Confirm status is a state that ensures all modules
are ready to move to the next step. We assume that
there may be a random error with this state leading
to the transition to S5 Failure state, since the painting
system checks with cobot systems and process control
modules at this stage. According to the empirical
rule and statistical studies of industrial processes [39],
we assume it is a quarterly failure event, which
approximates to 0.9875 (µ± 2.5σ).

S5 Failure means the painting system is working with
an unexpected behaviour that may cause subsequent
hazard or injury.

C1 C1in and C1out are the input and output states of a
sub-task assigned to a dedicated cobot to shift the
workpiece to the working zone.

C2 C2in and C2out is the action to paint the workpiece.
This task is allocated to the second cobot in the system.

The painting process is abstracted using an extended MDP.
The symbol Mpainting represents the system-level model as
follows:

Mpainting = (S, sinit ,P,L,Mc1||Mc2)

where Mpainting is the compositional system model, S is a
five-state set of the system, sinit ∈ S is the initial state S1,
P : S × S × T → [0, 1] is the transition matrix where∑

s′∈S P(s, s
′, t) = 1 for all s ∈ S, t ∈ T and L : S → 2AP are

function-labelling states with atomic propositions. Mc1||Mc2
are two cobot models. In this model, the cobot model is

considered as a special state machine, in which the Sin and
Sout of cobot model are the interfaces to integrate with the
other four normal machine states S1, S2, S3, S4 and the Failure
state S5.
The initial transition matrix is defined below where the

probability of Cobot I and II completing the task are c1comp
and c2comp respectively. We use notation ‘‘/’’ to indicate
nondeterministic choices in the state transition (5), shown at
the bottom of the page.

Similar to the cobot child model, the initial transition
matrix of the systemmodel is defined according to the system
specification and updated at run time based on the sensor
confidence score.

D. EVALUATION OF SYSTEM FAILURE
Experiments were conducted to verify the safety and
reliability of the painting process at run time using real sensor
readings and working conditions. The probability of system
failure is expressed by PCTL as below,

Pfailure =? [F ≤20 (S5)]

where Pfailure is the probability of eventual system failure
state, S5, in the next 20 days, i.e., the service cycle of the
cobot.

V. IMPLEMENTATION AND RESULTS
Two cobots were used to evaluate and validate the proposed
compositional model verification framework. One was a
UR10e [40] that worked as workpiece moving cobot C1. The
other was a Franka Emika [41], whichwas used for workpiece

Ppainting =

S1 S2 S3 C1 S4 C2 S5

0 1 0 0 0 0 0 S1
0 0 1 0 0 0 0 S2
0 0 1/0 0/1 0 0 0 S3
0 0 0 0 0 c1comp 1− c1comp C1

0/0.9875 0 0 0 0 0.9875/0 0.0125 S4
0 0 0 0 c2comp 0 1− c2comp C2
0 0 0 0 0 0 1 S5

(5)

125360 VOLUME 10, 2022

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

painting cobot C2. The sensor readings and cobot states were
retrieved through Modbus protocol for the UR10e and a low
level C++ interface, libfranka, for the Franka. The child
model and painting system model were evaluated using a
probabilistic model checker tool, PRISM [42].

In order to cover common and corner scenarios, six
test cases were developed to evaluate the proposed
approach.
TC1 The common industrymethod that assumes the sensor’s

readings are 100% trusted.
TC2 Using the proposed method that utilises run-time

sensor confidence score to predict probability of failure
of the painting system dynamically.

TC3 Increasing the reading value by 10% over time to
simulate drift event over time to validate the ability of
the proposed framework to predict failure.

TC4 Simulating another drift scenario that decreases the
reading value by 10% over time to evaluate the
algorithm.

TC5 Manual intervention to disrupt the cobot movement and
capture the sensor readings to evaluate the impact at
system-level.

TC6 Using a development firmware that returns only
unsigned integer, which resulted in incorrect decoding
of sensor reading of type signed integers. In most of
the cases, this firmware worked well, however, when
the reading exceeded 32,768, it caused overflow error
and the control system made wrong decision according
to the wrong readings.

We ran test case TC1, TC5 and TC6 once, while TC2, TC3,
TC4 were executed in nine cycles of the painting process.
Each cycle took about three minutes to complete the painting
process.

At the beginning, we captured a dataset of machine states
and sensor readings under the operator supervision to ensure
the painting system works as expected. Subsequently, this
dataset was processed to derive the sensor normal behaviour
profile of the cobots to validate the test cases.

As the first test case (TC1) assumed that the sensor
readings are 100% trusted, we obtained a system failure
probability of 0.0125 at all times, which is not realistic
as it is so close to perfect operation with zero failure. In
(TC2), we monitored the run-time sensor readings and then
computed the sensor confidence score of 0.88 – 0.90, thus
resulting in a system failure probability of 0.09 – 0.11. This
effectively reflects the real situation of the painting system
that it was not always working in the perfect condition. As for
(TC3) and (TC4), we simulated the drift events of ±10% of
the real data that was captured in (TC2), it is observed that
the sensor confidence score dropped about 10% to 0.80, thus
causing an increase in the failure probability to 0.15 and 0.18.
Fig 6 summarises the comparison of test results of (TC2),
(TC3) and (TC4), comparing the real sensor values and the
drift simulation results to evaluate their impacts on the failure
probability with respect to the sensor confidence score. The
horizontal axis indicates the cycle of the test cases and the

FIGURE 6. Comparison of real sensor readings and drift simulation.

TABLE 1. Sensor confidence score and failure probability.

vertical axis represents the sensor confidence score and the
failure probability.

Test case (TC5) was executed by blocking the cobot’s
action under safe guidance. In this case, we observed that the
resulting sensor confidence score dropped to 0.6735 which
is about 25% lower from the normal situation. With this,
the 20-days failure probability had thus increased to 0.3635.
Lastly, a defective firmware was used to evaluate the impact
on the system failure probability, as such an error could
result in the retrieval of incorrect sensor readings. Due to the
incorrect decoding of signed integers, the sensor confidence
score dropped to its lowest, 0.3814 and resulted in a high
failure probability of 0.7905, as shown in Table 1. The full
results are listed in Appendix I, Table 2.

VI. DISCUSSION
We have constructed a novel sensor network verification
framework for compositional sensor network-based cyber-
physical systems using two cobots as an evaluation use
case. While the proposed framework can be used to predict
potential system failure probability dynamically, model the
sensor network’s behaviour, and quantify the trustworthiness
of a sensor network at the operation phase, we would also like
to highlight several observations and insightful findings while
evaluating the painting system use case. We provide further
analysis and discussion of the experiment results and findings
below:

1) The system failure probability is in inverse proportion
to the sensor’s confidence score. When the sensor’s
confidence score is low, this implies that there exhibits

VOLUME 10, 2022 125361

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

anomalies and inaccuracy in the sensor readings
obtained, and hence the readings are less trustworthy.
Consequently, this has resulted in a higher probability
of system failure than normal. In the case of the
painting system, a linear function was applied to
compute the sensor-network confidence score and then
update the transition probability matrix. The choice of
function very much depends on the logical relationship
between the sensors and the system. This relationship
can be configured and customised accordingly. For
instance, machine learning techniques can be applied
if the necessary dataset is available to determine the
confidence score.

2) As the sensor is dynamic in nature, a transient fault in
the sensor leading to the system failure will typically
recover automatically. We observed that during one of
the painting operations, the sensor confidence score
unexpectedly dropped to 0.6808, thus increasing the
potential failure probability to 0.3524. Nonetheless, the
painting process was still completed as usual without
any warning. However, we noticed that in the following
operation cycle, the cobot indeed stopped working
and reported a collision failure. This shows that our
verification framework is able to predict the failure in a
timely manner, thus warning the operators to pay more
attention to such an event at run time in the future.
As the failure could be due to the transient fault in
the sensor, once the cobot was restarted, the painting
system resumed to work smoothly.

3) In Industry 4.0, the manufacturing process should be
flexible and formed bymultiple components with mini-
mal cost. With the proposed approach, the system-level
verification reuses verified child models as much as
possible to reduce the cost of creating the system
model. Also, the knowledge of each independent child
model can be explicitly represented and reused.

VII. CONCLUSION
The research we have conducted so far proposes a run-time
compositional verification framework that combines data-
and model-driven approaches. The framework takes into
account sensor trustworthiness of each child model and the
higher level system model can be formed by multiple child
models. Hence, it enables the verification of the system
reliability during the operation phase. We described how
to dynamically update a probabilistic model with sensor
network models that explicitly reflect sensor uncertainty. The
methodology forms a unified run-time model that presents
more accurate prediction results of impending system fail-
ures, even while the system is running. Furthermore, possible
future work includes the following four directions:

1) The rules for deriving sensor network confidence
scores are manually defined according to expertise on
the specific system. This should be generalised so that
the proposed approach can be applied to a wider range
of systems.

2) A context-aware adaptive algorithm is needed to reflect
more general scenarios, e.g., the cobot moves a heavy
workpiece, diverse speed control.

3) This experiment focuses on sequential processes only.
A hierarchical or more complex probabilistic model is
required to model more sophisticated cyber physical
systems. For instance, to verify multiple AGVs that
carry workpieces to serve various processes concur-
rently.

4) ROS has become a popular real-time processing
framework for CPSs over the last few years. However,
ROS is not widely used in commercial applications.
The lack of an efficient verification framework to verify
the behaviour of such ROS-based systems could have
hampered the adoption of ROS in the industry. The
proposed verification framework could be extended
to these ROS-based CPSs to guarantee performance,
safety, and quality during operation.

The evaluation results highlighted the efficiency of explic-
itly modelling sensor trustworthiness, especially because
automatically-collected sensor data might drive all conse-
quential decisions in the domain of sensor network-based
systems. Moreover, it helps the system operators to allocate
and provision resources efficiently and in a more timely
manner.

APPENDIX I. FULL EXPERIMENT RESULT
The experiment results of six scenarios.

TABLE 2. Sensor confidence score and failure probability.

125362 VOLUME 10, 2022

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

REFERENCES
[1] P. A. Lasota and J. A. Shah, ‘‘Analyzing the effects of

human-aware motion planning on close-proximity human–robot
collaboration,’’ Hum. Factors, J. Hum. Factors Ergonom. Soc.,
vol. 57, no. 1, pp. 21–33, Feb. 2015. [Online]. Available: http://
journals.sagepub.com/doi/10.1177/0018720814565188

[2] F. Gil-Vilda, A. Sune, J. A. Yagüe-Fabra, C. Crespo, and H. Serrano, ‘‘Inte-
gration of a collaborative robot in a U-shaped production line: A real case
study,’’ Proc. Manuf., vol. 13, pp. 109–115, Jan. 2017. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2351978917306479

[3] M. Gleirscher, N. Johnson, P. Karachristou, R. Calinescu, J. Law, and
J. Clark, ‘‘Challenges in the safety-security co-assurance of collaborative
industrial robots,’’ 2020, arXiv:2007.11099.

[4] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, ‘‘Industrial
Internet of Things: Challenges, opportunities, and directions,’’ IEEE Trans.
Ind. Informat., vol. 14, no. 11, pp. 4724–4734, Nov. 2018. [Online].
Available: https://ieeexplore.ieee.org/document/8401919/

[5] F. Tao, Q. Qi, L. Wang, and A. Y. C. Nee, ‘‘Digital twins and
cyber–physical systems toward smart manufacturing and Industry
4.0: correlation and comparison,’’ Engineering, vol. 5, no. 4,
pp. 653–661, Aug. 2019. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S209580991830612X

[6] A. Felsberger and G. Reiner, ‘‘Sustainable Industry 4.0 in production and
operations management: A systematic literature review,’’ Sustainability,
vol. 12, no. 19, p. 7982, 2020.

[7] X. Xin, S. L. Keoh, M. Sevegnani, and M. Saerbeck, ‘‘Dynamic
probabilistic model checking for sensor validation in Industry 4.0
applications,’’ in Proc. IEEE Int. Conf. Smart Internet Things (Smar-
tIoT), Beijing, China, Aug. 2020, pp. 43–50. [Online]. Available:
https://ieeexplore.ieee.org/document/9191985/

[8] M. Calder and M. Sevegnani, ‘‘Stochastic model checking for predicting
component failures and service availability,’’ IEEE Trans. Dependable
Secure Comput., vol. 16, no. 1, pp. 174–187, Jan. 2019. [Online].
Available: https://ieeexplore.ieee.org/document/7812626/

[9] A. Filieri, C. Ghezzi, and G. Tamburrelli, ‘‘Run-time efficient
probabilistic model checking,’’ in Proc. IEEE 33rd Int. Conf.
Softw. Eng., May 2011, pp. 341–350. [Online]. Available: https:
//dl.acm.org/doi/10.1145/1985793.1985840

[10] N. Li, S. Adepu, E. Kang, and D. Garlan, ‘‘Explanations for human-on-the-
loop: A probabilistic model checking approach,’’ in Proc. IEEE/ACM 15th
Int. Symp. Softw. Eng. Adapt. Self-Manag. Syst., Jun. 2020, pp. 181–187.

[11] R. Bellman, ‘‘A Markovian decision process,’’ Indiana Univ. Math. J.,
vol. 6, no. 4, pp. 679–684, Apr. 1957.

[12] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, ‘‘Model evolution
by run-time parameter adaptation,’’ in Proc. IEEE 31st Int. Conf.
Softw. Eng., Vancouver, BC, Canada, Jun. 2009, pp. 111–121. [Online].
Available: http://ieeexplore.ieee.org/document/5070513/

[13] H. L. S. Younes and R. G. Simmons, ‘‘Probabilistic verification
of discrete event systems using acceptance sampling,’’ in Computer
Aided Verification, vol. 2404, G. Goos, J. Hartmanis, J. van Leeuwen,
E. Brinksma, and K. G. Larsen, Eds. Berlin, Germany: Springer, 2002,
pp. 223–235. [Online]. Available: http://link.springer.com/10.1007/3-540-
45657-0_17

[14] L. Lestingi, M. Askarpour, M. M. Bersani, and M. Rossi, ‘‘A model-driven
approach for the formal analysis of human-robot interaction scenarios,’’ in
Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Toronto, ON, Canada,
Oct. 2020, pp. 1907–1914.

[15] E. M. Clarke and P. Zuliani, ‘‘Statistical model checking for cyber-
physical systems,’’ in Automated Technology for Verification and Analysis,
vol. 6996, T. Bultan and P.-A. Hsiung, Eds. Berlin, Germany: Springer,
2011, pp. 1–12.

[16] H. L. S. Younes, M. Kwiatkowska, G. Norman, and D. Parker, ‘‘Numerical
vs. statistical probabilistic model checking,’’ Int. J. Softw. Tools Technol.
Transf., vol. 8, no. 3, pp. 216–228, Jun. 2006. [Online]. Available:
http://link.springer.com/10.1007/s10009-005-0187-8

[17] M. Zarei, Y.Wang, andM. Pajic, ‘‘Statistical verification of learning-based
cyber-physical systems,’’ in Proc. 23rd Int. Conf. Hybrid Syst., Comput.
Control. Sydney, NSW, Australia: ACM, Apr. 2020, pp. 1–7. [Online].
Available: https://dl.acm.org/doi/10.1145/3365365.3382209

[18] S. Mitsch and A. Platzer, ‘‘ModelPlex: Verified runtime validation
of verified cyber-physical system models,’’ Formal Methods Syst.
Design, vol. 49, nos. 1–2, pp. 33–74, Oct. 2016. [Online]. Available:
http://link.springer.com/10.1007/s10703-016-0241-z

[19] A. Platzer, ‘‘Differential dynamic logics: Automated theorem proving
for hybrid systems,’’ Künstliche Intelligenz, vol. 24, no. 1, pp. 75–77,
Apr. 2010. [Online]. Available: http://link.springer.com/10.1007/s13218-
010-0014-6

[20] R. Bohrer, Y. K. Tan, S. Mitsch, A. Sogokon, and A. Platzer, ‘‘A formal
safety net for waypoint-following in ground robots,’’ IEEE Robot. Autom.
Lett., vol. 4, no. 3, pp. 2910–2917, Jul. 2019.

[21] S. Mitsch, K. Ghorbal, D. Vogelbacher, and A. Platzer, ‘‘Formal
verification of obstacle avoidance and navigation of ground robots,’’ Int. J.
Robot. Res., vol. 36, no. 12, pp. 1312–1340, Oct. 2017. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364917733549

[22] R. Bohrer, A. Luo, X. A. Chuang, and A. Platzer, ‘‘CoasterX: A case
study in component-driven hybrid systems proof automation,’’ IFAC-
PapersOnLine, vol. 51, no. 16, pp. 55–60, 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2405896318311236

[23] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, ‘‘KeYmaera X:
An axiomatic tactical theorem prover for hybrid systems,’’ in Automated
Deduction—CADE, vol. 9195, A. P. Felty and A. Middeldorp, Eds.
Cham, Switzerland: Springer, 2015, pp. 527–538. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-21401-6_36

[24] J.-D. Quesel, S. Mitsch, S. Loos, N. Aréchiga, and A. Platzer, ‘‘How to
model and prove hybrid systems with KeYmaera: A tutorial on safety,’’
Int. J. Softw. Tools Technol. Transf., vol. 18, no. 1, pp. 67–91, Feb. 2016.
[Online]. Available: https://link.springer.com/10.1007/s10009-015-0367-
0

[25] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook of
Model Checking. Cham, Switzerland: Springer, 2018. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-10575-8

[26] N. Kamide and R. Yano, ‘‘Logics and translations for
hierarchical model checking,’’ Proc. Comput. Sci., vol. 112,
pp. 31–40, Dec. 2017. [Online]. Available: https://linkinghub.
elsevier.com/retrieve/pii/S1877050917313534

[27] A. Desai, T. Dreossi, and S. A. Seshia, ‘‘Combining model checking and
runtime verification for safe robotics,’’ in Runtime Verification, vol. 10548,
S. Lahiri and G. Reger, Eds. Cham, Switzerland: Springer, 2017,
pp. 172–189. [Online]. Available: http://link.springer.com/10.1007/978-3-
319-67531-2_11

[28] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Rosu, ‘‘ROSRV: Runtime verification for robots,’’ in Runtime
Verification, vol. 8734, B. Bonakdarpour and S. A. Smolka, Eds.
Cham, Switzerland: Springer, 2014, pp. 247–254. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-11164-3_20

[29] A. Ferrando, R. C. Cardoso, M. Fisher, D. Ancona, L. Franceschini,
and V. Mascardi, ‘‘ROSMonitoring: A runtime verification
framework for ROS,’’ in Towards Autonomous Robotic Systems,
vol. 12228, A. Mohammad, X. Dong, and M. Russo, Eds. Cham,
Switzerland: Springer, 2020, pp. 387–399. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-63486-5_40

[30] P. C. Attie and N. A. Lynch, ‘‘Dynamic input/output automata: A formal
and compositional model for dynamic systems,’’ Inf. Comput., vol. 249,
pp. 28–75, Aug. 2016, doi: 10.1016/j.ic.2016.03.008.

[31] P. Civit and M. Potop-Butucaru, ‘‘Probabilistic dynamic input output
automata,’’ Leibniz Int. Proc. Inform. (LIPIcs), Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, Dagstuhl, Germany, 2022, pp. 15:1–15:18,
vol. 246. [Online]. Available: https://drops.dagstuhl.de/opus/volltexte/
2022/17206

[32] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, ‘‘Sensor network data
fault types,’’ ACM Trans. Sensor Netw., vol. 5, no. 3, pp. 1–29, May 2009.
[Online]. Available: https://dl.acm.org/doi/10.1145/1525856.1525863

[33] A. B. Sharma, L. Golubchik, and R. Govindan, ‘‘Sensor faults:
Detection methods and prevalence in real-world datasets,’’ ACM Trans.
Sensor Netw., vol. 6, no. 3, pp. 1–39, Jun. 2010. [Online]. Available:
https://dl.acm.org/doi/10.1145/1754414.1754419

[34] D. Park, S. Kim, Y. An, and J.-Y. Jung, ‘‘LiReD: A light-weight real-time
fault detection system for edge computing using LSTM recurrent neural
networks,’’ Sensors, vol. 18, no. 7, p. 2110, Jun. 2018. [Online]. Available:
http://www.mdpi.com/1424-8220/18/7/2110

[35] D. Li, Y. Wang, J. Wang, C. Wang, and Y. Duan, ‘‘Recent
advances in sensor fault diagnosis: A review,’’ Sens. Actuators
A, Phys., vol. 309, Jul. 2020, Art. no. 111990. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0924424719308635

[36] H. Hansson and B. Jonsson, ‘‘A logic for reasoning about time and
reliability,’’Formal Aspects Comput., vol. 6, no. 5, pp. 512–535, Sep. 2004.

VOLUME 10, 2022 125363

http://dx.doi.org/10.1016/j.ic.2016.03.008

X. Xin et al.: Adaptive Model Verification for Modularized Industry 4.0 Applications

[37] Robots and Robotic Devices—Collaborative Robots, Standard ISO/TS
15066:2016(en), 2016. [Online]. Available: https://www.iso.org/obp/
ui/#iso:std:iso:ts:15066:ed-1:v1:en

[38] M. Gurgul, Industrial Robots and Cobots: Everything You Need to Know
About Your Future Co-Worker. USA: Michal Gurgul, 2019.

[39] J. Buckner, B. L. Chin, and J. Henri, ‘‘Prometrix RS35e gauge study in five
two-level factors and one three-level factor,’’ in Statistical Case Studies
for Industrial Process Improvement. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 1997, pp. 9–17. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9780898719765.ch2

[40] UR10e Collaborative Industrial Robot. Accessed: Nov. 30, 2022. [Online].
Available: https://www.universal-robots.com/products/ur10-robot/

[41] Franka Emika. Accessed: Nov. 30, 2022. [Online]. Available: https://www.
franka.de/production/

[42] M. Kwiatkowska, G. Norman, and D. Parker, ‘‘PRISM 4.0: Verification
of probabilistic real-time systems,’’ in Computer Aided Verification,
vol. 6806, G. Gopalakrishnan and S. Qadeer, Eds. Berlin, Germany:
Springer, 2011, pp. 585–591.

XIN XIN is currently pursuing the Ph.D. degree
with the School of Computing Science, Univer-
sity of Glasgow. Before he started the Ph.D.,
he was a Research Engineer at the Institute of
High Performance Computing (IHPC), Agency
for Science, Technology and Research (A*STAR)
Singapore, focus on distributed computing and
social cognition computing. He also works at TÜV
SÜD Digital Service, Singapore, as a Principal
Engineer and leads the software development of

a run-time verification engine, which takes into account sensor run-time
trustworthiness to verify sensor network-based systems’ behavior. His
research interests include sensor trustworthiness quantification and impacts
analysis for safety-critical systems.

SYE LOONG KEOH (Member, IEEE) received
the Ph.D. degree in computing from the Imperial
College London.

He is currently an Associate Professor at
the School of Computing Science, University
of Glasgow (UofG), Singapore. He is also the
ProgrammeDirector of the SIT-UofG Joint Degree
in computing science and the Director of Research
Programmes at UofG. Prior to joining Glasgow,
he was a Senior Scientist at Philips Research

Eindhoven, The Netherlands (Philips Lighting is currently known as
Signify). He leads the cyber-security research activities at UofG Singapore,
where he has designed several lightweight authentication protocols and
key management schemes for the IoT, building management, and industrial
control systems. He is currently researching on new techniques for securing
end-to-end communication and ensuring data provenance in the IoT
environment. While working at Philips Research, he was responsible for
standardizing Marlin Digital Rights Management (DRM) technology for
content protection and lightweight security protocols for the Philips’s IoT-
based lighting systems. His research interests include cyber security for the
Internet of Things (IoT), lightweight security systems for cyber-physical
systems, and policy-based securitymanagement for pervasive and distributed
systems.

MICHELE SEVEGNANI received the M.Sc.
degree in bioinformatics from The University of
Edinburgh, in 2008, and the Ph.D. degree in com-
puting science from the University of Glasgow,
Glasgow, U.K., in 2012. He is currently a Senior
Lecturer of computing science at the University
of Glasgow. He is also a Principal Investigator
of research projects on modeling perspectives in
autonomous vehicles and resilience assurance in
agritech systems. He was a Visiting Researcher at

the University of California at Berkeley, on modeling autonomous swarm
systems. His research interests include online models, stochastic models
for predicting failures and availability, sensor validation in the IoT, and
reasoning for autonomous agents.

MARTIN SAERBECK received the degree in com-
puter science and the Ph.D. degree in industrial
design. He is currently a CTO of Digital Service
at TÜV SÜD, where he leads strategic research
and development initiatives of novel digital testing
solutions in the domains of AI, robotics, and the
IoT technology. He has over 15 years of experience
in developing technical solutions for both industry
and academia. After starting his career at Philips
Research, he established a new research group at

A*STAR IHPC and delivered innovation projects in the sectors of aerospace,
manufacturing, and retail. He has a passion for applied research, promoting
the translation of academic results to make today’s connected smart systems
safe, secure, and reliable.

TECK PING KHOO was born in Singapore,
in 1980. He received the Bachelor of Engineering
degree in electrical from the National University of
Singapore (NUS), in 2005, the Master of Science
degree in digital media technology from Nanyang
Technological University (NTU), in 2012, and the
Ph.D. degree in software engineering from the
Singapore University of Technology and Design
(SUTD), in 2021. From 2005 to 2013, he was
a Network Protocol Developer at DSO National

Laboratories, Singapore. From 2013 to 2016, he lectured a Python
programming at Republic Polytechnic, Singapore. Since 2016, he has been a
Software Quality Engineer at TÜV SÜD Asia–Pacific, Singapore. He is the
author of two research papers, which are about active and passive learning of
software. His research interests includemodel based testing of cyber physical
systems, software quality assurance (SQA), robotics, and the IoT.

125364 VOLUME 10, 2022

