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Abstract—With increasingly more computation being shifted to
the edge of the network, monitoring of critical infrastructures,
such as intermediate processing nodes in autonomous driving,
is further complicated due to the typically resource-constrained
environments. In order to reduce the resource overhead on
the network link imposed by monitoring, various methods have
been discussed that either follow a filtering approach for data-
emitting devices or conduct dynamic sampling based on employed
prediction models. Still, existing methods are mainly requiring
adaptive monitoring on edge devices, which demands device
reconfigurations, utilizes additional resources, and limits the
sophistication of employed models.

In this paper, we propose a sampling-based and cloud-located
approach that internally utilizes probabilistic forecasts and hence
provides means of quantifying model uncertainties, which can be
used for contextualized adaptations of sampling frequencies and
consequently relieves constrained network resources. We evaluate
our prototype implementation for the monitoring pipeline on a
publicly available streaming dataset and demonstrate its positive
impact on resource efficiency in a method comparison.

Index Terms—Adaptive Monitoring, Data Reduction, Time
Series Forecasting, Resource Management, Edge Computing

I. INTRODUCTION

The amount of devices and sensors deployed in the Internet
of Things (IoT) is increasing steadily. At the same time,
this coincides with a rapid increase of generated data by the
employed devices. Traditional cloud computing architectures
encounter problems when trying to cope with this increasing
scale, as new use cases, e.g. smart cities and manufacturing,
digital health care, or autonomous driving pose considerable
challenges to the underlying infrastructure. Especially in the
aforementioned domains, the amount of collected and trans-
ferred data to the cloud adds an additional burden on possibly
unreliable network connections and renders latency-bounded
and bandwidth-intensive applications infeasible [1], [2].

In order to unburden the network and improve overall com-
munication efficiency, the edge computing paradigm has been
gaining momentum in the past years. By shifting computing
capabilities closer to the actual data sources at the edge of
the network, such environments enable the processing of data
on edge devices in highly distributed architectures [3], [4].
The employed edge devices are typically resource-constrained
and remotely located. Thus, they can i.e. easily be overloaded
and are vulnerable to damage or theft. Since these critical
infrastructures can have a decisive impact on everyday life,
continuous monitoring is required in order to detect problems
early on and assure the expected functionality [5]. However,

constantly transmitting all the monitoring data, especially with
high frequency, consumes noticeable network bandwidth [6]
and can thus in turn aggravate network congestions or even
service interrupts [6]–[9]. Therefore, the transmission rate of
monitoring data is often reduced [6], i.e. by adaptively adjust-
ing the monitoring rate [6], [10], [11]. Several approaches [12],
[13] embed and employ the adaptive functionality directly on
the edge devices, and although this can yield promising results,
it also results in further processing load on already resource-
constrained nodes.

Hence, in this paper, we are proposing an adaptive monitor-
ing approach that is deployed on cloud nodes and chooses the
monitoring frequency based on forecasting future monitoring
metrics. Exploiting probabilistic forecasting models to decide
whether to fetch monitoring data from edge nodes or to rely
on the forecasting output, we aim to reduce monitoring traffic
and at the same time still allow for optimizing and automating
operations based on accurate monitoring metrics. Accordingly,
our approach considers the variability of the data over time
and retrains periodically in order to prevent the drifting of the
forecasting model [14].

Contributions. The contributions of this paper are:

• A design for a system that minimizes data transmission
rates in resource-constrained environments via sampling-
based adaptive monitoring. The internally used proba-
bilistic forecasting method allows for the assessment of
predictions and hence conditional sampling.

• A prototypical implementation of our adaptive monitoring
routine which follows the outlined principles of our
proposed system design and is therefore representative.

• An evaluation of our implementation on a publicly
available streaming dataset and comparison to a related
method. We demonstrate the effective reduction of data
transmission rates while retaining accurate metric data
estimates, and discuss the implications of our findings.

Outline. Section II discusses the related work. Section III
elaborates on the idea and proposes a system for sampling-
based and adaptive monitoring, whereas Section IV con-
cretizes on the modeling approach for probabilistic forecasting
of metrics. Section V presents the preliminary results of our
comparison with a related method, and a discussion of general
requirements of our approach. Section VI concludes the paper.



II. RELATED WORK

This section discusses various related methods for adaptive
monitoring as well as their differences from our method.

A. Adaptive Filtering

Solely emitting data values when they significantly differ
from past data values is a strategy implementable on the device
level and referred to as adaptive filtering. JCatascopia [15]
is a monitoring framework that adjusts the filtering range
in regard to a user-defined threshold, where the threshold
defines the percentage of the data that should be filtered.
The ATOM framework [16] follows a similar approach and
additionally sends the median values of a subset of metrics
when the values of these metrics did not change more than
a threshold in a certain period of time. Again another data
filtering system [17] conducts data filtering when previously
observed patterns in the data are maintained, which is achieved
by training a classifier on past data and using it on new data.

In contrast, our proposed framework only assumes accessi-
ble metric endpoints on the source nodes, which makes our
approach agnostic against the concrete set of metrics that
shall be modeled. Running the modeling solution on sink
nodes further allows for the employment of more sophisticated
methods due to non-existent battery constraints.

B. Adaptive Sampling

Adjusting the interval of sampling target devices in a
dynamic manner, based on observed data characteristics, is a
strategy called adaptive sampling. PayLess [18] is an adaptive
monitoring framework that adjusts the sampling frequency by
an operation with a constant definable value based on the
difference between the current and the previous monitoring
data and a predefined threshold. Another work [19] is based
on the violation-likelihood detection method: The likelihood
of not detecting a violation between two successive data points
is calculated, which is used as an indicator, together with a
user-defined threshold, for either establishing a fixed interval
or conducting more frequent monitoring. FAST [20] is a
framework that evaluates the need of adapting the sampling
interval at each time step and adjusts the sampling frequency
based on the error between a prior and a posterior estimation.
With EASA [21], the authors propose an energy-aware method
that attempts to determine the optimal sampling frequency and
takes the battery level of target IoT devices into consideration.

With our approach using probabilistic forecasts and a robust
model update strategy, we tackle limitations such as the
negligence of evolutionary data streams, missing or insufficient
model update strategies, and non-existent uncertainty handling.

C. Hybrid Algorithms

This category encompasses methods that either combine
adaptive filtering and adaptive sampling, or optimize not only
the amount of transmitted data. ADMin [11] is a framework
that aims to reduce the data which is produced in a network
and also reduce energy consumption by devices. Data is
published over the network solely when a shift is detected

in the data stream. The same authors also propose the AdaM
framework [22], which measures the streaming data variability
and evolution alongside employing two algorithms for adap-
tive sampling and adaptive filtering in order to reduce the
monitoring data disseminated throughout the network. With
the AM-DR framework [13], the authors attempt to reduce
the data transmission between the sink and sensor nodes by
predicting readings at both the source and sink nodes and
transmitting sensor data when the difference between predicted
and observed values exceeds a predefined threshold. The
SETAR framework [23] employs a forecasting model for both
the data aggregation layer and the source node, and in case
the forecasted metrics differ more than a threshold from the
actual values, the transmission of the actual values is triggered.
In other works [24], [25], the authors propose to fit a linear
model on the recent sensed values and only send the updates
of the model parameters to the sink node. A new model is
computed and distributed among nodes if the predicted values
continue to deviate from the actual sensed values. Efficient
sampling and hence reduced data transmission rates are also
the result of a distributed Active Learning framework [26] for
IoT applications deployed on multi-layer infrastructures.

The majority of hybrid algorithms require hardware or
software modifications for both the source node and sink
node, which makes their application challenging and less
straightforward. With our approach, we are relieving the IoT
devices of interest and hence simplify the operation.

III. PROPOSED SYSTEM

This section elaborates on our envisioned system for adap-
tive monitoring in resource-constrained environments via a
sampling-based approach. It is further illustrated in Figure 1.
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Fig. 1. Overview of the envisioned system. Limited computing resources and
network capacity characterize the edge environment. Hence, we reduce the
overall network usage by conditionally sampling from either a target node or
a model distribution, based on the models’ confidence in its predictions.



A. Probabilistic Adaptive Sampling

Monitoring of services or devices in resource-constrained
environments comes with its own challenges. In order to
reduce the additional bandwidth usage caused by monitor-
ing, methods have been proposed in the past that seek a
minimization of transferred information. Yet, most of them
require changes to the respective source node and/or sink
node, or provide insufficient means of dealing with imprecise
predictions and the evolution of data streams over time. For
applicability in real-world scenarios, it is therefore desirable
to design an approach that shifts control back to the respective
sink node(s), requires no changes on the device level and is
hence fairly agnostic, and employs a sophisticated strategy for
dealing with model predictions and variability in data streams.
Consequently, we demand a sampling-based approach that
utilizes probabilistic forecasting to realize adaptive monitoring.

B. Envisioned System

Assuming that target devices expose relevant metrics by
factory default or this functionality can be retrofitted with
manageable effort, the amount of transmitted data can be
reduced using a sampling-based approach, i.e., by employing
a prediction model on a sink node. Once sufficient data has
been collected via initial frequent sampling, a probabilistic
prediction model can be trained and used for predicting future
values together with a notion of prediction uncertainty. From
there on, at any point in time, the range of possible values pre-
dicted by the model is evaluated. In case of significant model
uncertainty, actual metric data is sampled from the source
node, whereas otherwise, we sample from the aforementioned
value range of the model. With this envisioned system, the
overall data transmission rate can be reduced and a conscious
strategy for dealing with uncertainties is enabled.

IV. RESOURCE-EFFICIENT ADAPTIVE MONITORING

This section presents our approach to adaptive monitoring in
edge computing environments using probabilistic time series
forecasts. The approach is generally sketched in Figure 2 and
explained in more detail in the following paragraphs.
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Fig. 2. The proposed pipeline. Time series data of actual metrics are
processed, enriched, and used as forecasting model input. The model output
is then further analyzed and evaluated with regard to adaptive monitoring.

A. Preliminaries

When collected over time, metric data can provide an
abstract representation of the state of each system component.
As in our previous work [27], we define metric data as
multivariate time series, i.e. a temporally ordered sequence
of vectors S = (St ∈ Rd : t = 1, 2, . . . , T ), where d is
the number of metrics and T defines the last sample time
stamp. For Sa

b = (Sa, Sa+1, . . . , Sb), we denote indices a and
b with a ≤ b and 0 ≤ a, b ≤ T as time series boundaries in
order to slice a given series S0

T and acquire a subseries Sa
b .

Additionally, we use the notion S(i) to refer to a particular
metric dimension i, with 1 ≤ i ≤ d. With Ŝ, we furthermore
refer to a forecasted multivariate time series.

B. Probabilistic Time Series Forecasting

The problem with commonly employed deterministic fore-
casting approaches is that an indication of the certainty of
model outputs is missing. In our adaptive sampling setting, this
hinders the quality assessment of model forecasts and would
only allow for an evaluation in retrospect. Conveniently, we
can make use of probabilistic forecasts to tackle this limitation.
Here, the underlying idea is that of quantile regression, where
the loss is formally defined and computed as

Lρ(y, ŷ) = ρ.f(y − ŷ) + (1− ρ).f(ŷ − y), (1)

with ρ ∈ (0, 1) being the quantile, f(x) = max(0, x) a
smoothing function of predicted values, y the ground truth,
and ŷ the corresponding predicted sample. Consequently, in
the case of our previously defined multivariate time series, the
total model loss is then calculated across time (T ), quantiles
(P ), and the user-defined prediction horizon K as:

T∑
t

P∑
ρ

Lρ

(
St
t+K , Ŝt

t+K

)
. (2)

By training a model with this loss function and adapting the
model parameters accordingly, we can assess the certainty of
model predictions later, which is imperative for our approach
to adaptive monitoring.

C. Uncertainty Quantification

We attempt to train a model on all metrics of a target
system, which results in a multivariate time series where we
can possibly exploit correlations between individual metrics.
Next, for each individual metric, we regulate the corresponding
sampling frequency, which demands a suitable criterion. In
order to quantify the uncertainty of each metric, we utilize
the standard deviation as a criterion to quantify the variability
of predicted samples across all quantiles. If the forecasted
samples have variance more than a predefined threshold,
intuitively, we consider the model outputs to be uncertain due
to the wide range of possible values. If we sample N values
from the model’s learned distribution, then the uncertainty
quantification process can be formulated as below:

σk =

√∑N
i=1 (si − µk)

2

N
, ν =

∑K
k=1 σk

K
(3)



Here, σk is the standard deviation of the forecasting samples
at time k, si = Ŝk

k is the i-th sample, and µk is the average
of all N samples at time step k. At the next step, the average
of all standard deviations of all time steps in the forecasting
windows length, i.e. K, is calculated as ν. Finally, the value
of ν is compared with the defined threshold, which triggers a
new sampling routine based on the outcome of this evaluation.
Evidently, this uncertainty quantification can also be used as a
trigger for model retrainings, e.g., if it is observed that defined
thresholds are violated more frequently than before.

D. Adaptive Monitoring

With a strategy now in place for model training and con-
ditional sampling, we can further elaborate on our overall
routine for adaptive monitoring, for which we summarize the
pseudocode in Algorithm 1. In the first step, all metrics are
fetched from the respective target system for the duration of
the defined input window length of the model. In the next
step, the model predicts future metric values based on the
given input for the duration of the defined forecasting horizon
length. Afterward, as previously described, the uncertainty of
each metric for the period of the forecasted time is calculated.
If no metric with high uncertainty is found, then the next
input of the model will be set to the recently forecasted
series. Otherwise, our monitoring routine idles until the last
forecasted time step with high certainty and then triggers
the fetching of uncertain metrics. Subsequently, the fetched
metrics and forecasted metrics are combined along the time
dimension and used as the next model input.

Algorithm 1 Pseudocode of adaptive monitoring routine
N ▷ forecasting horizon length
L ▷ input window length
FS ▷ forecasted series
FM ▷ fetched metrics
UM ▷ metrics with high uncertainty
IS ← fetchAllMetrics(length = L) ▷ input to model
LFT ← 0 ▷ last forecasted time step
while TRUE do

FS ← forecast(input = IS)
UM ← getUncertainMetrics(input = FS)
if isEmpty(UM) then

IS ← FS
LFT ← getLastT imeStep(FS)

else
idle(until = LFT ) ▷ wait for next interval
FM ← fetchMetrics(metrics = UM)
IS ← temporalMerge(FM,FS)

end if
end while

In summary, the aforementioned pipeline allows for targeted
sampling of individual metrics and makes use of probabilistic
forecasts if sufficient knowledge is available.

V. PRELIMINARY RESULTS

In this section, we examine a prototypical implementation
of our monitoring pipeline, called AM-PF, obtain preliminary
experimental results, and discuss our findings in detail.
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Fig. 3. Illustration of our experiment setup for the data acquisition.

A. Data Acquisition

A dataset is required for the evaluation of our proposed
framework. For the sake of highlighting the resource overhead
of frequent monitoring, we consider a sampling frequency of
1 second. Our general goal is to obtain realistic metrics of
a node with an underlying predictive pattern, which requires
a corresponding workload. The base workload is created by
means of employing 10 python services that are running on
the respective node. Each service consumes messages from an
external RabbitMQ message queue, and upon message receipt,
several processes are in parallel running basic operations in
order to stress relevant resources such as CPU, memory, etc.
These operations are by design dependent on the message rate
so that varying patterns can be simulated. The metrics of the
host machine are eventually gathered via Prometheus queries
and saved to file. As a source for publishing to the message
queue, we employ the IoT Vehicles experiment dataset created
and published in [28], which reports amounts of moving
cars at intervals of 1 second. At each point in time, the
corresponding vehicle amount is read and used for publishing
the same amount of messages to the message queue. The
whole procedure is illustrated in Figure 3.

B. Prototype Pipeline

We implement a prototype of our envisioned pipeline. First,
the values of each variable of the potentially multivariate time
series are min-max normalized along the time dimension,
where the boundaries are determined from the respective
training data and used during inference as well. We further use
as additional features cyclical encodings of SecondOfMinute
and MonthOfYear, as well as custom encodings for 1) Minu-
teOfDay and 2) separating work days and the weekend.

The neural network is implemented using the Darts1 library,
composed of two stacked LSTM layers with a dropout layer
in-between and a final linear layer at the end, trained by em-
ploying a quantile regression loss, and evaluated with respect
to the ρ-risk metric [29]. Optimized model hyperparameters
are found via a hyperparameter tuning approach based on grid
search. The investigated values are listed in Table I, with the
best ones found highlighted in bold. The model is subsequently

1https://unit8co.github.io/darts/, accessed: October 2022

https://unit8co.github.io/darts/


TABLE I
MODEL HYPEROPTIMIZATION

Configuration and Search Space

Learning rate 0.001
#Epochs max. 20

Input dimension {300, 600}
Output dimension {300, 600}
Hidden dimension {25, 75}

Batch size {256, 512}
Dropout rate {5%, 10%, 20%}

fully-trained with the best found hyperparameters using early
stopping, where the training of the model is stopped if the loss
of the model on the validation data does not decrease more
than 0.001 after 5 steps. The goodness of the hereby received
trained model is further verified via K-fold cross-validation.

C. Baseline

We compare our method against the AM-DR frame-
work [13] and make use of its publicly available imple-
mentation2. In short, this framework employs models both
on a source node and respective sink node, such that the
former has to transmit only its immediate sensed values that
deviate significantly from the predicted values. We investigate
different maximum error thresholds for this method, while all
other parameters are set as reported in the original publication.
Though not directly comparable to our approach due to a
different take on the problem, it is insightful to observe the
general saving potential on data transmissions as well as
implications for metric reconstruction accuracy at sink nodes.

D. Evaluation Setup

We use the previously acquired data to evaluate both ap-
proaches by indexing the respective data file by time and
extracting relevant input sequences as arguments to the mod-
els, i.e., no additional services are involved in this simplified
scenario which favors a detailed model comparison.

For both methods, we evaluate thresholds from 0.005 to
0.05, with a step size of 0.0025. For AM-DR, this threshold
translates to the maximum error allowed, whereas, for our
approach, the threshold marks the largest standard deviation
tolerable. Due to the different meanings of the threshold in
both methods, its configuration is not directly comparable but
still allows for insights and the derivation of recommendations.

In terms of evaluation metrics, we are interested in the
percentage of transmitted data given various threshold con-
figurations as well as the hereby inflicted implications on the
prediction accuracy and metric reconstruction at the sink.

E. Results

At any point in time, the confidence of the model in its
predictions is evaluated and compared against a threshold.
Naturally, the choice of the threshold has an impact on data

2https://github.com/YasminFathy/AMDRIoT, accessed: October 2022
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Fig. 4. Comparison of frameworks with regard to transmitted data. Though
not directly comparable, it can be observed how individual metrics are handled
with varying levels of sensitivity, based on their inherent characteristics.

transmission rates and prediction accuracies, as it controls the
monitoring frequency as well as the amount of transmitted
data. In our experiments, we for instance observe that with
a more conservative threshold of 0.0225, our framework is
fetching real metrics more frequently when compared to a used
opportunistic threshold of 0.0475. While the latter requires
less fetching and hence relieves network bandwidth usage, it
leads to a less accurate observable result. This manifests itself
in higher accumulated Mean Squared Error (MSE) values for
higher thresholds (up to 5% increase in our example), which
can also greatly vary across metrics.

The percentage of transmitted data in relation to used
thresholds is illustrated in Figure 4. For both methods (the
results are not directly comparable), we observe that less data
is transmitted with increasing thresholds. Worth mentioning is
that for AM-DR, the reduction is comparably smooth and also
similar across metrics, whereas, for our framework, we observe
that the decline is initially very steady and also dependent
on the specific metric, which indicates that individual metric
characteristics are taken into consideration, which favors a
more metric-specific adaptation of sampling frequencies.

Lastly, we also present the prediction errors in relation to
used thresholds in Figure 5. Here, we use the Symmetric
Mean Absolute Percentage Error (SMAPE) since it allows for
an easy-to-interpret percentage error as well as comparison
across metrics. As expected, the SMAPE is increasing for
both methods with rising threshold values, since fewer actual
metrics are considered and hence the accuracy of inferred
metrics is affected. Noticeably, the SMAPE values of AM-
DR are steadily increasing and tend to fan out over time,
whereas the SMAPE values of AM-PF are more volatile in
the beginning and tend to converge toward a common value.

Summarizing our results, we find that a suitable config-
uration of AM-PF yields a similar performance as related
methods, while requiring no changes to target edge devices.

F. Discussion

Our findings demonstrate that probabilistic forecasts can
be used to motivate a sampling-based monitoring approach
that is able to adapt to data stream changes and reflect on
its own recommendations. By tuning a configurable threshold
parameter, the amount of transmitted data as well as the hereby
possible metric accuracy can be controlled and balanced.

https://github.com/YasminFathy/AMDRIoT
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Fig. 5. Comparison of frameworks with regard to reconstruction accuracy.
The prediction discrepancy is measured using the SMAPE metric. It can be
observed that both methods expose a different convergence behavior.

For the application of our adaptive monitoring framework
in real-world scenarios, we deem the following things impor-
tant. First, it is required that target edge nodes are offering
metric endpoints which can be scraped – though a reasonable
assumption, some edge nodes might need adaptations if they
previously only followed a push-based messaging principle.
Another aspect to keep in mind is the configuration of the fore-
casting horizon – it is advisable to choose a horizon that allows
reacting flexibly to any changes that may occur on the edge
node. Furthermore, a resource shortage on the edge node and
a need for efficient resource usage must be given, otherwise,
the employment of related methods like AM-DR (with their
respective overhead) might be more conceivable. Lastly, while
having designed the framework for use in resource-constrained
edge environments, we assume that sufficient resources are
available at the sink node in the cloud for the model training.

VI. CONCLUSION

The primary goal of this work is to demonstrate the appli-
cability of probabilistic time series forecasting for adaptive
monitoring in edge computing environments. To this end,
we envision a system that realizes adaptive monitoring in a
sampling-based fashion using the aforementioned technique,
such that overall network usage is reduced and constrained
resources are relieved. Towards this goal, we implemented
an approach for adaptive sampling based on probabilistic
forecasts, and evaluated it in experiments and against a method
from related work. We find that our solution is generally able
to reduce the amount of data transmission and furthermore
provides means of automating the retraining process.

In the future, we plan to leverage our findings and make
use of the proposed methods in the context of recent research
on carbon-aware computing in edge environments.
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