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Abstract

We propose an enhanced semidefinite program (SDP) relax-
ation to enable the tight and efficient verification of neural
networks (NNs). The tightness improvement is achieved by
introducing a nonlinear constraint to existing SDP relaxations
previously proposed for NN verification. The efficiency of the
proposal stems from the iterative nature of the proposed al-
gorithm in that it solves the resulting non-convex SDP by
recursively solving auxiliary convex layer-based SDP prob-
lems. We show formally that the the solution generated by
our algorithm is tighter than state-of-the-art SDP-based so-
lutions for the problem. We also show that the solution se-
quence converges to the optimal solution of the non-convex
enhanced SDP relaxation. The experimental results on stan-
dard benchmarks in the area show that our algorithm achieves
the state-of-the-art performance whilst maintaining an ac-
ceptable computational cost.

Introduction
The area of verification of neural networks (NNs) is con-
cerned with the development of methods and tools to estab-
lish whether a given NN satisfies a given specification, of-
ten defined as a ℓp-norm perturbation on a given input (Li
et al. 2020; Liu et al. 2020). If a network is verified to
be robust, no adversarial attack (Goodfellow, Shlens, and
Szegedy 2014) exists for the model, input and perturbation
under analysis. NN verification has been used in many ar-
eas including safety-critical systems (Tran et al. 2020; Ju-
lian and Kochenderfer 2021; Kouvaros et al. 2021; Man-
zanas Lopez et al. 2021).

The existing verification methods can be classified into
complete and incomplete approaches. The former methods
guarantee no false negatives or false positives are generated;
while the latter involves overapproximations leading to pos-
sibly spurious counterexamples (Liu et al. 2020). The com-
plete methods guarantee to resolve any verification query
but often come at a high computational cost, thus not scal-
ing well to large-scale NNs. Incomplete methods involve
abstraction and approximation via linear approximations
(Henriksen and Lomuscio 2020, 2021; Wang et al. 2021;
Hashemi, Kouvaros, and Lomuscio 2021) or the use of meth-
ods from convex approximation (Xu et al. 2020; Dvijotham
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et al. 2018; Wong and Kolter 2018; Chen et al. 2021; Raghu-
nathan, Steinhardt, and Liang 2018; Fazlyab, Morari, and
Pappas 2022; Batten et al. 2021); their comparative advan-
tage resides in their scalability to larger NNs. The success of
incomplete methods hinges on the tightness of the approx-
imations generated by the technique, and a looser approxi-
mation leads to more unsolvable verification queries. There-
fore, the main design objective of incomplete methods is to
obtain tight convex approximations whilst retaining accept-
able computational efficiency.

Existing complete approaches for NN verification build
on mixed-integer linear programming (MILP) (Bastani
et al. 2016; Lomuscio and Maganti 2017; Tjeng, Xiao,
and Tedrake 2019; Anderson et al. 2020; Botoeva et al.
2020), and satisfiability modulo theories (Ehlers 2017;
Katz et al. 2021). These complete verifiers can guaran-
tee theoretical termination, but often have limited scala-
bility to large networks. Some incomplete approaches to
verification of NNs combined symbolic interval propa-
gation or convex relaxation with input refinement (e.g.,
ReluVal (Wang et al. 2018c)) or neuron refinement (e.g.,
Neurify (Wang et al. 2018a), VeriNet (Henriksen and
Lomuscio 2020), DEEPSPLIT (Henriksen and Lomuscio
2021), β-CROWN (Wang et al. 2021) and OSIP (Hashemi,
Kouvaros, and Lomuscio 2021)) can offer completeness
guarantees. The methods VeriNet (Henriksen and Lo-
muscio 2020) and DEEPSPLIT (Henriksen and Lomuscio
2021) also adopt convex relaxations. The incomplete ap-
proaches that combine convex relaxations with neuron re-
finement (e.g., β-CROWN (Wang et al. 2021)) are also able
to provide completeness guarantees. However, the complete-
ness achieved by these incomplete approaches requires a
very large number of splitting refinements. Other incomplete
approaches, based on convex relaxations (Xu et al. 2020) or
Lagrangian relaxations (Dvijotham et al. 2018; Wong and
Kolter 2018; Chen et al. 2021), do not offer completeness
guarantees.

The triangle relaxation (Ehlers 2017) offers the tightest
possible convex approximation for a single Rectified Lin-
ear Unit (ReLU) neuron. Moreover, convex relaxations lend
themselves to faster bound propagations (Weng et al. 2018;
Singh et al. 2019a; Tjandraatmadja et al. 2020; Müller et al.
2021). These incomplete methods are based on polynomial-
time solvable linear program (LP) problems and can achieve



SoA performance. However, their efficacy is fundamentally
limited by the tightness of convex relaxations. This is known
as the “convex relaxation barrier” (Salman et al. 2019), i.e.,
even optimal convex relaxations on a single neuron fail to
obtain tight bounds for the approximation of the overall
model. This problem can be approached in two ways. The
first is applying convex relaxations to multiple neurons. The
representative methods include DeepPoly (Singh et al.
2019a), kPoly (Singh et al. 2019b), OptC2V (Tjandraat-
madja et al. 2020), and PRIMA (Müller et al. 2021). The sec-
ond is via the use of stronger relaxations, among which the
most promising ones achieving tightness and efficiency are
based on SDP (Raghunathan, Steinhardt, and Liang 2018;
Fazlyab, Morari, and Pappas 2022; Batten et al. 2021).

Empirically, the standard SDP relaxation (Raghunathan,
Steinhardt, and Liang 2018) is considerably tighter than the
standard LP relaxations. However, as illustrated in (Zhang
2020), SDP relaxations become loose for multiple hid-
den layers. Linear cuts (Batten et al. 2021) or non-
convex cuts (Ma and Sojoudi 2020) were introduced to
further tighten SDP relaxations. The standard SDP ap-
proaches (Raghunathan, Steinhardt, and Liang 2018; Zhang
2020; Ma and Sojoudi 2020) achieve tighter relaxations than
LPs, but incur a considerable extra computational effort,
making them not scalable to larger models. To alleviate the
computational cost, a memory-efficient first-order algorithm
was introduced in (Dathathri et al. 2020). With the same
aim, layerwise SDP relaxations were used in (Batten et al.
2021; Newton and Papachristodoulou 2021) by exploiting
the cascaded NN structures based on chordal graph decom-
position (Zheng, Fantuzzi, and Papachristodoulou 2021). To
the best of our knowledge, the LayerSDP method (Batten
et al. 2021) achieves the tightest relaxations by combining
SDP relaxation with triangle relaxation (Ehlers 2017). Even
so, it is observed in (Batten et al. 2021) that the relaxation
gap of LayerSDP is still considerable in large networks.
This leads to an increased false negative rate as the model
size grows and thus limits applicability of the approach.

In this paper, we advance the SDP approach for NN
verification with a new relaxation and an efficient algo-
rithm to solve it. The relaxation we propose combines the
LayerSDP method (Batten et al. 2021) with a set of valid
nonlinear constraints, which gives a provably tighter relax-
ation than the SoA SDP methods. The inclusion of nonlin-
ear constraints results in a non-convex SDP problem that is
generally harder to solve than LayerSDP. We further de-
velop an iterative algorithm to obtain the optimal solution
of the non-convex SDP problem. The algorithm initialises
from the LayerSDP solution and solves iteratively an auxil-
iary convex SDP problem. The auxiliary SDP problem is de-
rived from the original non-convex SDP problem and its size
is around the same as LayerSDP. Our theoretical analysis
show that the solution sequence produced by the iterative al-
gorithm is tighter than the SoA SDP methods, and can con-
verge to the optimal solution of the non-convex SDP prob-
lem. The experiments on various standard benchmarks con-
firm that the proposed SDP method is considerably tighter
than the present SoA, whilst having competitive efficiency.
Our previous work (Lan, Zheng, and Lomuscio 2022) con-

structed effective linear cuts using the linear reformulation
technique (RLT) and added them to LayerSDP (Batten
et al. 2021) to produce a tighter solution. These RLT-based
linear cuts can be directly added to the SDP problems solved
in this paper, meaning that our proposed method here always
gives a provably tighter solution than the method in (Lan,
Zheng, and Lomuscio 2022).

Preliminaries
We use the symbol Rn to denote the n-dimensional Eu-
clidean space, ∥ · ∥∞ to denote the standard ℓ∞ norm, and
Ib to denote a sequence of non-zero integers from 0 to b. We
use diag(X) to stack the main diagonals of matrix X as a
column, and ⊙ to refer to the element-wise product. We use
0n×m to denote a n × m zero matrix and 1n to denote a
n× 1 vector of ones. We use Pi[z] to represent the elements
of matrix Pi corresponding to the vector or matrix z.

We focus on feed-forward ReLU NNs. A network f :
Rn0 → RnL+1 with L hidden layers, n0 inputs and nL+1

outputs is defined as follows: f(x0) = WLxL + bL with
xi+1 = ReLU(x̂i+1) and x̂i+1 = Wixi + bi, i ∈ IL−1,
where x0 is the input, f(x0) is the output, x̂i ∈ Rni is the
pre-activation vector, xi ∈ Rni is the post-activation vector,
Wi ∈ Rni+1×ni is the weight and bi ∈ Rni+1 is the bias. We
focus on classification NNs whereby an input x0 is assigned
to the class j⋆ whose corresponding output has the highest
value: j⋆ = argmaxj=1,2,...,nL+1

f(x0)j .
This paper contributes to solving the local robustness ver-

ification problem. Given a NN f and a clean input x̄ under
the ℓ∞-norm perturbation ϵ, the local robustness problem
concerns determining whether f is robust on x̄, i.e., whether
f(x0)j⋆ − f(x0)j > 0 for all j = 1, 2, . . . , nL+1 with
j ̸= j⋆, and for all x0 satisfying ∥x0 − x̄∥∞ ≤ ϵ. This veri-
fication problem can be formulated and solved as an optimi-
sation problem (Raghunathan, Steinhardt, and Liang 2018;
Batten et al. 2021):

γ∗ := min
{xi}L

i=0

cTxL + c0

subject to xi+1=ReLU(Wixi + bi), i ∈ IL−1, (1a)
∥x0 − x̄∥∞ ≤ ϵ, (1b)
li+1 ≤ xi+1 ≤ ui+1, i ∈ IL−1, (1c)

where cT = WL(j
⋆, :)−WL(j, :) and c0 = bL(j

⋆)− bL(j),
and li+1 and ui+1 are the lower and upper activation vec-
tor bounds that can be computed by using bound prop-
agation methods (Henriksen and Lomuscio 2020; Wang
et al. 2018b). Without loss of generality, we assume that
the considered verification problem is feasible. We solve
the problem (1) for every potential adversarial target j =
1, 2, . . . , nL+1 and j ̸= j⋆ to obtain the optimal objective
value γ∗. If γ∗ > 0 in all the cases, the NN is verified to be
robust on the input x̄ under the adversarial input x0.

Since the ReLU constraint (1a) is nonlinear, the optimisa-
tion problem (1) is non-convex and in general hard to solve.
A promising direction is converting problem (1) into a con-
vex relaxation problem that can be efficiently solved. Solv-
ing the convex relaxation gives an optimal value γ∗

cvx that is
a valid lower bound to γ∗, i.e., γ∗ ≥ γ∗

cvx. When γ∗
cvx > 0,



then γ∗ > 0 always holds and the input is robust. Clearly, a
tighter convex relaxation (i.e., with a smaller relaxation gap
γ∗ − γ∗

cvx) increases the number of verification queries that
can be solved. Tightness is thus the key design objective of a
convex relaxation method given that its computational cost
is acceptable.

The LP relaxation (Ehlers 2017) is a widely used con-
vex relaxation method in the literature. Its key idea is using
a triangle relaxation to approximate each ReLU constraint
in (1a) with a convex hull:

xi+1 ≥ 0, xi+1 ≥Wixi + bi,

xi+1 ≤ ki ⊙ (Wixi + bi − l̂i+1) + ReLU(l̂i+1),
(2)

where ki = (ReLU(ûi+1) − ReLU(l̂i+1))/(ûi+1 − l̂i+1).
The vectors ûi+1 and l̂i+1 are the upper and lower bounds
of the pre-activation vector x̂i+1, respectively.

Replacing the nonlinear constraint (1a) with the linear
constraints in (2) leads to an LP relaxation to the non-
convex optimisation problem (1). The LP is relatively easy
to solve, but there is usually a large relaxation gap for many
NNs, known as the convex relaxation barrier in (Salman
et al. 2019). This paper aims to develop a tighter con-
vex relaxation method based on semidefinite programming
(SDP) (Parrilo 2000; Lasserre 2009).

Convex SDP Relaxations and a New
Non-convex Enhancement

In this section we describe a few SDP relaxations to the non-
convex optimisation problem (1), including the existing SDP
methods in and our new non-convex SDP relaxation.

Convex SDP Relaxations. The starting point is to observe
that the nonlinear ReLU constraints in (1a) can equivalently
be replaced by the set of linear and quadratic constraints:

xi+1 ≥ 0, xi+1 ≥Wixi + bi,

xi+1 ⊙ (xi+1 −Wixi − bi) = 0, i ∈ IL−1. (3)

The input constraints in (1b) and (1c) can also be reformu-
lated as the quadratic constraints:

xi ⊙ xi − (li + ui)⊙ xi + li ⊙ ui ≤ 0, i ∈ IL, (4)

where l0 = x̄− ϵ1n0
and u0 = x̄+ ϵ1n0

.
The techniques of polynomial lifting (Parrilo 2000;

Lasserre 2009) can be used to reformulate the quadratic con-
straints in (3) and (4) as linear constraints in terms of new
variables. Specifically, to couple all the ReLU constraints of
the network together, we define a single positive semidefi-
nite (PSD) matrix P as:

P = xxT, (5)

with x = [1, xT
0 , xT

1 , · · · , xT
L]

T ∈ R1+
∑L

i=0 ni . By us-
ing (5), the constraints (3) and (4) can be reformulated as
linear constraints of P . This idea was first utilised for NN
verification in (Raghunathan, Steinhardt, and Liang 2018).
Dropping the rank-one constraint on P results in a global
SDP relaxation to the non-convex optimisation problem (1),

with a potentially smaller relaxation gap than the LP relax-
ation, as empirically observed in (Raghunathan, Steinhardt,
and Liang 2018). However, the global SDP relaxation is very
computationally expensive for large NNs due to high dimen-
sionality of P , thus limiting applicability of the approach.

Thanks to the inherent cascading structure of feed-
forward NNs, the activation vector of layer i + 1 depends
only on its preceding layer i, for all i ≥ 0. We can exploit
this cascading structure to derive a layer-based SDP relax-
ation with a set of PSD matrices that are of smaller sizes than
the matrix P . The layer-based PSD matrices are defined as:

Pi = xix
T
i , i ∈ IL−1, (6)

with xi = [1, xT
i , x

T
i+1]

T ∈ Rn̄i and n̄i = 1 + ni + ni+1.
By using (6), we reformulate (3) and (4) as a set of linear
constraints on the elements of Pi:

Pi[xi+1] ≥ 0, Pi[xi+1] ≥WiPi[xi] + bi, i ∈ IL−1, (7a)

diag(Pi[xi+1x
T
i+1]−WiPi[xix

T
i+1])− bi ⊙ Pi[xi+1]=0,

i ∈ IL−1, (7b)

diag(Pi[xix
T
i ])− (li + ui)⊙ Pi[xi] + li ⊙ ui ≤ 0,

i ∈ IL−1, (7c)

diag(PL−1[xLx
T
L])− (lL + uL)⊙ PL−1[xL]

+ lL ⊙ uL ≤ 0, (7d)

Pi[x̄i+1x̄
T
i+1] = Pi+1[x̄i+1x̄

T
i+1], i ∈ IL−2, (7e)

Pi[1] = 1, Pi ⪰ 0, rank(Pi) = 1, i ∈ IL−1, (7f)

where x̄i+1 = [1, xT
i+1]

T. The constraint (7e) ensures input-
output consistency (Batten et al. 2021) and (7f) is equivalent
to (6) as shown in (Horn and Johnson 2012).

By replacing (3) and (4) with (7) and dropping the rank-
one constraint rank(Pi) = 1, the non-convex problem (1) is
relaxed to a convex layer SDP (Batten et al. 2021):

γ∗
LayerSDP := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

subject to (7a), (7b), (7c), (7d), (7e), (8a)
Pi[1] = 1, Pi ⪰ 0, i ∈ IL−1, (8b)
Pi[xi+1] ≤ AiPi[xi] +Bi, i ∈ IL−1, (8c)

where (8c) is reformulated from the last inequality in (2)
with Ai = ki⊙Wi and Bi = ki⊙(bi− l̂i+1)+ReLU(l̂i+1).

As shown in (Batten et al. 2021), the layer SDP relax-
ation (8) is considerably easier to solve than the global SDP
relaxation (Raghunathan, Steinhardt, and Liang 2018) and is
also tighter, i.e., γ∗

GlobalSDP ≤ γ∗
LayerSDP ≤ γ∗, by introducing

the linear cut (8c). However, due to dropping the rank-one
constraint, the relaxation gap of layer SDP is still consider-
able in large NNs (Batten et al. 2021), thereby limiting the
scalability and applicability of the approach.

Non-convex Layer-based SDP Relaxation. A promising
way to reduce the SDP relaxation gap is introducing con-
straints (or cuts) to enforce the rank conditions in (7f).
Non-convex cuts in the form of ϕT

i (X̃ − x̃x̃T)ϕi ≤ 0

with designed constant vectors ϕi, i = 1, . . . ,
∑L

i=0 ni,



where x̃ = [xT
0 , · · · , xT

L]
T and X̃ = x̃x̃T, are introduced

in (Ma and Sojoudi 2020) to tighten the global SDP relax-
ation (Raghunathan, Steinhardt, and Liang 2018). The re-
sulting non-convex SDP is solved via successively gener-
ating large numbers of linear cuts to approximate the non-
convex cuts. This method has limited scalability due to the
underlying computationally demanding global SDP and the
additional large number of linear cuts.

To alleviate the computational challenge, we take inspi-
rations from recent advances on SDP relaxation for non-
convex QCQP (quadratically constrained quadratic pro-
gram). In particular, a single nonlinear constraint in the form
of cT(P − xxT)c = 0 is used for generic SDP relaxations
in (Luo, Bai, and Peng 2019). This constraint must use the
same vector c as the objective function, which limits its
capability in reducing the relaxation gap (Ma and Sojoudi
2020). The method is thus undesirable for NN verification,
because the vector c only has very few non-zero elements as-
sociated with the last hidden layer. Regarding the layer SDP
relaxation (8), the vector c is only associated with the last
PSD matrix PL−1. A direct adoption of the nonlinear con-
straint in (Luo, Bai, and Peng 2019) to (8) will then only be
able to enforce the rank condition of PL−1.

We propose a new type of nonlinear constraints that al-
lows using a set of vectors to enforce the rank conditions of
all PSD matrices Pi, i ∈ IL−1, by exploiting the NN acti-
vation pattern, which will be explained in details in the next
section. In particular, we introduce a nonlinear constraint to
each Pi in (8) and obtain the novel layer SDP relaxation:

γ∗
ncvxSDP := min

{Pi}L−1
i=0

cTPL−1[xL] + c0

subject to (8a), (8b), (8c), (9a)

vTi (Pi − xix
T
i )vi = 0, i ∈ IL−1, (9b)

where vi ∈ Rn̄i×1, i ∈ IL−1, are user-specified constant
vectors. Hereby we explicitly write the vector xi (referring
to the elements in the first column of Pi) to ease the analysis.

The introduction of the constraint (9b) results in a tighter
SDP relaxation, as shown in Theorem 1.
Theorem 1. Given a feasible verification instance, we have

γ∗
LayerSDP ≤ γ∗

ncvxSDP ≤ γ∗.

Intuitively, the relations in Theorem 1 hold because we
add the extra valid constraint (9b) into the layer SDP re-
laxation (8). Due to the nonlinear constraint (9b), the new
layer SDP relaxation (9) is non-convex and harder to solve
than the original layer SDP relaxation (8). Our main techni-
cal contribution is to circumvent the non-convexity issue by
developing an iterative algorithm. This iterative algorithm,
detailed in the next section, recursively solves a convex SDP
problem of around the same size as (8). The algorithm is able
to generate an objective value that initialises from γ∗

LayerSDP
and converges to γ∗

ncvxSDP.

An Iterative Algorithm for Solving the
Non-convex Layer SDP Relaxation

This section describes an iterative algorithm to compute the
optimal solution of the non-convex layer SDP relaxation (9)

at moderate computational cost. We first formulate an aux-
iliary convex layer SDP, then use it to develop an iterative
algorithm and apply it to the NN verification problem.

Auxiliary SDP Problem. Although the non-convex layer
SDP relaxation (9) is generally hard to solve, its optimal
objective value γ∗

ncvxSDP is bounded below by γ∗
LayerSDP, as

shown in Theorem 1. This lower bound can be efficiently
solved from the convex layer SDP relaxation (8). Hence, we
can use γ∗

LayerSDP as a start point to search for the value of
γ∗

ncvxSDP. This inspires us to generate an objective value se-
quence {γ(k)

iter } by solving an auxiliary convex SDP problem
recursively. Our aim is to generate the objective value se-
quence that is bounded by γ∗

LayerSDP ≤ γ
(k)
iter ≤ γ∗

ncvxSDP and
can converge to γ∗

ncvxSDP. We want to ensure these bounds
so that γ(k)

iter is always tighter than γ∗
LayerSDP and remains as

a valid lower bound to γ∗. By having these properties, the
sequence {γ(k)

iter } can then be used for NN verification.
The above analysis motivates us to consider the auxiliary

SDP problem in the form of:

γ∗
auxSDP := min

{Pi}L−1
i=0

JL−1 + α

L−2∑
i=0

Ji

subject to (8a), (8b), (8c), (10a)

vTi xi = δi, i ∈ IL−2, (10b)

vTL−1xL−1 ≥ δL−1, (10c)

where Ji = vTi Pivi−2δivTi xi+δ2i , i ∈ IL−1. The weight α
is a user-specified positive constant. Its value is set as α > 1
to penalise more on the SDP relaxations of the first L − 1
layers. This is useful to obtain a tighter NN output, as it is
influenced by the SDP relaxations of the first L − 1 lay-
ers. vi and δi, i ∈ IL−1, are user-given constant vectors and
scalars. They must be chosen such that the constraints in
(10b) and (10c) are always satisfied for any feasible solution
to the non-convex layer SDP problem (9). It thus enables us
to solve the auxiliary SDP problem to obtain a valid lower
bound of γ∗

ncvxSDP. This motivates us to construct the vectors
vi, i ∈ IL−1 from Algorithm 1 by using the active neurons
of the NN (whose input and output are equal), which gen-
erally exist for each test input. By using this algorithm, the
scalars δi, i ∈ IL−1, can be chosen as any non-zero con-
stants. The choice of the scalar δL−1 is to be discussed later.

By constructing the set {vi}L−1
i=0 from Algorithm 1, we

always have (10b) and vTL−1xL−1 = cTPL−1[xL]. Hence,
we can solve the auxiliary SDP (10) to obtain vTL−1xL−1

and thus the objective value γiter = vTL−1xL−1 + c0 =

cTPL−1[xL]+c0. We further show that solving this auxiliary
SDP can obtain γiter = γ∗

ncvxSDP, based on Proposition 2.
Proposition 2. The optimal objective value of the auxiliary
SDP problem (10) has the properties:
1) γ∗

auxSDP ≥ 0 for any given δL−1.
2) γ∗

auxSDP = 0 if and only if the feasible solution satisfies
vTi (Pi − xix

T
i )vi = 0, i ∈ IL−1.

3) When γ∗
auxSDP = 0, δL−1 + c0 ≥ γ∗

ncvxSDP.



Algorithm 1: Constructing the set of vectors {vi}L−1
i=0

1: Input: {Wi}L−1
i=0 , {bi}L−1

i=0 , {l̂i+1}L−1
i=0 , c, {δi}L−2

i=0 .
2: for i = 0, 1, . . . , L− 1 do
3: win

i ← 01×ni
, bin

i ← 0, wout
i ← 01×ni+1

.
4: for j = 1, 2, . . . , ni+1 do
5: if l̂i+1(j) ≥ 0 then
6: win

i ← win
i +Wi(j, :), bin

i ← bin
i + bi(j),

wout
i (j)← 1.

7: end if
8: end for
9: if i ≤ L− 2 then

10: vi ← [δi + bin
i , w

in
i , − wout

i ]T.
11: else
12: vi ← [bin

i , w
in
i , c

T − wout
i ]T.

13: end if
14: end for
15: Output: {vi}L−1

i=0 .

4) If δL−1 is chosen to satisfy δL−1 + c0 = γ∗
ncvxSDP, then

cTPL−1[xL] + c0 = γ∗
ncvxSDP.

According to Proposition 2, if choosing the scalar δL−1

such that δL−1 + c0 = γ∗
ncvxSDP, then solving the prob-

lem (10) gives the objective value γiter = cTPL−1[xL]+c0 =
γ∗

ncvxSDP. To achieve this, we propose an algorithm to itera-
tively update the value of δL−1 and generate the objective
value sequence {γ(k)

iter } that converges to γ∗
ncvxSDP.

Iterative Algorithm and Application to NN Verification.
The iterative algorithm is based on solving the problem (10)
at each iteration with the scalar δL−1 that is changed with the
iterations. The proposed iterative algorithm is summarised
in Algorithm 2. The initial value of δL−1 is set as δ

(1)
L−1 =

γ∗
LayerSDP− c0, where γ∗

LayerSDP is the optimal objective value

of the layer SDP relaxation (8). For each given δ
(k)
L−1, the

auxiliary SDP problem (10) is solved to obtain the objective
value γ

(k)
iter . At each iteration, the obtained optimal objective

γ∗(k)

auxSDP of problem (10) is used to update the value of δL−1.
The iteration is terminated when γ∗(k)

auxSDP is smaller than a
prescribed tolerance ε ≥ 0. Algorithm 2 outputs the objec-
tive value γ

(k0)
iter for robustness verification of NNs.

To apply Algorithm 2 to the problem of robustness verifi-
cation, we first need to ensure that:

1) γ(k)
iter is always a valid lower bound to γ∗.

2) The sequence {γ(k)
iter } converges to γ∗

ncvxSDP.
The first item is concerned with soundness of the algo-

rithm, i.e., whether γ(k)
iter > 0 implies that γ∗ > 0 and the

input is robust. The second item concerns the tightness of
the algorithm, i.e., whether the sequence {γ(k)

iter } can achieve
the tightness of γ∗

ncvxSDP as in Theorem 1.
As discussed, we now show the soundness and tightness

of Algorithm 2 by analysing properties of the sequence
{γ(k)

iter }. The analysis uses the properties of the sequence
{δ(k)L−1} stated in Lemma 3.

Algorithm 2: Proposed iterative algorithm

1: Input: NN parameters, scalars {δi}L−2
i=0 , α and ε.

2: Initialise: Construct {vi}L−2
i=0 using Algorithm 1. Solve

γ∗
LayerSDP from (8). Set δ(1)L−1 = γ∗

LayerSDP−c0 and k = 0.
3: repeat
4: Set k ← k + 1. Solve γ∗(k)

auxSDP and x
(k)
L−1 from (10)

with δ
(k)
L−1.

5: γ
(k)
iter ←v⊤L−1x

(k)
L−1 + c0, δ(k+1)

L−1 ←δ
(k)
L−1 +

√
γ∗(k)

auxSDP .

6: until γ∗(k)

auxSDP ≤ ε

7: Output: γ(k0)
iter , where k0 is the final iteration.

Lemma 3. The sequence {δ(k)L−1} generated by Algorithm 2
satisfies:

γ∗
LayerSDP ≤ δ

(k)
L−1 + c0 ≤ γ∗

ncvxSDP.

By setting ε = 0, the sequence converges to γ∗
ncvxSDP − c0

when γ∗(k)

auxSDP = 0.

Lemma 3 shows that γ∗(k)

auxSDP can be used to check when
the sequence {δ(k)L−1} converges. This confirms the appro-

priateness of using γ∗(k)

auxSDP ≤ ε as the stopping criterion in
Algorithm 2. We now proceed to analyse the properties of
the objective value sequence {γ(k)

iter }. We start by analysing
the relation between δ

(k)
L−1 and γ

(k)
iter as in Proposition 4.

Proposition 4. Let γ∗
ncvxSDP−c0 ∈ [γ, γ] and φ(δL−1) be the

value of vTL−1xL−1 under the parameter δL−1. The relation
between δL−1 and φ(δL−1) is as follows:
1) φ(δL−1) increases with δL−1 in the sense that (δ1L−1 −

δ2L−1)
[
φ(δ1L−1)− φ(δ2L−1)

]
≥ 0, for any δ1L−1, δ

2
L−1 ∈

[γ, γ], and δ1L−1 ̸= δ2L−1.

2) If δ(k)L−1 + c0 < γ∗
ncvxSDP, then γ

(k)
iter ≤ γ∗

ncvxSDP.

3) If δ(k)L−1 + c0 = γ∗
ncvxSDP, then γ

(k)
iter = γ∗

ncvxSDP.
Given the above, we can now state the soundness and

tightness of Algorithm 2 in Theorem 5.
Theorem 5. Given a feasible verification instance, the ob-
jective value sequence {γ(k)

iter } satisfies

γ∗
LayerSDP ≤ γ

(k)
iter ≤ γ∗

ncvxSDP

and converges to γ∗
ncvxSDP by setting ε = 0.

Proof. By using Lemma 3 and the first property of Proposi-
tion 4, we know that the sequence {γ(k)

iter } is monotonically
increasing. By further using the second property of Proposi-
tion 4, we know that the sequence {γ(k)

iter } is bounded from
above as γ(k)

iter ≤ γ∗
ncvxSDP. By construction and using (10c),

we also know that {γ(k)
iter } is bounded from below as γ(k)

iter =

v⊤L−1x
(k)
L−1 + c0 ≥ δ

(k)
L−1 + c0 ≥ γ∗

LayerSDP. Hence, we con-

clude that γ∗
LayerSDP ≤ γ

(k)
iter ≤ γ

(k+1)
iter ≤ γ∗

ncvxSDP. The con-
vergence proof follows directly from that of Lemma 3 by
replacing δ

(k)
L−1 + c0 with γ

(k)
iter .



Theorem 5 shows that Algorithm 2 achieves an objective
value sequence {γ(k)

iter } that is always a valid lower bound to
γ∗

ncvxSDP and γ∗. Also, the objective values at all iterations
are not worse than γ∗

LayerSDP and converge to γ∗
ncvxSDP in fi-

nite iterations. The finite-time convergence has been empiri-
cally observed, but how to derive an analytic upper bound for
the maximal iterations is still an open question. The above
analysis shows that the proposed iterative algorithm is effi-
cient to solve the non-convex layer SDP problem (9), which
would otherwise be hard to solve directly.

We now show the application of Algorithm 2 to NN ver-
ification (see Figure 1). In the picture the output “Verified
robust” means that the instance studied is robust against the
adversarial input, while the output “Undefined” represents
the situation in which robustness cannot be determined. The
iteration is executed only when γ∗

LayerSDP ≤ 0, i.e., the layer
SDP is unable to resolve the robustness query. As we show
later, this approach reduces the computational cost, as the
layer SDP approach can already verify a considerable num-
ber of instances. Also, it is clear that the use of our itera-
tive algorithm can increase the number of instances that can
be verified. In practice, the iteration is terminated whenever
γ
(k)
iter > 0, even though γ∗(k)

auxSDP ≤ ε is not reached yet.

Computational Complexity. The computational cost in
the method stems from solving the auxiliary SDP (10). This
auxiliary SDP and the existing layer SDP (Batten et al.
2021) and global SDP (Raghunathan, Steinhardt, and Liang
2018) are all solved using the solver MOSEK (Andersen and
Andersen 2000) which implements an interior-point algo-
rithm. Before calling MOSEK, the SDP problem is refor-
mulated as the widely-used conic optimization form where
inequality constraints are converted into equalities (Sturm
1999). As demonstrated in (Nesterov 2003), solving the
SDP at each iteration of the interior-point algorithm re-
quires O(n3m+ n2m2 +m3) time and O(n2 +m2) mem-
ory, where n is the size of semidefinite constraint and m
is the number of equality constraints. For the global SDP,
n = 1+

∑L−1
i=0 ni and m = 1+3

∑L
i=1 ni+

∑L−1
i=0 ni. For

the layer SDP, n = 1+maxi=0,...,L−1(n̄i + n̄i+1) which is
the largest dimension of all Pi, and m = 2L+ 4

∑L
i=1 n̄i +∑L−1

i=0 n̄i +
∑L−1

i=1 n̄i, where n̄i = ni − si is the number
of neurons at layer i after removing si inactive neurons. For
the auxiliary SDP (10), n = 1+maxi=0,...,L−1(n̄i + n̄i+1)

and m = 3L+ 4
∑L

i=1 n̄i +
∑L−1

i=0 n̄i +
∑L−1

i=1 n̄i.

Experimental Evaluation
Settings. We conducted experiments on a Linux machine
with an AMD Ryzen Threadripper 3970X 32-Core CPU,
256 GB RAM and a RTX 3090 GPU. The optimisation prob-
lems were modelled using the toolbox YALMIP (Lofberg
2004) and solved using the SDP solver MOSEK. We used
δi = 1, i ∈ IL−2, α = 1.0e5 and ε = 0 to run Algorithm 2.

Networks. We evaluated on several feed-forward ReLU
NNs trained on the MNIST dataset (LeCun 1998) and CI-
FAR10 dataset (Krizhevsky, Nair, and Hinton 2014) (where
“MLP” refers to MNIST, “CF” refers to CIFAR10, and

Figure 1: Flowchart of the proposed verification method.

Figure 2: Verified robustness and runtime of different meth-
ods and ϵ for a MLP-3×50 network.

“m×n” means a NN with m−1 hidden layers each hav-
ing n neurons):
1) One MLP-3×50 network self-trained with no adversarial

training, tested with perturbations ϵ from 0.01 to 0.09.
2) Three small networks MLP-Adv, MLP-LP, and MLP-

SDP from (Raghunathan, Steinhardt, and Liang 2018).
They are tested under the same ϵ = 0.1 as in (Raghu-
nathan, Steinhardt, and Liang 2018; Batten et al. 2021).

3) Three medium networks MLP-6×100, MLP-9×100 and
MLP-6×200 from (Singh et al. 2019a). We use the same
ϵ = 0.026, 0.026, 0.015, respectively, as in (Batten et al.
2021; Singh et al. 2019a; Müller et al. 2021).

4) Two large networks MLP-8× 1024-0.1 and MLP-8×
1024-0.3 from (Li et al. 2020) that were trained using
CROWN-IBP (Zhang et al. 2019) with adversarial attack
ϵ = 0.1, 0.3, respectively. As in (Li et al. 2020), the test
perturbations are ϵ = 0.1, 0.3, respectively.

5) One CIFAR10 network CF-3×20 from (Li et al. 2020)
and evaluated under the perturbation ϵ = 2/255.

Baselines. We compared the proposed iterative method
(referred to as IterSDP) against several SoA incomplete
methods for verification:
1) Linear relaxations: the standard linear program re-

laxation LP (Ehlers 2017) and its variants including
β-CROWN (Wang et al. 2021), IBP (Gowal et al. 2019),
and PRIMA (Müller et al. 2021).

2) SDP relaxations: LayerSDP (Batten et al. 2021),
SDP-IP (i.e., the global SDP relaxation (Raghunathan,



IterSDP LayerSDP SDP-IP SDP-FO LP IBP PRIMA β-CROWN

Models PGD ver. t niter titer viter ver. t ver. t ver.∗ ver. t ver. t ver∗. ver. t
MLP-Adv 94 92 2471 0.1 319 51 91 1866 82 12079 84 7 2.4 0 1.2 – 88 8
MLP-LP 80 80 203 0.3 37 20 80 145 80 50733 78 78 0.5 17 0.9 – 80 0.1
MLP-SDP 84 84 10612 0.2 1547 21 84 6643 80 43156 64 6 6.9 0 1.3 – 76 65
MLP-6×100 91 83 3749 0.5 276 48 75 1414 52 6760 ⋄ 0 2.8 0 1.1 51 78 238
MLP-9×100 86 47 625 2.8 167 45 35 446 22 2148 ⋄ 1 4.4 0 1.0 42.8 69 461
MLP-6×200 96 94 5597 0.5 4776 31 92 3180 76 25850 ⋄ 3 6.3 0 0.9 69 84 190
MLP-8×1024-0.1 89 86 2509 0.1 636 53 83 1883 ⋄ ⋄ ⋄ 0 32 10 2.2 – – –
MLP-8×1024-0.3 34 33 817 0.2 106 20 28 404 ⋄ ⋄ ⋄ 0 38 0 2.8 – – –
CF-3×20 20 18 4264 0.7 241 15 17 3663 16 7804 ⋄ 0 0.3 0 1.7 – 17 0.2

Table 1: Verified robustness (ver., %), runtime per image (t, seconds) and time cost breakdown of IterSDP for a set of
benchmarks. niter is the average number of iterations per sample, titer is the average time per iteration (in seconds) and viter
is the relative improvement of the objective value γiter per iteration (in %). The results of LayerSDP, SDP-IP, LP, IBP
and β-CROWN are obtained by re-implementation on the same 100 images as our method. Star (∗): The numbers are from the
literature: SDP-FO from (Batten et al. 2021) for 100 images, and PRIMA from (Müller et al. 2021) for 1000 images. Dash (–):
previously reported or re-implementation numbers are unavailable. Diamond (⋄): the methods fail to verify any instance.

Steinhardt, and Liang 2018)), and SDP-FO (Dathathri
et al. 2020). We did not include the symbolic bound
propagation methods such as VeriNet (Henriksen and
Lomuscio 2020), because they were less effective than
β-CROWN, as shown in the VNN-COMP 2021 (Bak, Liu,
and Johnson 2021).

Results. All experiments were run on the first 100 im-
ages of the datasets. The activation bounds of all bench-
marks were obtained from VeriNet (Henriksen and Lo-
muscio 2020). We report the verified robustness (percentage
of images that are verified to be robust) and runtime (average
solver time for verifying an image) for each method.

Figure 2 shows the results of MLP-3×50 under various
ϵ and methods IterSDP, LP, SDP-IP and LayerSDP.
Our method IterSDP outperforms the baselines across
all ϵ, confirming the statement in Theorem 5. Notably, our
method improves the verified robustness up to the PGD
bounds for several ϵ. IterSDP requires more runtime
(about twice) when compared to LayerSDP, but it is still
faster than SDP-IP. This is expected since Algorithm 2 uses
LayerSDP to initialise and solves the auxiliary SDP (10)
whose size is similar to LayerSDP.

Table 1 shows the comparative results for the standard
benchmarks with the breakdown of the time cost of our
method IterSDP. IterSDP is more precise than the base-
lines for all the networks, except MLP-LP, MLP-SDP and
MLP-9×100. For MLP-LP and MLP-SDP, both IterSDP
and LayerSDP reach the PGD upper bound, while for
MLP-9×100, IterSDP is only less precise than β-CROWN.
Remarkably, for most the networks, IterSDP achieved the
verified accuracy that is close to or same as the PGD up-
per bound. It is also shown in (Dathathri et al. 2020; Li
et al. 2020) that the complete method MILP verifies 69%
robust cases for MLP-SDP, 67% for MLP-8×1024-0.1 and
7% for MLP-8×1024-0.3, lower than 84%, 86% and 33%
by our method respectively. As expected, IterSDP needs
more runtime than LayerSDP across all the networks, but
is faster than SDP-IP. Neither SDP-IP nor SDP-FO could

verify the large models MLP-8×1024-0.1 and MLP-8×1024-
0.3. The results reported in (Batten et al. 2021) showed
that compared to LayerSDP, SDP-FO has a runtime that
is much larger for MLP-Adv and MLP-LP, but smaller for
MLP-SDP. Also, SDP-FO fails to verify MLP-6×100, MLP-
9×100 and MLP-6×200. These results confirm that our pro-
posed IterSDP improves the verification precision, whilst
retaining a competitive computational efficiency.

Conclusions
Relaxation methods that provide tight approximations are
required to be able to verify large NNs used in applica-
tions. SDP-based methods have been proposed in the liter-
ature to accomplish this goal; yet, the relaxation gap in the
present SoA is still considerable when applying them to deep
and large networks, resulting in SoA tools not being able to
establish the result for many verification queries. Here we
proposed a novel SDP relaxation to narrow the relaxation
gaps and enable efficient NN verification. The method im-
proves the tightness by integrating a nonlinear constraint to
the present SoA layer SDP method. Our approach is com-
putationally effective because, unlike previous approaches,
the resulting non-convex SDP problem is solved by comput-
ing the solutions of auxiliary convex layer SDP problems
in an iterative manner. As shown, the method always yields
tighter relaxations than the layer SDP and the solution se-
quence iteratively converges to the optimal solution to the
non-convex SDP relaxation. The experiments showed that
the method results in SoA performance on all benchmarks
commonly used in the area.
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