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Eco-Driving of General Mixed Platoons with CAVs
and HDVs

Jinsong Yang, Dezong Zhao, Senior Member, IEEE, Jianglin Lan, Shibei Xue, Senior Member, IEEE, Wenjing
Zhao, Daxin Tian, Senior Member, IEEE, Quan Zhou, and Kang Song

Abstract—Eco-driving has been widely investigated over the
last decade, but most studies focused on an individual vehicle
or a vehicle platoon consisting of pure connected and automated
vehicles (CAVs). Recently, mixed vehicle platoons consisting of
both CAVs and human-driven vehicles (HDVs) have attracted
much interest, considering the fact that HDVs will mix with
CAVs in the traffic system for a long period. This paper proposes
an eco-driving strategy for mixed platoons, composing of both
offline planning and online tracking. In offline planning, an
energy-efficient speed reference and a gearshift reference are
determined by using the characteristics of each vehicle and
future traffic information through dynamic programming. Offline
planning optimised the vehicle speed and gearshift to allow the
vehicle powertrain working at a high efficiency region. In online
tracking, two different types of model predictive controls (MPCs)
are proposed to control the CAVs in real-time. The MPCs are
designed to achieve precise speed reference tracking performance
and guarantee platoon string stability, respectively. Meanwhile,
HDVs within the mixed platoon can be located anywhere in the
platoon except working as the first vehicle to improve flexibility.
Therefore, the proposed eco-driving strategy is applicable to
mixed platoons with more general structures in ordering. The
key contribution of this study is that the proposed eco-driving
strategy can optimise the total fuel consumption for general
mixed platoons. Simulation results show that the proposed eco-
driving strategy improves the fuel economy of a mixed platoon by
up to 6.39% compared to the benchmark conventional-adaptive
cruise control strategies.

Index Terms—Eco-driving, speed optimisation, model predic-
tive control, connected and automated vehicles, mixed platoon

I. INTRODUCTION

Nowadays, the transportation sector consumes more than
60% of the fossil fuel energy globally and has led to a
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significant increase in air pollutant emissions [1]. Therefore,
improving energy efficiency in transportation systems has be-
come essential. The vehicle platoon organises vehicles on the
same route into a cluster with a desired longitudinal velocity
whilst maintaining safe inter-vehicle distances. The vehicle
platoon has great potential in reducing fuel consumption of
vehicles within the platoon [2]. The connected and automated
vehicle (CAV) within a platoon can connect to other CAVs
or infrastructures based on vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), and vehicle-to-everything (V2X) com-
munications, and intelligent transportation systems (ITS) [3],
[4]. There is a consensus that CAVs will coexist with human-
driven vehicles (HDVs) on the road for a long time. Hence,
it is important to develop mixed platoons consisting of both
CAVs and HDVs. The key challenges of mixed platoons are
that the motion control of involved HDVs are not definitive [5]
and the behaviours of HDVs are not programmable as CAVs.
To address these challenges, many human driving models have
been developed to characterise the HDV behaviours in the car-
following platoon [6]. The optimal velocity model (OVM) has
been widely adopted to develop model-based [7]–[9] and data-
driven platooning control [10] for mixed platoons.

Eco-driving strategies can assist vehicles to operate in
energy efficient conditions by running under optimised speed
profiles. Hence, it is generally recognised that an eco-driving
strategy can substantially improve the fuel economy of individ-
ual vehicles [11], [12]. Most eco-driving strategies have been
developed for CAVs. By using communication techniques, the
CAV can access more traffic information than conventional
vehicles. An offline planning strategy allows eco-driving to
create the most energy efficient reference speeds for the
entire route based on vehicle characteristics, traffic and road
conditions [13], [14]. Due to the dependence on predicted fu-
ture route information, offline planning strategies have shown
poor results against unexpected disturbances. To enhance the
robustness, real-time eco-driving optimisation strategies have
been developed to minimise the energy consumption of CAVs
considering uncertainties from other traffic participants [15],
[16]. This enables the CAV to achieve higher energy efficiency
whilst maintaining safe inter-vehicular distances. However, the
preview information about other traffic participants provided
by V2X or learning-based predictive models is limited to
a short horizon [15], [17]. Therefore, real-time optimisation
strategies may be suboptimal and also increases the online
computational burden because of using the sophisticated ve-
hicle model. Eco-driving strategies using a two-stage hierar-
chical control to address the gap between offline planning and
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real-time optimisation have been investigated [18], [19]. In the
offline planning stage before departure, the energy consump-
tion of CAV is optimised using global optimisation based on
the known vehicle characteristics and road conditions. In the
online tracking stage after departure, the CAV is controlled
to track the reference speed and adjust the CAV motions
in responding to real-time traffic situations. These two-stage
strategies combine the advantages in both offline planning
and real-time optimisation. Meanwhile, several studies have
examined the capability of eco-driving in improving the total
energy efficiency for an entire pure CAV platoon [20], [21].

Ecological cooperative adaptive cruise control (eco-CACC)
is a typical eco-driving strategy for a CAV platoon, which
makes a cooperative adaptive cruise control (CACC) platoon
more efficient through applying platoon-based eco-driving
strategies. Eco-CACC optimises the energy consumption of
the vehicles and ensures all vehicles within the platoon track
the reference speed with safe inter-vehicle distances [2], [20],
[22]. Additionally, a two-stage hierarchical control for eco-
platoons has been designed in [23], [24]. The eco-CACC
designs reviewed above are all based on platoons consisting
of pure CAVs. However, the penetration rate of CAVs in the
transportation system will remain at a relatively low level for a
long time, resulting in a mixed traffic environment. Therefore,
we have to study platoons composed of both CAVs and HDVs
on the future road.

Eco-driving strategies for the mixed platoon can be divided
into two categories. The first category is to reduce the impact
of the HDVs in the platoon, meanwhile the CAV fuel con-
sumption is optimised based on the prediction of the HDV’s
speed trajectory [25]. However, the fuel consumption of HDVs
is not considered in the optimisation. In the second category,
the mixed platoon is led by a CAV and all the CAVs must
be located in front of the HDVs within each platoon [26].
This strategy considers the fuel consumption of both CAVs
and HDVs within the platoon. However, this strategy is only
applicable to platoons with fixed structures. Since all HDVs
in the fixed-structure platoon must follow CAVs, the platoon
may be very short and unable to offer the benefit of platooning
under extreme conditions.

Therefore, this study aims to design an eco-driving strategy
to improve the total energy consumption of a mixed platoon
in general structures. The control of the mixed platoon can
be realised by controlling CAVs to influence the speed of
HDVs [27], [28]. In these studies, the car-following model is
utilised to describe the dynamics of HDVs within the platoon.
The proposed eco-driving strategy contains two stages: offline
planning and online tracking. In offline planning, the global
optimisation strategy minimises the fuel consumption for the
mixed platoon. In online control, the hybrid distributed model
predictive controller (MPC), consisting of a speed tracking
MPC and a min-max MPC, tracks the reference speed and
maintains the platoon string stability. This is because guaran-
teeing string stability is essential to the success of vehicle
platoon. The entire mixed platoon satisfies the head-to-tail
string stability [29] and min-max MPC control for each CAV
considers the ℓ2 string stability [30]. A detailed string stability
analysis is referred to our previous works [10], [30], [31]. The

Fig. 1. The mixed platoon controlled by the proposed eco-driving strategy.

contributions of this work are summarised as follows:
• A two-stage eco-driving strategy is developed to optimise

and control the entire mixed platoon. In literature, the
HDVs are placed in specific locations. In comparison, the
proposed strategy is applicable to a more general mixed
platoon structure.

• The offline planning minimises both the energy consump-
tion of the platoon and the impact on other traffic par-
ticipants. Offline planning is developed based on solving
a multi-objective global optimisation problem. The first
objective is to reduce the total energy consumption of
the platoon. The second objective is to minimise speed
deviations from the average traffic speed and therefore
to prevent vehicle selfish optimisation. Moreover, a ref-
erence speed close to the average speed can reduce the
difficulty in speed tracking.

• A hybrid distributed MPC is used to control CAVs at dif-
ferent locations within the mixed platoon. The proposed
MPC is robust against disturbances from the predecessors
and guarantees the mixed platoon string stability. The
MPC also leverages the prediction of HDVs in the mixed
platoon to improve the speed tracking performance.

The remainder of this paper is structured as follows. The
eco-driving strategy for mixed platoon is outlined in Section II.
The CAV dynamics, car-following model, vehicle fuel model
and energy consumption model are given in Section III. The
offline planning and online tracking designs are presented in
Section IV and Section V, respectively. Simulation results
are provided and analysed in Section VI, followed by the
conclusions in Section VII.

II. DESCRIPTION OF THE TWO-STAGE ECO-DRIVING
PLATOON

The aim of the proposed eco-driving strategy is to improve
the fuel economy of the entire mixed platoon. Meanwhile,
reducing the impact on other traffic participants is required to
avoid influencing the traffic efficiency. An example of the six-
vehicle mixed platoon is shown in Fig. 1. All vehicles with the
blue signal symbols are CAVs, and two vehicles are located
between the CAVs are HDVs within the platoon. The red car in
the front location represents the first vehicle in the platoon. The
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CAVs in the platoon are assumed to be capable of receiving
traffic information and other vehicle information from V2X.
It is assumed that the HDVs in the platoon cannot receive
any information from communication systems. However, the
HDVs can access V2V broadcast communications [32]. These
can transmit some basic vehicle characteristics to adjacent
CAVs. The HDVs located between two CAVs in the mixed
platoon are represented by HDV sub-platoons. Each HDV sub-
platoon may contain one or more HDVs. In addition, there
may be more than one HDV sub-platoons within a mixed
platoon. In this paper, all the vehicles within the platoon are
indexed by i ∈ {0, 1, ..., n}. Meanwhile, the head and rear
HDVs in the HDV sub-platoons can also be named by h and
H , respectively.

The architecture of the two-stage eco-driving strategy for
mixed platoon is shown in Fig. 2. The proposed strategy
uses the unidirectional predecessor-following (PF) topology
in online tracking with only the current acceleration of the
preceding vehicle being shared. The platoon is created based
on vehicle models and controlled by hybrid distributed MPC
in real-time.

The offline planning can produce a fuel-efficient reference
speed for the entire mixed platoon before the trip starts.
First, the data fusion will provide the average traffic speed,
traffic density and other relevant information based on the
route map, route plan and traffic data. Then, the reference
speed is generated from a global optimisation model with
multiple objectives. The reference speed is designed for energy
optimisation upon vehicle characteristics and road conditions.
Meanwhile, the distance-based point-mass model is chosen in
offline planning to create the reference speed. In a distance-
based reference speed, any reference tracking error from the
adaptation of the vehicle speed only influences the nearby
positions, while the reference speed remains unaffected in
other positions [33]. The design details of the offline planning
are provided in Section IV.

The online tracking is designed to track the reference speed
and to maintain the platoon stability in real-time. The vehicle
location identification is used to ascertain the order of the
platoon. The leading vehicle decision enables the first CAV
to track the reference speed or to follow the vehicle ahead of
the platoon based on real-time traffic information. The vehicle
ahead of the platoon is represented by Pre in the rest of the
paper. The Pre is represented by the yellow taxi in front of
the first red CAV in Fig. 1. Speed tracking MPC and min-
max MPC are applied to different CAVs according to the
vehicle location. The min-max MPC focuses on diminishing
inter-vehicle distance and speed tracking errors. The speed
tracking error produced by HDVs within the mixed platoon
may accumulate in all subsequent vehicles. Therefore, the
speed tracking MPC is designed to reduce the impact from
HDVs. The speed tracking MPC uses the predicted motion of
HDVs within the mixed platoon to introduce a flexible inter-
vehicle distance. Meanwhile, the gear shift control provides the
gear positions of the CAVs when the platoon cannot follow
the reference speed. The gear shift control can provide an
optimal gear position based on a function of acceleration in
the velocity and acceleration map [34]. An optimal gear map

CAVs
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Fig. 2. The architecture of the proposed eco-driving strategy.

is created for each CAV based on a three-dimensional data
set. The data set includes three-dimensional engine fuel maps
with fuel mass flow rate, acceleration and speed data for each
gear. The design details of the online tracking are provided in
Section V.

III. MODELLING OF THE MIXED PLATOON

In offline planning, all vehicles within the platoon are
assumed to have the same reference speed, and the order of
vehicles in the platoon is kept. The distance-based point-mass
model is chosen in this stage. In online tracking, the motions
of CAVs are described by the time-based point-mass model,
and Newell’s car-following model (NCM) has been used to
describe the HDVs motions.

A. CAV Dynamics Modelling

In this paper, the mixed platoon does not change lanes, so
the model only focuses on longitudinal dynamics. The vehicle
dynamics are modelled in two different ways. A distance-
based point-mass model is employed in offline planning, and
a time-based point-mass model is used to design the online
tracking. They are all based on the point-mass model since
the model can be applied to any vehicle. This makes it a
viable alternative for use in either a homogeneous platoon or a
heterogeneous platoon. In offline planning, each vehicle within
the mixed platoon assumes to be travelling at the same speed
so that a speed reference can be implemented to the whole
CAV platoon in offline planning. In the distance-based point-
mass model, the longitudinal distance step ∆s is assumed to be
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constant. The discrete-time distance-based vehicle dynamics
can be described by:

v(k + 1) = v(k) +
a(k) ·∆s

v(k)

td(k + 1) = td(k) +
2 ·∆s

v(k) + a(k)·∆s
v(k)

(1)

where k ∈ {0, 1, ..., N − 1}. td(k) is the travel time in the
distance-based model. The CAV acceleration is generated by
the engine torque or brake torque.

In this study, the mixed platoon follows the PF topology.
Therefore, the CAV within the platoon controls the speed
based on preceding vehicle information in real-time. In real-
time control, the vehicle must be ensured to satisfy the
distance-dependent safety constraints. Thus, the time-based
point-mass model for online tracking is described as:

x(t+ 1) = x(t) + Ts · v(t)
v(t+ 1) = v(t) + Ts · a(t)

(2)

where x(t) and Ts represent the vehicle position and time
interval, respectively. This time-based point-mass model is ap-
plied for CAVs with speed tracking MPC. The CAV equipped
with a min-max MPC focuses on the car following perfor-
mance and stability. For leader-follower vehicle platooning,
the following vehicles maintain an inter-vehicle distance and
follow the preceding vehicle’s speed. Therefore, the time-
based point-mass model (2) has been modified to be a platoon
error system represented by:

∆pi(t+ 1) = ∆pi(t) + Ts∆vi(t)

∆vi(t+ 1) = ∆vi(t)− Tsai(t) + Tsai−1(t)
(3)

where

∆xi,e =

[
∆pi
∆vi

]
. (4)

∆pi(t) and ∆vi(t) are the distance and speed tracking errors
between vehicles i − 1 and i, respectively. The distance
error is the error between the actual and desired inter-vehicle
distances.

B. HDV Car-Following Model

The HDVs in the mixed platoon cannot be controlled di-
rectly. For this reason, the car-following model can be utilised
to describe the dynamics of the HDV. The intelligent driver
model (IDM) [35], the full velocity difference (FVD) model
[36] or the OVM can all be used to describe the dynamics of
HDV in a platoon. All the above human driver models need
to know the parameters of each specific driver and vehicle.
However, NCM, which does not require the parameters of
each specific driver and vehicle, has been extended to HDVs
modelling in this study. The NCM is widely used to simulate
vehicle trajectories [37]–[39]. The NCM has assumed that the
movement of the following vehicle is consistent with the lead
vehicle in a homogeneous space. The speed trajectory of the
following vehicle is identical to the preceding vehicle with a

𝐺𝐺

𝑔𝑔𝑎𝑎,𝑏𝑏

𝑝𝑝𝑛𝑛

𝑝𝑝1

𝑝𝑝𝑏𝑏

𝑝𝑝𝑎𝑎

Fig. 3. An open shape contour (blue curve) with TCDs for point pa.

time lag and space lag. The movement of the first and last
HDVs in the HDV sub-platoons are described by:

xh
h(t · Ts + δth) = xh

h−1(t)− dh (5)

vhh(t · Ts + δth) = vhh−1(t) (6)

xh
H(t · Ts +

H∑
h+1

δti) = xh
h(t)−

H∑
h+1

di (7)

vhH(t · Ts +

H∑
h+1

δti) = vhh(t) (8)

where xh
h(t) and vhh(t) are the position and velocity of first

HDV in the HDV sub-platoons, respectively. xh
H(t) and vhH(t)

are the position and velocity of the last HDV in the HDV sub-
platoons, respectively. δti and di are the reaction time and the
minimum stop distance of the HDV i, respectively. t is the
discrete sample times. The motion of the following vehicle is
affected by the front vehicle. Meanwhile, the CAV adjacent to
the HDV can perceive and record the motion of the HDV. This
data can be used to address time lag and space lag introduced
from a curve matching algorithm.

C. Curve Matching Algorithm

The main idea of the curve matching algorithm is to
iteratively move a speed trajectory by a motion vector until it
coincides with another speed trajectory. Therefore, the motion
vector is an accumulated time lag and space lag between
vehicles. A Triangular Centroid Distances (TCDs) method has
been adopted to pair two relative trajectories [40]. An example
of TCDs for a point on the open contour is shown in Fig. 3.
TCDs use the existing relationship between each point on the
shape, with the central point describing the object’s shape.
The sequence of equidistant sample points p can be found on
the open shape contour in Fig. 3, with starting point p1 to
the end point pn. For the point pa on the open contour, the
other point pb(b = 1, 2, ..., n, a ̸= b) can be found on the
open contour. Therefore, a triangle ∆paGpb with these two
points and the centroid point G of this open contour can be
created. n − 1 triangles can be found for point pa when the
other point pb is chosen as a different value. For each triangle,
a centroid points ga,b can be found. The TCDs for point pa
is an (n− 1)× 1 matrix containing the distance between the
points pa and ga,b of each triangle. The TCDs for this open
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contour is an (n − 1) × n matrix containing TCDs for each
point on the open contour. The advantage of using TCDs in
curve matching is twofold. First, TCDs have a tolerance for
a substantial range of shape deformations. The NCM method
assumes that the speed trajectories are identical to different
vehicles, but actually are subject to deformations. Therefore,
the TCDs shape descriptors has better accuracy in pinpointing
relative trajectories compared with the conventional match-
ing algorithms. Second, the TCDs can solve whole-to-part
and part-to-part shape matching problems. Thus, the speed
trajectories of shorter period HDVs are able to match the
preceding vehicle’s more extended speed trajectory. The paired
trajectories are obtained by minimising the shape disparity
between two trajectories based on the TCDs methods. The
TCDs is applied to pair the speed trajectory HH of the last
HDV H in the HDV sub-platoons with the speed trajectory
Ah−1 of an adjacent CAV h − 1 in front of the HDV sub-
platoons. Ah−1 is normally longer than HH as CAVs have a
more extensive speed trajectory in terms of knowledge history.
Therefore, finding the matched trajectories is a whole-to-part
partial shape matching problem. The set As

h−1, s = {1, ..., S}
is created. Each speed trajectory in this set has the same size
as HH , and the initial point of A1

h−1 is the first feasible point
until to initial point of AS

h−1 is the last feasible point in the
CAV speed trajectory. The minimum shape dissimilarity can
be calculated by:

Diss(As
h−1, HH) =mins∈{1,...,S}|(TCDs(A

s
h−1))

− (TCDs(HH))|
(9)

where TCDs is the shape descriptor of speed trajectory. To
facilitate the implementation, this paper adopts the (3) and (4)
of [40] to create TCDs for each speed trajectory. Then, the
motion vector for two trajectories matched can be calculated
by:

τH = − 1

K

k∑
k=1

(HH,k −Ah−1,k)

= (−δtH , dH) (10)

where Ah−1,k and HH,k are the paired points from As
h−1 and

HH ; K is the total number of the paired points; τH is the
motion vector of last HDV. The minimum motion vector can
be applied to the NCM to predict the motion of HDVs in the
platoon.

D. The Models for Fuel and Energy Consumption

In this paper, the HDVs have only limited capability of
transferring data to other vehicles via V2V broadcast. The eco-
driving strategy cannot access the engine fuel efficiency map
in optimising the vehicle’s fuel energy of HDVs. Meanwhile,
the HDV gear shift cannot be controlled in the online tracking.
Hence, the speed optimisation for HDVs with limited data is
based on energy consumption minimisation without the fuel
efficiency map and gear shift control. On the other hand,
the CAVs have the higher transmission bandwidth and are
thus able to provide sophisticated vehicle characteristics to
the cloud for offline optimisation. The speed optimisation for

CAVs is based on fuel consumption minimisation. Further-
more, this paper uses the realistic energy model for CAVs
in speed optimisation and simulation. The engine fuel mass
flow rate is described using the engine fuel efficiency map
obtained from Autonomie [41] rather than the approximate fuel
consumption model. In this paper, each CAV within the mixed
platoon has its own specific engine fuel efficiency map. An
example of an engine fuel efficiency map for CAV is illustrated
in Fig. 4. The engine fuel mass flow rate can be described as

ṁf = f (Tω, ωe) (11)

where the crankshaft rotational speed ωe is described as:

ωe = rgbωwheel (12)

where rgb and ωwheel are the ratio of each gear (including the
final drive ratios) and wheel rotational speed, respectively. Tω

is the output torque of the internal combustion engine, which
is related to wheel torque, gearbox efficiency and rgb. The
wheel-to-distance energy model is implemented on the HDV
[26], [42]. The HDV longitudinal motion is governed by the
Newton’s second law of motion which is given by:

ma(k) = Fw(k)− Fr(k)− Fair(k)

= Fw(k)−mg (cos(θ(k))Crr + sin(θ(k)))

−ρACd

2
v(k)2 (13)

where Fw(k), Fr(k) and Fair(k) are the engine force or
braking force applied at the wheels, resistance force and
aerodynamic drag force, respectively; k is the sampling step;
Crr is the coefficient of rolling resistance; θ(k) is the road
slope; ρ is the air density; A is the vehicle front area; m, v(k)
and a(k) are the mass, velocity and acceleration of the vehicle,
respectively. Cd is the aerodynamic drag coefficient.

For simplification, each vehicle has a constant aerodynamic
drag coefficient Cd, and its aerodynamic drag force Fair only
varies with vehicle speed. In practice, the distances of a vehicle
to its predecessor and follower both affect the aerodynamic
drag coefficient of the vehicle. The platoon with shorter inter-
vehicle distance has less aerodynamic drag force at the same
speed [43]. Some studies provided approximately methods
to calculate the aerodynamic drag coefficient based on inter-
vehicle distances [44]–[46].

The net energy needed at the wheels of the HDVs is
calculated by:

Eh(k) = ∆s
(
ma(k) +mg

(
cos(θ(k))Crr

+sin(θ(k))
)
+

ρACd

2
v(k)2

)
(14)

where Eh(k) is the net energy needed and ∆s is the vehicle
displacement.

IV. OFFLINE PLANNING

Offline planning aggregates the traffic data and generates
a reference speed to minimise fuel consumption and energy
consumption within the most feasible speed range.
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Fig. 4. Engine fuel map extracted from Autonomie.

A. Data Fusion

The offline planning uses traffic state information of future
road segments from the ITS. In this paper, the average speed
for the road segments is delineated through the Caltrans
Performance Measurement System (PeMS) [47]. The primary
data sources for the PeMS are the vehicle detector stations
(VDS), which can provide the traffic density, rate of flow and
average speed of each traffic segment. Meanwhile, each road
segment contains at least one VDS. In addition, the PeMS can
receive traffic updates every 30 seconds and disseminate the
information.

B. Speed Optimisation

The offline planning generates the reference speed for the
mixed platoon using the distance-based point-mass model
(1). Dynamic programming (DP) with multiple objectives is
applied to the platoon optimisation effort. Each CAV can
calculate the engine fuel mass flow rate by (11), and the energy
demand for each HDV is calculated by (14). The cost function
is chosen as:

Jopt = wo,1

n∑
i=0

N−1∑
k=0

ṁf,i(k) + wo,2

H∑
i=h

N−1∑
k=0

Eh
i (k)

+wo,3

N−1∑
k=0

∥vp(k)− V m
avg(k)∥ (15)

where the first term of the cost function represents the fuel
consumption for the CAVs based on powertrain characteristics;
the second term represents the energy consumption for the
HDVs based on vehicle characteristics; the third term repre-
sents the deviation of the platoon speed and the average speed
of the current road segment. V m

avg(k) is the average speed
of road segment and vp(k) is the platoon speed. wo,1, wo,2

and wo,3 indicate the weights of the fuel consumption, energy
consumption and speed deviation, respectively. The physical
constraints of the vehicle are

Tmin
ω,i ≤Tω,i(k) ≤ Tmax

ω,i ,∀k ∈ {0, 1, ..., N},
∀i ∈ {1, 2, ..., n},∀i /∈ {h, h+ 1, ...,H}

amin ≤a(k) ≤ amax,∀k ∈ {0, 1, ..., N}
(16)

CAV i

Vehicle location
identification

First 
vehicle? 

Min-max 
MPC

Speed tracking MPC

Preceding 
vehicle is  

CAV?

Preceding vehicle is  
HDV

Yes

No

No

Yes

Fig. 5. Flowchart of the MPC assigned by vehicle location identification.

where constraints are applied to the CAV engine torque
and mixed platoon acceleration, respectively. Tmin

ω,i and Tmax
ω,i

represent the minimum and maximum allowable engine torque
output of CAV i, respectively. amin and amax represent the
maximum deceleration and acceleration of the vehicle platoon,
respectively. These values are determined based on the vehicle
with the lowest relevant performance specifications and pas-
senger comfort in the platoon. The platoon speed has been set
within an average velocity range. The lower boundary of the
speed range can mitigate the effect of selfish optimisation and
thus reduce the impact on other traffic participants. Meanwhile,
ensure that the platoon does not stop to save energy. The
upper boundary of the speed range can serve to improve the
feasibility of the reference in real traffic environment. The
speed constraints can be written as:

V m
avg − 5m/s ≤ v(k) ≤ V m

avg + 5m/s,

if vlimit > V m
avg + 5m/s

V m
avg − 5m/s ≤ v(k) ≤ vlimit, otherwise

(17)

where vlimit is speed limit. To summarise, the offline planning
will create a reference speed vref .

V. ONLINE TRACKING

Online tracking regulates the mixed platoon in real-time
to track the reference speed and maintain the stability. In
addition, the online tracking controls the mixed platoon to
adapt the speed considering other traffic participants. It is to
guarantee safety in driving. The corresponding MPC controller
for each CAV is decided by vehicle location identification. As
discussed in Section II, the speed tracking MPC is applied
to the first CAV that follows the HDV sub-platoons within
the platoon and the min-max MPC is applied to the rest of
CAVs. The flowchart of vehicle location identification has been
illustrated in Fig. 5, and is introduced in this section with
details of MPCs.
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A. Leading Vehicle Decision

After the vehicle location has been identified, the leading
vehicle decision is applied to the first CAV in the mixed
platoon. The leading vehicle decision is used to determine
whether the first CAV should follow the virtual phantom
vehicle or the Pre. The phantom vehicle is designed to be
a leading vehicle and to track the reference speed when there
is no Pre in the desired safety range. The speed reference
provided by offline planning is in the speed and distance
domain. Hence, the platoon tracks the reference speed based
on the relative position. There is a desired constant distance
ddes between the phantom vehicle and the first vehicle, which
can be described as:

xpha(t) = xa
1(t) + ddes (18)

where xpha(t) is the position of the phantom vehicle. The
speed of the phantom vehicle depends on the longitudinal
position and the relative speed of the first CAV.

The leading vehicle decisions depend on the following two
conditions:

• The distance between the Pre and the first vehicle is less
than the desired distance dpresafety:

xa
1(t) + dpresafety ≥ xpre(t). (19)

• The speed of the Pre is slower than the phantom vehicle
at the current time step:

vpha(t) ≥ vpre(t) (20)

where vpha(t) and vpre(t) are the speeds of the phantom
vehicle and the Pre, respectively.

The leading vehicle makes decisions in real-time based on the
above conditions. Meanwhile, the mixed platoon will follow
the Pre only if all of the above conditions are satisfied.

B. Local Adaptation

Local adaptation involves controlling each CAV in the
platoon and influencing the HDVs within the platoon. The
time-based point-mass model (2) is used to represent the
CAV’s dynamics. The motion of HDVs within the HDV sub-
platoon can be predicted by the NCM. Thus, the CAV tracks
the reference speed with a high certainty condition based on
the motion vector of the preceding HDV sub-platoon. The
influence of the HDV sub-platoon is reduced for the following
CAVs. The speed tracking MPC optimisation is formulated as:

min

Nt−1∑
p=0

∥(vaH+1(t+ p)− vref(t+ p))∥2 (21)

subject to:

aa,min
H+1 ≤ aaH+1(t+ p) ≤ aa,max

H+1 ,∀p ∈ {0, 1, ..., Nt − 1}
va,min
H+1 ≤ vaH+1(t+ p) ≤ va,max

H+1 ,∀p ∈ {0, 1, ..., Nt − 1}
(22)

where the cost function (21) represents the cumulative speed
deviations between CAVs with the reference speed. The pos-
itive integer Nt is the prediction horizon. Since the CAV is

influenced by the preceding HDV, traffic safety restrictions
are necessary. The CAV should maintain a safe distance from
the preceding HDV, which can be achieved via imposing the
following constraint

dsafety +∆tx · vH+1(t) ≤ xh
H(t)− xa

H+1(t) (23)

where dsafety is the safety distance to avoid collisions at low
vehicle speeds. ∆tx is the safe headway.

The min-max MPC for the CAV within a mixed platoon is
focused on the car following performance and platoon stability,
hence the min-max MPC with a prediction horizon Nt is
formulated as:

minmax

(
∥∆xi,e(t+Nt)∥2 +

Nt−1∑
p=0

(∥(z(t+ p))∥2

− γ2∥(d(t+ p))∥2)
) (24)

subject to:

amin
i ≤ aai (t) ≤ amax

i

emin
x,i ≤ ∆pai (t) ≤ emax

x,i

emin
v,i ≤ ∆vai (t) ≤ emax

v,i

amin
i ≤ ai−1(t) ≤ amax

i

(25)

where ∀p ∈ {0, 1, ..., Nt − 1}. The z(t+ p) is a performance
metric to balance the stabilising performance of system states
∆xe(t + p) and the control effort u(t + p), which can be
described as:

z(t+ p) = Cz∆xe(t+ p) +Dzu(t+ p) (26)

where Cz and Dz are the coefficients given in (19) in our
previous work [30]. The third term of (24) is the disturbance
attenuation term, while the variable d(t+p) is the disturbance
introduced from the acceleration of vehicle i− 1. γ is a self-
defined non-negative scalar. The use of the disturbance atten-
uation term is important in two aspects: First, it ensures the
robustness of the platooning errors z(t) (i.e., relative velocity
and spacing error) against the disturbance d(t) (i.e., velocity
changes of the preceding vehicle); Second, it ensures the ℓ2
string stability of the platoon. By including the disturbance
attenuation term, the min-max MPC cost function of (24) is
equivalent to a ℓ2-norm cost function and thus leads to the
proof of the ℓ2 string stability. The emin

x,i and emax
x,i are the

minimal and maximal allowable inter-vehicle space errors,
respectively. emin

v,i = vi−1(t)−vmax and emax
v,i = vi−1(t)−vmin

are the maximal and minimal allowable inter-vehicle speed
errors, respectively. The platoon error system based on time-
based point-mass model (3) is used to represent the dynamics
of CAV. The CAV within each CAV sub-platoon is designed
to follow the first CAV in the sub-platoon rather than the first
CAV within the entire platoon.

C. Platoon Stability

In this study, the collision avoidance between the CAV sub-
platoon and the HDV sub-platoon is guaranteed by implement-
ing the constraint (23) in the speed tracking MPC. Since the
HDV sub-platoons within mixed platoons cannot be controlled
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directly, it is not easy to prove the absolute stability of the
entire platoon. Hence, it is more realistic to consider the head-
to-tail string stability of a mixed platoon [31]. The head-to-tail
string stable indicates that the amplitude of oscillation at the
first vehicle is not amplified on the last vehicle, regardless
the behaviour of HDVs within the platoon. The head-to-tail
string stable for a mixed platoon can be ensured if all CAV
sub-platoons are head-to-tail string stable. In this study, the
CAV sub-platoon control considers the ℓ2 string stability [30].
To enable the min-max MPC directly quantify the ℓ2 string
stability metric, the ℓ2-norm cost function has been used in
the optimisation problem. The CAV sub-platoon is head-to-tail
string stable in the sense of ℓ2 string stability [10]. Therefore,
the proposed mixed platoon is string stable. In the authors’
previous work [30], details of the min-max MPC design were
presented, where the string stability of the platoon control
using the min-max MPC was also proved. Since this study
focuses on eco-driving for mixed platoons, the analysis of ℓ2
string stability will not be repeated.

VI. SIMULATIONS

In this section, simulations based on real traffic environ-
ments are carried out to validate the performance of the
proposed eco-driving strategy for mixed platoons.

Case 1

Case 2

Case 3

Case 5

CAV HDV HDV sub-platoon

Case 4

Fig. 6. The platoon configuration for simulation.

A. Simulation Setup

This study created simulation environments based on the
road I-580 in California and traffic data provided by the
PeMS [47]. The simulation environments include a motorway
of 22,200 meters. The mixed platoons with the eco-driving
strategy were simulated via MATLAB and Autonomie [48].
The MPC was modeled and solved using the tools YALMIP
[49] and MOSEK [50]. Five mixed platoons are selected in
this study as shown in Fig. 6. All the vehicles shown in Fig.
6 are within the platoon, and Case 2 and Case 3 contain
identical vehicles with different orders in the platoons. Case
4 and Case 5 contain identical vehicles with different orders
in the platoons. These cases comprehensively compare the
performance of each strategy by different penetration rates
and locations of HDV. Case 2 and Case 3 compare the impact
of the HDV sub-platoon in different locations. Case 2 and

Case 4 compare the effects of different numbers of HDV
within the HDV sub-platoon. Case 4 and Case 5 compare
the impact of different numbers of HDV sub-platoons. In
order to accurately evaluate the performance of the proposed
method and improve the credibility of simulation results, two
different car-following models, NCM and FVD models, are
used in this paper. The proposed eco-driving strategy applies
the NCM to describe the motion of HDVs within the mixed
platoon. In the simulation, the HDVs in all strategies follow
the FVD model. The deployed model is different to the one
used in controller design and therefore makes the evaluation
more authentic. The proposed strategy was compared with two
eco-driving benchmark strategies and a conventional adaptive
cruise control strategy under the same conditions.

The three benchmark strategies are
• Vehicles using conventional-adaptive cruise control to

follow each other is denoted as ACC. ACC is for a vehicle
without communication to follow the desired speed and
maintain a safe distance from the vehicle in front.

• CAVs using eco-adaptive cruise control to follow each
other is denoted as eco-ACC. This benchmark strategy
is designed to optimise the CAV individually. The eco-
ACC based on the MPC controls the CAVs to maintain a
safe distance from the vehicle in front and minimises the
total energy by adapting their speeds in real-time. None of
the vehicles using this strategy communicates with each
other.

• CAVs using eco-cooperative adaptive cruise control to
follow each other is denoted as eco-CACC. This bench-
mark strategy is designed to optimise the pure CAV
platoon. The leader optimises the platoon total energy by
adapting the speed based on an MPC. The distributed
MPC is applied to the rest CAVs to track the leader
in real-time. For example, Case 3 contains two CAV
platoons, while the first three CAVs form one platoon
and the last two CAVs form another platoon.

The proposed strategy optimises the energy consumption of the
entire platoon, while the benchmark strategies only optimise
the energy consumption of the controlled vehicles. All platoon
strategies were tested in at least five different scenarios with
the same average speeds of road, but with different traffic
densities and flows.

B. Curve Matching Algorithm Evaluation

TABLE I
RMSE OF THE SPEED PREDICTION ERROR FOR THE PRECEDING VEHICLE

WITH DIFFERENT HDV MODELS.

Name of HDV model FVD IDM OVM
RMSE (m/s) 0.1448 0.1553 0.1328

In online tracking, a CAV that follows the HDV can predict
the motion of the HDV to improve tracking performance based
on the NCM motion vector of time lag and space lag. The
performance of NCM predicting the motion of the preceding
HDV driven by different HDV models has been evaluated by
the root mean square error (RMSE) and shown in TABLE
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Fig. 7. The speed trajectories of HDV4 and CAV2 (a) and distance trajectories
of HDV4 and CAV2 (b).

I. The RMSE calculates the average error between the NCM
prediction speed trajectory and speed trajectories of different
HDV models. The results show that the NCM can accurately
predict the motion of HDV driven by different HDV models.
The HDV in the simulation is controlled by FVD model. An
example based on the platoon in Case 1 is shown in Fig.
7. CAV2 receives a part of HDV4’s speed trajectory data
from CAV5, which travels according to the FVD model and
is represented by the red curve in Fig. 7 (a). The blue curve
represents the speed trajectory of CAV2. Therefore, the motion
vector can be found using the curve matching algorithm. The
yellow dotted curve represents the CAV2 iteratively moving
the paired speed trajectory in accordance with the motion
vector. The NCM provides an accurate motion vector so that
the two speed trajectories almost coincide. However, the HDV
is not sensitive to subtle accelerations and rapid speed changes.
Thus, the speed trajectory of the HDV is smoother than that
of the CAV. The displacement of the two trajectories also
coincides as shown in Fig. 7 (b). The curve matching algorithm
based on TCDs can identify an accurate motion vector for the
HDV. Meanwhile, the HDV speed trajectory with a range of
shape deformations does not influence the performance of the
curve matching algorithm.

C. Road Test Simulation

Offline planning provides a speed reference for a mixed
platoon based on the characteristics of each vehicle and the
future traffic information. The platoon receives the average
speed for the testing road segment via V2I communications.
The speed references for each mixed platoon are shown in Fig.
8. The speed references are different for each mixed platoon
because the vehicle characteristics vary. As mentioned earlier,
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Fig. 8. Speed reference for Case 1 (a), for both Case 2 and Case 3 (b) and
for both Case 4 and Case 5 (c).

the vehicles within the platoon are assumed to be travelling at
the same speed in the offline planning stage, and the vehicles
in Case 2 and Case 3 are identical. Therefore, Case 2 and
Case 3 share the same reference speed. Meanwhile, for the
same reason Case 4 and Case 5 share the same reference
speed. Online tracking controls the mixed platoon, follows the
reference speed and maintains the stability in real-time. The
actual energy efficiency is influenced by the speed tracking
performance. Therefore, each strategy is applied to each case
and tested in various traffic scenarios to provide a more
cogent result. In this paper, only speed trajectories with distinct
characteristics are discussed and the energy efficiencies over
all simulations are summarised.

The results of the proposed eco-driving strategies for Case
1 are depicted in Fig. 9. The blue curves are the reference
speeds. Fig. 9 (a) shows the controlled mixed platoon with
less disturbance from the Pre. The mixed platoon was able to
track the reference speed for the entire trip. Details of mixed
platoon Case 1 with less disturbance between 465 s and 519 s
are shown in Fig. 9 (b). CAV5 equipped with speed tracking
MPC has a more flexible inter-vehicle distance. As long as
the inter-vehicle distance is longer than the minimum safe
distance, CAV5 will follow the reference speed. Meanwhile,
the motion of HDV4 can be predicted based on the motion
vector and the speed trajectory of CAV2. Therefore, CAV5
and CAV6 have been decelerated at 489 s, which is before the
preceding vehicle HDV4 to achieve a better reference speed
tracking performance whilst maintaining a safe distance. The
results of the proposed strategy and benchmark strategies for
Case 1 with large disturbances from the Pre are shown in Fig.
10. The mixed platoon has the same traffic situation with each
strategy. The Fig. 10 (a) shows the mixed platoon controlled
by the proposed strategy. The Pre travelled at a slower speed
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Fig. 9. Mixed platoon Case 1 controlled by the proposed strategy (a) and the
details of Case 1 (b) with less disturbance.

than the reference speed from 273 s. Accordingly, the inter-
vehicle distance between CAV1 and the Pre was reduced to
the desired distance. Thus, the platoon started to follow the
Pre from 472 s to the end of the trip. The result of eco-CACC
for Case 1 with the same traffic situation is shown in Fig. 10
(b). CAV1 and CAV2 form a platoon, and CAV5 and CAV6
form another platoon. The platoons travelled with a Pulse and
Glide (P&G) operation strategy [42] starting with the 690 s
to the end. The P&G operation improved the vehicle’s energy
efficiency at the acceptable speed range. The result of eco-ACC
strategy of Case 1 is shown in the Fig. 10 (c). The vehicles in
the group control themselves without communication between
each other. Unlike the proposed strategy of tracking the
reference speed, a vehicle equipped with eco-ACC improves
the energy efficiency by minimising unnecessary acceleration.
Therefore, the speed trajectory of a vehicle with eco-ACC from
472 s to 670 s was smoother than proposed strategy as shown
in the Fig. 10 (a). Same as the eco-ACC, the vehicles in the
group control themselves under the ACC strategy are shown
in Fig. 10 (d). However, because the ACC only focuses on the
inter-vehicle distance maintenance, the speed of a vehicle with
ACC is not smooth. The target speed of benchmark strategies
are average speed. The relative vehicles position for Case 1
controlled by the proposed strategy and benchmark strategies
with large disturbances are shown in Fig. 11 (a) to Fig. 11
(d), respectively. The curves in Fig. 11 (a) represent each
vehicle’s inter-vehicle distance to the leader vehicle provided
by the leader vehicle decision. The curves in Fig. 11 (b) -
Fig. 11 (d) represent each vehicle’s inter-vehicle distance to
the vehicle ahead of the platoon. As HDVs have a longer
response time, the inter-vehicle distance of HDVs are large
than CAVs in all strategies. The proposed strategy and the eco-
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Fig. 10. Mixed platoon Case 1 controlled by the proposed strategy (a), the
eco-CACC (b), the eco-ACC (c) and the ACC (d) with large disturbances,
respectively.

CACC have similar results, which maintain the desired inter-
vehicle distance. However, the inter-vehicle distance for eco-
ACC is unstable. The CAV reduced the inter-vehicle distance
to achieve better energy efficiency. The ACC has the largest
inter-vehicle distance because eco-driving does not take into
account in this strategy. The ACC only focuses on maintaining
the desired inter-vehicle distance.

The example speed trajectories for the rest of the cases
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Fig. 11. Relative vehicle positions for Case 1 controlled by the proposed
strategy (a), the eco-CACC (b), the eco-ACC (c) and the ACC (d) with large
disturbances, respectively.

are shown in Fig. 12. These four sub-plots in Fig. 12 (a)
to Fig. 12 (d) are Case 2 to Case 5, respectively, and they
travel in the same traffic conditions. In this traffic situation,
the mixed platoon was influenced by the Pre between about
90 s and 170 s. In Case 1 to 3, the CAVs behind the HDV
sub-platoon were able to track the reference speed based on
the motion vector of the HDV. In Case 4, CAV6 and CAV7
were not able to track the reference speed from 645 s to 700 s.
As the number of HDVs increased, the accuracy of the HDV
motion prediction based on NCM decreased. The predicted
acceleration of HDV5 is higher than the actual acceleration
at 634 s. Thus, the inter-vehicle distance between CAV6 and
HDV5 dropped to a safe distance at 645 s. In Case 5, the
number of HDVs within the platoon is the same as in Case
4. However, these HDVs are in two different HDV sub-
platoons. As the CAV4 is between two HDV sub-platoons,
the cumulative speed error by the HDV sub-platoon is less
than in Case 4. Hence the HDV’s impact on CAV7 is not as
strong as the last CAV sub-platoon in Case 4. However, in
general, the increase in the number of HDVs deteriorates the
speed tracking accuracy of the following CAVs.
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Fig. 12. Speed trajectories for mixed platoon Case 2 (a), Case 3 (b), Case 4
(c) and Case 5 (d).

D. Fuel Consumption

A bar graph is included in Fig. 13 to compare the fuel
economy between the platoons with the proposed strategy
and the benchmark strategies. The average fuel consumption
for each platoon case that followed a different strategy is
illustrated. In each sub-set, the proposed strategy, the eco-
CACC, the eco-ACC and the ACC are represented in blue, red,
yellow and purple, respectively. The vehicle configurations in
Case 2 to Case 5 are the same. Among the four cases, the
mixed platoon that is equipped with the proposed strategy
had the best energy efficiency in Case 3, and the highest fuel
consumption in Case 4. Platoon Case 3 has the largest number
of CAVs ahead of the HDV sub-platoon, and a dominant
number of CAVS in the platoon. Therefore, the reference speed
tracking performance was the best in this case. In contrast, as
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the number of HDVs increased, the tracking errors in Case 4
and Case 5 also increased. In Case 4, CAV6 and CAV7 could
not track the reference speed, even if the platoon was not
influenced by other traffic participants. The ACC strategy had
the highest fuel consumption for each case, while the results
of the proposed strategy and the eco-CACC were relatively
similar. However, the HDV energy efficiency improved with
the proposed strategy. Compared with the eco-CACC, eco-ACC
and ACC strategies, the total fuel consumption of the proposed
strategy was reduced by 1.15%, 2.98% and 6.39% respectively.
Overall, the proposed strategy for platoons demonstrated better
energy efficiency than the other strategies.
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Fig. 13. The average fuel consumption of each case under different control
strategies.

VII. CONCLUSION

Focusing on the platoon in mixed traffic, this paper pro-
poses an eco-driving strategy for mixed platoons in general
structures. The target of the platooning is to achieve minimum
total fuel consumption. The offline planning creates a reference
speed for mixed platoons based on vehicle characteristics and
traffic data for future routes. The selfish optimisation of the
offline planning has been avoided based on the speed deviation
minimisation contained in the optimisation. Moreover, the eco-
driving optimised the speed of the mixed platoon based on
the engine fuel efficiency map extracted from each CAV with
physical constraints. Therefore, the reference speed is more
feasible to be applied in practical driving. This paper uses
the NCM based on the curve matching algorithm to describe
and predict the dynamics of HDVs within the platoon. Hybrid
distributed MPC was designed for platoon control to improve
the speed tracking performance and maintain the platoon’s
stability. The simulation results show that the penetration rates
of HDVs and the order of vehicles influence the performance
of energy optimisation. The energy optimisation effect is
reduced, when penetration rates of HDVs increase or the
location of the HDV sub-platoons is closer to the head of
the platoon. Hence, eco-driving may not be able to optimise
platoons that have high HDV penetration rates. In the future,
eco-driving models and control methods for platoons with high
HDV penetration rates and multiple HDV sub-platoons will be
developed. Moreover, the proposed eco-driving mixed platoon
will be verified in real world testing.
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