Transferring micellar changes to bulk properties via tunable self-assembly and hierarchical ordering

Thomson, L. et al. (2022) Transferring micellar changes to bulk properties via tunable self-assembly and hierarchical ordering. ACS Nano, 16(12), pp. 20497-20509. (doi: 10.1021/acsnano.2c06898) (PMID:36441928) (PMCID:PMC9798853)

[img] Text
285936.pdf - Published Version
Available under License Creative Commons Attribution.

2MB

Abstract

Hierarchical self-assembly is an effective means of preparing useful materials. However, control over assembly across length scales is a difficult challenge, often confounded by the perceived need to redesign the molecular building blocks when new material properties are needed. Here, we show that we can treat a simple dipeptide building block as a polyelectrolyte and use polymer physics approaches to explain the self-assembly over a wide concentration range. This allows us to determine how entangled the system is and therefore how it might be best processed, enabling us to prepare interesting analogues to threads and webs, as well as films that lose order on heating and “noodles” which change dimensions on heating, showing that we can transfer micellar-level changes to bulk properties all from a single building block.

Item Type:Articles
Additional Information:The authors thank the University of Glasgow (LT) and the Leverhulme Trust (DM, RPG-2018-013 and LM, RPG-2019-165) for funding. L.S. thanks the BBSRC for funding (BB/S003657/1). This work benefitted from the SasView software, originally developed by the DANSE project under NSF award DMR-0520547. The Ganesha X-ray scattering apparatus was purchased under EPSRC Grant “Atoms to Applications” (EP/K035746/1).
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Marshall, Ms Olivia and Marshall, Miss Libby and Thomson, Miss Lisa and Adams, Dave and Ghosh, Dr Dipankar and McDowall, Mr Daniel
Authors: Thomson, L., McDowall, D., Marshall, L., Marshall, O., Ng, H., Homer, W. J. A., Ghosh, D., Liu, W., Squires, A. M., Theodosiou, E., Topham, P. D., Serpell, L. C., Poole, R. J., Seddon, A., and Adams, D. J.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:ACS Nano
Publisher:American Chemical Society
ISSN:1936-0851
ISSN (Online):1936-086X
Published Online:28 November 2022
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in ACS Nano 16(12): 20497-20509
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
300445Gel-based Photoelectrodes for Clean FuelsDave AdamsLeverhulme Trust (LEVERHUL)RPG-2018-013Chemistry
305912Spatially- and temporally-controlled photothermal GelsDave AdamsLeverhulme Trust (LEVERHUL)RPG-2019-165Chemistry