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DA-RDD: Toward Domain Adaptive Road Damage
Detection Across Different Countries

Chunmian Lin , Daxin Tian , Senior Member, IEEE, Xuting Duan , Member, IEEE, Jianshan Zhou ,

Dezong Zhao , Senior Member, IEEE, and Dongpu Cao

Abstract— Recent advances on road damage detection relies on
a large amount of labeled data, whilst collecting pavement image
is labor-intensive and time-consuming. Unsupervised Domain
Adaptation (UDA) provides a promising solution to adapt a
source domain to the target domain, however, cross-domain crack
detection is still an open problem. In this paper, we propose
domain adaptive road damage detection termed as DA-RDD,
by incorporating image-level with instance-level feature align-
ment for domain-invariant representation learning in an adver-
sarial manner. Specifically, importance weighting is introduced
to evaluate the intermediate samples for image-level alignment
between domains, and we aggregate RoI-wise feature with multi-
scale contextual information to recover the crack details for
progressive domain alignment at instance level. Additionally,
a large-scale road damage dataset (based on Road Damage
Dataset 2020 (RDD2020)) named as RDD2021 is constructed
with 100k synthetic labeled distress images. Extensive experi-
mental results on damage detection across different countries
demonstrate the universality and superiority of DA-RDD, and
empirical studies on RDD2021 further claim its effectiveness
and advancement. To our best knowledge, it is the first time
to investigate domain adaptative pavement crack detection, and
we expect the contributions in this work would facilitate the
development of generalized road damage detection in the future.

Index Terms— Road damage detection, domain adaptation,
pavement distress dataset, adversarial learning, intelligent trans-
portation systems.

I. INTRODUCTION

AS A crucial public infrastructure, pavement surface irreg-
ularly wears and deteriorates over time from different

factors related to aging, adverse weather, frequent overload,
etc., which would evolve to different degrees of pavement
damage gradually. Poor road condition seriously reduces road
service life, and contributes to ever-growing traffic accidents,
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posing a potential threat to driving safety. Therefore, govern-
ments and transportation agencies from many countries attach
great importance to road condition surveys and launch several
pavement maintenance projects [2]. Road damage detection
is the most fundamental step in road surface assessment,
and traditional pavement distress recognition mainly relies on
laborious and time-consuming manual inspection, which might
be prone to human visual error and subjective judgement.
Recent progresses in image processing and deep learning
techniques open a new era of intelligent transportation system
applications [3], [4], [5], [6], e.g., automatically detecting
pavement damages.

There are a variety of empirical studies on crack detection
using representative image feature, e.g., Gabor Filter (GF) [7],
Histogram of Oriented Gradient (HOG) [8], Local Binary
Pattern (LBP) [9], [10]. Despite encouraging recognition
results are reported, these methods are not robust enough to
address feature diversity in the crack appearance and type in
the complex environment. Deep learning technique based on
convolutional neural network (CNN) has emerged impressive
results on computer vision tasks, including object classifica-
tion [11], detection [12], semantic segmentation [13], as well
as crack detection [14], [15], [16], [17], [18]. The main-
stream of CNN-based crack detection is to build the encoder-
decoder architecture to perform pixel-wise segmentation on
high-quality pavement image, that is acquired from laser line-
scan camera or three-dimensional (3D) camera mounted on the
dedicated vehicles. However, these segmentation approaches
suffer from the loss of spatial resolution with high-level fea-
ture encoding, and inefficient pixel-wise classification hinders
its application and deployment in the edge device. More
importantly, such pavement image typically depends on high-
resolution laser imaging equipment, which is too expensive for
local agencies with limited budgets to perform effective road
maintenance. From 2018 to 2020, the Road Damage Detection
Challenge (RDDC) develops a new horizon of cost-effective
road condition monitoring and damage detection. This chal-
lenge receives wide attention from researchers all over the
world, and several novel methods along the pipeline of 2D
object detection [12], [19] are proposed for improving auto-
matic pavement distress identification performance [1], [20],
[21], [22], [23]. In this paper, we would also investigate
efficient yet effective algorithm for low-cost road damage
detection.

Previous works motivate several pavement distress datasets,
i.e., CrackTree200 [25] and GAPs [26], each of which contains
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Fig. 1. Damage samples on the same caterogy from different countries. Noted
that Net corresponds to the alligator crack (D20) in the case of different
countries. It is challenging to perform cross-domain road damage detection
due to the great variations in crack appearance and scenario layouts.

hundreds of top-view images with fine-grained pixel annota-
tions. The road damage dataset (RDD2020) [1] is publicly
available with 26620 front-view samples collected from differ-
ent countries (Japan, India and Czech) using smartphone, with
bounding-box annotation for various distress types. Similarly,
the damage dataset recently released by Jiangsu Pro., China
(CN2021) [27] contains 1366 available training with 5 crack
classes in China. Nevertheless, there is a dilemma that deep
learning model requires large-scale training data to achieve
satisfactory performance, whereas the magnitude of pavement
distress dataset is far insufficient. It is desirable to build up
a large-sacle road damage dataset for model training and
method evaluation. Above all, crack detector trained on labeled
pavement image typically do not generalize to the new test data
because of large variations in illumination, background, and
image quality in real-world situation, as shown in Fig.1. This
may cause a considerable domain shift [28], [29], and results
in a significant performance gap.

Unsupervised Domain Adaptation (UDA) [30] is regarded
as an encouraging approach to address this problem by trans-
ferring the representation from an annotated source domain to
the target domain without Ground-Truth (GT) labels, which
aligns different data distributions to alleviate the domain
disparity effectively. It explicitly learns invariant represen-
tation via domain adversarial learning [31] or pixel-level
adaptation [24], and achieves remarkable progress in image
classification [32], [33], [34], detection [29], [35], [36], [37],
[38] and segmentation [39], [40], [41]. Specifically, UDA
in cross-domain object detection attempts to combine adver-
sarial learning with off-the-shelf 2D detector, e.g., Faster
RCNN [12], to minimize the domain discrepancy via image-
instance adaptation [29], strong-weak feature alignment [35],
harmonized transferability and discriminability [38], etc. In the

context of pavement distress detection, UDA has not been
explored yet, and it is non-trivial to investigate a generalized
damage detector to adapt from a labeled source domain to the
unlabeled target domain.

In this paper, we incorporate unsupervised domain adapta-
tion (UDA) with pavement distress detection, and propose a
general framework termed as DA-RDD for domain adaptive
road damage detection, which integrates Faster RCNN with
image-level and instance-level feature alignment methods to
learn domain-invariance crack representation in an adversarial
manner. Specifically,an intermediate space is introduced via
CycleGAN [24] to bridge the domain gaps, and feature impor-
tance is reweighted for image-level alignment across different
domains. To highlight the complementary effect of multi-
level features, we further aggregate the RoI-wise feature with
multi-scale contextual representations to recover the damage
details for local instance discriminability enhancement and
progressive cross-domain alignment. Extensive cross-domain
damage detection experiments are conducted on RDD2020
and CN2021, and results demonstrate the generality and
adaptability of DA-RDD, which outperform the baseline and
other counterparts over a substantial margin. Additionally,
we build up a large-scale road damage dataset (based on Road
Damage Dataset 2020 (RDD2020) [1]) namely RDD2021,
comprising 100k front-view synthetic images with bounding-
box annotations on four damage categories across three dif-
ferent countries. Empirical studies verify its effectiveness and
advancement, with substantial performance gains on crack
identification. To the best of our knowledge, it is the first time
to explore the adapted distress detection across different coun-
tries, and we expect the proposed DA-RDD and RDD2021
would beneficial to the generalized road damage detection in
the future. The contributions can be mainly summarized as
follows:

1) DA-RDD is proposed by integrating Faster RCNN with
image-level and instance-level alignment methods for domain-
invariant representation learning and domain adaptive road
damage detection in an adversarial manner.

2) Importance weighting method is developed to mea-
sure the intermediate feature space for image-level alignment
between domains; furthermore, RoI feature is concatenated
with multi-level context information to recover the damage
details for hierarchical cross-domain instance alignment.

3) A large-scale road damage dataset RDD2021 is con-
structed with 100k front-view synthetic samples, anno-
tated on four distress categories across three different
countries.

4) Domain adaptation experimental results on RDD2020
and CN2021 illustrate the universality and transferability
of DA-RDD for cross-domain damage detection; moreover,
empirical studies on RDD2021 suggest the effectiveness and
superiority of large-scale crack data, with substantial detection
performance improvements.

The reminder in this paper is organized as follows: we
review the related works in Section II, and describe our
proposed methods in Section III. Section IV presents the
experimental setup and results, and we conclude the whole
paper in Section V.
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II. RELATED WORKS

This section would briefly review the related works on road 
damage detection, pavement distress dataset, and unsupervised 
domain adaptation.

A. Road Damage Detection

The conventional road damage detection is mainly based on
low-level image feature. For instance, Medina et al. [7] com-
bine visual appearance and geometrical information to extract
the profile of road crack, while Quintana et al. [9] utilize
local binary pattern (LBP) within non-overlapping grid cell to
detect and classify cracks on the road surfaces. To enhance
the robustness of method, Gradient LBP (GLBP) [10] is
further formulated to suppress the effect of illumination and
background noise on the detection result.

With the introduction of convolutional neural network
(CNN) in civil engineering, there are a variety of
segmentation-based and detection-based approaches to pave-
ment distress detection. On one hand, Zhang et al. propose
CrackNet [14] and ins variant [16] for pixel-level crack iden-
tification on the 3D asphalt surface. Moreover, Fei et al. [42]
stack several convolutional layers with multi-scale kernels to
achieve high damage segmentation performance. Based on
semantic segmentation model [43], Zou et al. [17] design an
encoder-encoder architecture DeepCrack with pairwise feature
fusion under different scales for accurate distress segmen-
tation. Yang et al. [18] integrate pyramid architecture with
hierarchical boosting network to aggregate low-level feature
and context information for non-continuity crack segmenta-
tion. On the other hand, recent Road Damage Detection (RDD)
Challenge motivates to develop efficient road damage detec-
tors. Wang et al. [22] introduce data augmentation to balance
the training sample, and adopt Faster RCNN [12] to classify
different cracks. Besides, Team IMSC [44] trains a YOLOv5
detector [19] with parameter adjustment and architecture fine-
tuned to detect various types of pavement distress. The tricks
of ensemble learning and test time augmentation (TTA) also
facilitate the model performance. Generally, detection-based
methods provide a simple yet accurate crack detection scheme,
and we would follow this pipeline to carry out road damage
detection in this paper.

B. Pavement Distress Dataset

Regarding pavement distress dataset, it can be roughly
divided into pixel-level segmentation [25], [45], [46] and
instance-level box [26], [27], [47] according to the label
format. CrackTree [25] comprises of 206 top-view pavement
images with pixel-level annotations, each of which has a size
of 800 × 600. Based on expensive mobile mapping system,
GAP dataset [26] consists of 1969 high-definition pavement
images with a size of 1920 × 1080, and an actual crack is
annotated with a delicated box. The relevant damage classes
include crack, pothole, applied patch, open joint and bleed-
ing. RDD2020 [1] is a heterogeneous road damage dataset1

with 26620 front-view images acquired from Japan, India

1https://github.com/sekilab/RoadDamageDetector

and Czech using smartphone. The resolution of image in
different countries varies from 600 × 600 to 720 × 960,
and there are 8 distress types: linear crack (wheel-marked
part marked as D00, construction joint part marked as D01,
equal interval marked as D10 and construction joint part
marked as D11), alligator crack (marked as D20) and others
(pothole marked as D40, cross walk blur marked as D43 and
white line blur marked as D44. Recently, CN2021 [27] is
publicly available with 1365 labeled training and 900 test
data collected from an on-vehicle dashcam in China, which
focuses on marking, net, abnormalmanhole, pothole and crack
identification. However, the size of these dataset is inadequate
to conduct comprehensive model training and evaluation, and
it is also troublesome to collect massive labeled pavement
images due to the expensive manual annotation. Although
Maeda et al. [47] construct a progressive growing generative
adversarial network (PG-GAN) for pseudo-image generation,
only pothole class (marked as D40) is augmented without the
consideration of multiple classes augmentation. In this work,
we would generate synthetic labeled samples from different
layouts and scenes, and build up a large-scale road damage
dataset.

C. Unsupervised Domain Adaptation

Unsupervised domain adaptation (UDA) provides an effec-
tive solution to tackle with the rare of labeled data and domain
shift problem, which aims to transfer the knowledge from the
source domain to another one. Currently, statistic matching and
adversarial learning are two main UDA techniques. The former
attempts to match high-order statistic of feature distributions
across different domains in latent space. DAN [48] matches
the implicit representations of task specific in a reproducing
kernel Hilbert space, and reduces distributional disparity by the
optimal multi-kernel selection. CORAL [49] aligns the second-
order statistic of distribution with a linear transformation
between two domains. Motivated by the two-player game
in generative adversarial network (GAN) [50], adversarial
learning is the prevalent UDA method that explicitly exploits
domain-invariant representations via adversarial training or
pixel-level adaptation, which has been widely utilized for
domain adaptive object detection [29], [35], [36], [37], [38],
[51], [52] and semantic segmentation [39], [40], [41]. Based
on Faster RCNN model, Chen et al. [29] firstly design dif-
ferent adaptation methods to align the image and instance
features between domains, and learns a domain classifier to
reduce the discrepancy in an adversarial training manner. After
that, Saito et al. [35] combine strong local alignment with
weak global alignment to match multi-level features, while
Guan et al. [37] propose an uncertainty-aware domain adap-
tation network (UaDA) to adjust the well- and poor-aligned
samples via conditional adversarial learning. To consider the
object of interest in local, Chen et al. [38] harmonize the
transferability and discriminability for cross-domain feature
alignment, and Zhu et al. [51] focus on discriminative region
alignment across domains. Similarly, Cai et al. [52] regularize
the domain consistency by mining oobject relations in a
teacher-student scheme. Furthermore, CycleGAN [24] adopts
cycle consistency loss to generate an image without paired



4

Fig. 2. Overview of the DA-RDD. Given the images from source domain (Japan) and the target domian (India), CycleGAN [24] generates the intermediate
sample to reduce the domain gap, and the prediction scrore from Dcycle is utilized for importance estimation and feature reweight, aligning the domain
distribution in image-level. Through the feature backbone (ResNet101 [11]), multi-scale contextual information from conv2 x ( f 1), conv3 x ( f 2) and
conv4 x ( f 3), is aggregated with the RoI-pooling feature for local object discriminability enhancement and progressive instance-level domain alignment.
Notably, the discriminators D1 and D2 inversely update the gradient via GRL in an adversarial manner. Finally, the fused instance features predict the damage
detection result, and the training objective for DA-RDD comprises of adversarial losses (L D1 and L D2 ) and detection losses (Lrpn and Lroi ).

examples, and achieve the pixel-level adaptation from the
source to the target domains. However, cross-domain pavement
distress detection is still an open problem, and we would
introduce UDA methods for domain adaptive road damage
detection in this paper.

III. DA-RDD: DOMAIN ADAPTIVE ROAD DAMAGE

DETECTION

This section would describe the technical details of
DA-RDD, as shown in Fig.2. Based on Faster RCNN,
we reweight feature importance from the intermediate space
for image-level feature alignment between domains, and
aggregate RoI feature with multi-scale contextual information
to align the instance details across different domains.

The two-stage Faster RCNN [12] mainly consists of three
key components: the shared feature backbone, region proposal
network (RPN) and RoI classifier. Given a pavement input
image, convolutional feature maps are extracted by the feature
backbone extracts, and RPN generates numerous candidate
proposals from these feature maps to indicate the poten-
tial object region. Simultaneously, RoI classifier predicts the
object category label and bounding-box coordinates from the
RoI-pooling feature. As mathematically formulated as Eq.1,
the overall loss function Ldet comprises of RPN loss Lrpn and
RoI classifier loss Lroi , each of which contains classification
loss Lcls and regression loss Lreg to measure the detection
accuracy. More technical details can refer to the paper [12].

Ldet = Lrpn + Lroi (1)

A. Problem Formulation and H-Divergence Theory

In the real-world situation, object detector generally
suffers from domain shift problem where distributional

disparity may result in performance degradation. Formally,

we denote a labeled source domain as S =
{
(xs

i , bs
i , cs

i )
Ns
i=1

}
,

where bs
i ∈ Rn×4 denotes the bounding-box coordinates,

cs
i ∈ Rn×1 is the class label and Ns indicates the number

of sample xs
i , and define a unlabeled target domain

as T =
{
(x t

j )
Nt

j=1

}
of Nt samples. The H-divergence

theory [53] is proposed to measure the divergence between
two datasets with different distributions. Given the feature
vector x and a set of domain classifiers H(h(x)) ={

h(xd
(i, j )), (d = s, t; i = 0, . . . , Ns , j = 0, . . . , Nt )

}
, the

H-divergence calculates the discrepancy between two
domains [29] as follows Eq.2:

d (H (h (x))) = 2

(
1 − min

h∈H

(
εS

(
h

(
x S

))
+ εT

(
h

(
xT

))))

(2)

where εS h x S
) = εxs

i
h xs

i

))
, (i = 0, . . . , Ns ) and

εT h x T = εxt
j

(
h

(
xt

j

))
, ( j = 0, . . . , Nt ) denote the pre-

diction error for each sample on the source domain and the
target domain, respectively; a domain classifier h(x) predicts
the source sample xs

i to 0 and the target data x t
j to 1. The

formulation suggests the domain disparity d (H (h (x))) is
inversely proportional to the domain prediction error [29].
Thus, a well-performance domain classifier is difficult to
distinguish the sample between domains. In the context of
deep neural network, the training objective is to minimize the
domain distance for feature alignment between two domains,
and we reformulate the Eq.2 as follows Eq.3:

min
f

d (H (h (x))) ⇔ max
f

min
h∈H

(
εS

(
h

(
x S

))
+εT

(
h

(
xT

)))

(3)
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Fig. 3. Data statistics information among different pavement distress dataset. In RDD2020 and CN2021, severe class imbalanced problem is observed,
i.e., India2020 D10 with 89 samples, Czech2020 D20 with 211 and C N2021 Net with 263 images, suggesting the difficultis to receive satisfactory crack
detection performance. On the contrary, the synthetic RDD2021 provides large-scale road damage examples for each category across different countries.

where f defines a neural network, and here x denotes the
feature map from the source or the target set after activa-
tion. The min-max two-player game can be jointly optimized
in an adversarial learning mode, and be implemented by
a gradient reversal layer (GRL) [53], which updates the
gradient in an opposite direction to maximize the domain
discriminator loss ε(.). By this way, domain discrepancy
is addressed by feature distribution alignment between two
different domains. In this paper, we attempt to learn a
domain adaptive road damage detector DA-RDD trained on the
labeled source domain S to generalize to a new unseen target
domain T .

B. Image-Level Feature Alignment
Domain adaptation is regarded as a promising approach to

cross-domain road damage detection. However, due to large
variations from pavement distress appearance, type, and multi-
source noise (e.g., background and layout) in the real world,
transferring the knowledge directly from the source to target
domain is still challenging to receive satisfactory performance
gains. To this end, we append a domain classifier D1 into
the Faster RCNN framework via GRL, and introduce an
interpolated domain I to bridge the significant gap between
the source domain S and the target domain T . Furthermore,
importance reweighting is also utilized for highlighting the dis-
criminative representation and aligning the feature distribution
across domains.

The intermediate domain I comprises a set of inter-
polated damage images generated by a CycleGAN [24],
which is a pixel-wise image translation architecture for
learning dual domain mappings via a cycle consistency
loss. As shown in Fig.4, it bridges the distributional gap
between the source and the target data, and the pipeline
of cross-domain detection convert from ‘source→target’ into
‘source→intermediate→target’, thus reducing the difficulty of
domain adaptation significantly. Notably, the synthetic sample
in intermediate domain has the similarity with the source
data in damage content but diverging in visual appearances;
simultaneously the interpolated example is similar to the target
set in pixel-level distribution while varying in distress instance
details. However, it is noted that GAN easily suffers from such
model collapse problem in trivial or negative distress sample
generation, leading to false feature alignment across domains.
Thus, we further propose an importance weighting approach
to measure the significance of interpolated feature, that is,
desirable damage sample would receive more attention than
that of irrelevant one.

To be specific, the importance is based on the similar-
ity between domains, which implies the interpolated feature
would be up-weighted when it closed to the target set, and vice
versa. As demonstrated in Fig.1, we append a domain classifier
and GRL to the Faster RCNN framework to learn adopt the
predicted score from the target domain discriminator Dcycle,
to measure the uncertainty of the generated damage sample
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Fig. 4. Visualization on feature distribution between domians via t-distributed
stochastic neighbor embedding (t-SNE [54]). Taking the adaptation from Japan
to India as example, we randomly sample 1000 images from Japan2020 and
India2020, and feed them into the CycleGAN [24] for the interpolated feature
generation. It is clearly observed that the intermediate space bridges the data
distributional gap between two domains, thus reducing the difficulty of domain
adaptatiion.

as Eq.4:

uIi = PT (Ii )

PS (Ii ) + PT (Ii )
(4)

where Ii defines the synthetic target image, PS (Ii ) and
PT (Ii ) are the predicted probability of Ii belonging to the
source or target damage domain. Due to high-uncertainty
feature hard to distinguish by the cycle domain classifier,
we assume the intermediate space is close to the target
domain in this case, and attach great weight to emphasize the
crack feature importance. Given an input xi , the reweighted
representation fi before feeding into the feature backbone is
presented as Eq.5:

fi = xi × (1 + ui ) (5)

Therefore, the input of domain discriminator D1 is G1 ( fi ),
and we denote the classifier result D1 (G1 ( fi )) as D1 for
simplicity. The adversarial loss of domain discriminator D1
can be formulated as Eq.6:

L D1 = E

(
log

(
D1

(
G1

(
f Si

))))

+ E

(
1 − log

(
D1

(
G1

(
f Tj

))))

= − 1

Ns

Ns

i=0

DS
1 log

(
DS

1

)
− 1

Nt

Nt

j=0

DT
1 log

(
DT

1

)
(6)

C. Instance-Level Feature Alignment

Previous works on domain adaptive detection [29], [35],
[36], [51], [52] mostly follow two-stage detection pipeline,
and utilizes RoI-pooling feature for bounding-box refinement.
Nevertheless, the instance feature after pooling operation may
be ambiguous because of the increasing receptive fields, and
information loss would also pose a great challenge in feature
alignment across different domains, which have not been

investigated in the prior studies yet. And these issues would
be aggravated in the context of pavement crack identification
due to the subtle damage feature. In this paper, it is assumed
that contextual feature at multiple levels provides different
characteristics, i.e., low-level appearance or shape, for depict-
ing the specific distress, which can be complementary with
abstracted RoI-wise representation. Hence, we propose to
aggregate RoI-pooling with multi-scale contextual representa-
tions to recover the discriminative damage details and perform
the cross-domain instance alignment hierarchically.

Formally, given multi-level context feature vectors ( f v
c , v =

1, 2, 3 . . .), and the RoI-wise crack feature as f (i,r)
roi with

respect to the r -th region for the i -th image input, We firstly
concatenate the context representation at different scales into a
single vector fc, and further aggregate it with the RoI f (i,r)

roi in
an element-wise product. Here, we adopt context information
at three resolutions from the shared feature backbone, and the
fused feature f (i,r)

f us can be described as Eq.7:

f (i,r)
f us =

[
f 1
c , f 2

c , f 3
c f (i,r)

roi (7)

where f (i,r)
f us denotes the fused feature vector, and

⊗
is the

tensor product operation. Such a non-linear fusion strategy
interacts the RoI-wise feature with global context information
effectively, and refines the instance details to facilitate the
domain alignment at different levels. In the implementation,
we adopt the randomized methods [55], [56] as an unbiased
estimator of tensor product for computational efficiency, and
the feature fusion process can be transformed as Eq.8:

f (i,r)
f us = 1√

d
(R1 fc)

⊙(
R2 f (i,r)

roi

)
(8)

where
⊙

denotes the Hadamard product, R1 and R2 are
random symmetric matrices with univariance, and in this work,
they are sampled from the uniform distribution following the
previous studies [38], [56]. d (d � dc × d f us) indicates
the estimated dimension of feature that is far less than the
dimension product of the concatenated feature dc and fused
feature d f us .

As depicted in Fig.1, we also append a domain discriminator
D2 into the framework, to guide the fused feature aggregation
via GRL and align the instance distribution between domains
progressively. The adversarial loss of D2 can be defined
as Eq.9:

L D2 = − 1

Ns

Ns

i=0 (i,r)

log
(

D2

(
f (i,r)

f us

)
S

)

− 1

Nt

Nt

i=0 i,r

log(1 − D2

(
f (i,r)

f us

)
T

) (9)

D. Loss Function

The loss funtion of DA-RDD includes detection loss
Ldet and domain adaptation loss Lda . As mentioned above,
the detection loss Ldet comprises Lcls and Lreg for both
RPN and RoI classifier branches, where Lcls utilizes binary
cross-entropy function and Lreg adopts the smooth-L1 loss.
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TABLE I
RESULTS ON DOMAIN ADAPTATION FROM JAPAN TO INDIA (JAIN-DA). 

PERFORMANCE IS EVALUATED BY THE MEAN AVERAGE PRECISION

(m AP ) AT THE THRESHOLD OF 0.5 ACROSS 4 DAMAGE CAT-
EGORIES (D00, D10, D20 AND D40). NOTED TH AT Oracle

REFERS TO THE MODEL IS TRAINED AND TESTED ON THE

SAME LABELED OR SOURCE DOMAIN

Meanwhile, the domain adaptation loss consists of L D1 and
L D2 . The whole loss L can be formulated as Eq.10: where λ
denotes the balanced parameter.

L = max
D1,D2

min
G1,G2

Lrpn + Lroi − λ L D1 + L D2 (10)

IV. EXPERIMENTS

This section would evaluate the adaptation performance
of DA-RDD on different pavement distress datasets. Also,
ablation studies are performed to explore the contribution
of each component. Besides, we build up RDD2021 with
100k composite labeled images, to investigate large-scale road
damage detection performance.

A. Implementation Details

All experiments are implemented on the Ubuntu1804 LTS
with PyTorch framework, using a single NVIDIA TITAN RTX
GPUs. For simplicity, we evaluate the model performance
on 4 distress classes (D00, D10, D20 and D40), and adopt
mean average precision (m AP) under the threshold of 0.5,
unless specific stated. In this work, the domain adaptation
performance of DA-RDD across different countries, and the
detection performance various detectors (i.e., Faster RCNN
and YOLOv5) on the large-scale road damage dataset are
extensively investigated, which would be described in details.

1) Domain Adaptation Task: The DA-RDD model is based
on Faster RCNN [8] framework with a pretrained ResNet101
[7] on ImageNet as the feature backbone, and we follow the
parameter settings in previous works [26, 34, 35, 47]. It is
highlighted that we select the output of conv2 x , conv3 x ,
and conv4 x layers in ResNet101 backbone as three-level
contextual features f 1

c , f 2
c , and f 3

c , respectively. The model
is optimized by stochastic gradient descent (SGD), with
0.001 initial learning rate, 0.9 momentum and 0.0005 weight
decay parameters.

During model training, data augmentation technique, e.g.,
image flipping, rotation, translation, is adopted to enhance the

Fig. 5. Samples on RDD2021. We crop the damage patch from RDD2020,
and generate the synthetic data via CycleGAN [24], which is further merged
into an undamaged image using Poisson Blending (PB).

model robustness. Due to the unlabeled test data, we only con-
sider the training samples on RDD2020 and CN2021, and split
the RDD2020 into Japan2020, India2020, and Czech2020,
respectively, as elaborated in Fig.3. For domain adaptation
experiments, Japan2020 is only utilized as the source data,
which is roughly divided into 9506 training and 1000 vali-
dation samples with the proportion of 9 : 1. Generally, cross-
domain road damage detection tasks are illustrated as follows:

Japan2020→India2020 (JaIn-DA) We adopt Japan2020
as the source domain and India2020 as the target domain.
Specifically, the DA-RDD is trained on 9506 training data
and evaluated on 1000 val images with 100 epochs, and we
test it on India2020 with 7706 labeled samples to explore the
adaptation performance of model across different countries.

Japan2020→Czech2020 (JaCz-DA) Japan2020 and
Czech2020 are utilized as the source set and the target set,
respectively. Similarly, we train and validate the model on
Japan2020 with 80 epochs, and further evaluate the detection
accuracy on 4 damage categories of DA-RDD when adapting
to Czech2020.

Japan2020→CN2021 (JaCn-DA) The generalization of
DA-RDD is also explored between Japan2020 and CN2021.
Notably, we make some changes in category name from
Japan2020 to CN2021: D00&D10 → Crack, D20 → Net ,
D40 → Pothole, and D43&D44 → Marking, respectively;
others are ignored. The model is trained and verified on
Japan2020 data with 80 epochs, and we assess the domain
adaptation of DA-RDD from Japan to China.

2) Large-Scale Damage Detection Task: Based on
RDD2020, a large-scale road damage dataset named
RDD2021 is constructed with 100k labeled pavement distress
images generated by CycleGAN. Then, we further adopt the
prevalent two-stage Faster RCNN and one-stage YOLOv5 to
evaluate the large-scale damage detection performance. Noted
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TABLE II

RESULTS ON DOMAIN ADAPTATION FROM JAPAN TO CZECH
(JACZ-DA). PERFORMACE IS EVALUATED BY THE MEAN AVERAGE

PRECISION (m AP ) AT THE THRESHOLD OF 0.5 ACROSS 4 DAMAGE

CATEGORIES (D00, D10, D20 AND D40). NOTED THAT Oracle
REFERS TO THE MODEL IS TRAINED AND TESTED ON THE

SAME LABELED OR SOURCE DOMAIN

that the official RDD2020 evaluation server has been closed,
and currently, it is unable to make a reason comparison with
counterparts under the standard setting on the leaderboard.
For simplicity, we randomly select 1000, 700 and 300 samples
from Japan2020, India2020 and Czech2020, respectively,
which are only utilized for model evaluation.

RDD2021 As mentioned above, CycleGAN has the pow-
erful capability of image-to-image translation, and we indi-
vidually utilize it for road damage image generation. Notably,
we only consider 4 main classes (D00, D10, D20 and D40)
for Japan2020, India2020 and Czech2020, respectively.

Taking class D00 on Japan2020 and India2020 as example,
we extract the crack box from each image and resize to the
fixed 128 ×128 patches, marked as Japan2020 D00. Similar
process is also conducted on another three categories for
each country. Subsequently, a pair of patches with the same
class, e.g., Japan2020 D00 and India2020 D00, is fed into
CycleGAN for damage sample generation. We further reshape
the synthetic patch back into the real size according to the
known coordinate provided by Ground-Truth box (GT box),
and merge it into the corresponding original image via Poisson
Blending (PB) [57]. Consequently, the old distress would be
covered by a new synthesis, and a realistic crack sample could
be created for augmenting the data diversity. It is highlighted
that the key insight of PB algorithm is to keep the image
gradient when inserting an image to another one, resulting in
a high-quality synthetic image [47].

As tabulated in Fig.3, RDD2021 totally contains 100k
labeled synthetic images across different countries, with 40k
for Japan2021, 30k for India2021, and 30k for Czech2021,
respectively. We observe the extremely imbalanced problem in
RDD2020, such as only 89 samples in India2020 D10 and
211 Czech2020 D20 images. Therefore, we generate more
instances for these rare damages, and class-imbalanced prob-
lem has been alleviated significantly on the RDD2021. The
generated samples on RDD2021 can be seen in Fig.5.

Road Damage Detectors We adopt two common object
detectors to evaluate the large-scale road damage detection

TABLE III

RESULTS ON DOMAIN ADAPTATION FROM JAPAN TO CHINA (JACN-DA).
PERFORMACE IS EVALUATED BY THE MEAN AVERAGE PRECISION

(m AP ) AT THE THRESHOLD OF 0.5 ACROSS 4 DAMAGE CATE-
GORIES (Crack, Net , Pothole, AND Marking). NOTED THAT

Oracle REFERS TO THE MODEL IS TRAINED AND TESTED
ON THE SAME LABELED OR SOURCE DOMAIN

TABLE IV

ABLATION STUDY ON EACH COMPONENT OF DA-RDD ADAPTED FROM
JAPAN TO INDIA (JAIN-DA). PERFORMACE IS EVALUATED BY THE

MEAN AVERAGE PRECISION (m AP ) AT THE THRESHOLD OF 0.5
ACROSS 4 DAMAGE CATEGORIES (D00, D10, D20 AND D40).

NOTED THAT W.INTER-DO AND W.IMWEIGHT DENOTE
INTERMEDIATE DOMAIN AND IMPORTANCE WEIGHT,

f ∗
c

⊗
AND f ∗

c
⊕

DEFINE CONTEXT INFORMA-
TION AT DIFFERENT LEVELS AND ROI FEATURE

INTERACTION

performance. Faster RCNN is a two-stage detection method
widely utilized for object detection task, and we train it on
RDD2020 and RDD2021 with 80 epochs under the default
settings [12], respectively. As an efficient one-stage detector,
YOLOv5 presents on par with two-stage detection accuracy
at real-time inference speed. More technical details can refer
to [19], and likewise, it is trained with 100 epochs on two
datasets to evaluate the damage detection performance.

B. Domain Adaptation Performance

We compare the proposed DA-RDD to the four domain
adaptative detectors, e.g., DA-Faster RCNN (DA-Faster) [29],
Strong-weak Distribution Alignment (SWDA) [35], Progres-
sive Domain Adaptation Faster RCNN (P-Faster) [36], as well
as Uncertainty-aware Domain Adaptation (UaDA) [37],
to evaluate the cross-domain road damage detection perfor-
mance. All methods are trained on the source Japan2020,
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TABLE V

LARGE-SCALE ROAD DAMAGE DETECTION RESULTS ACHIEVED BY YOLOV5 AND FASTER RCNN ON RDD2020 AND RDD2021. PERFORMACE IS
EVALUATED BY THE MEAN AVERAGE PRECISION (m AP ) AT THE THRESHOLD OF 0.5 ACROSS 4 DAMAGE CATEGORIES (D00, D10, D20 AND

D40). NOTED THAT THE RED BOLD FONT DENOTES THE m AP GAINS ON EACH CLASS BETWEEN RDD2020 AND RDD2021

Fig. 6. Domain adaptation results for JaIn-DA, JaCz-DA and JaCn-DA. For comparison, we list the Ground-Truth box (GT box), and the detection results
achieved by F-RCNN (Fater RCNN without adaptation), DA-RDD and Oracle methods in each column, respectively. Clearly, DA-RDD presents significant
adaptation performance on par with or closed to the Oracle, even in such difficult environment with varying illuminations and layouts. Best viewed in color.
(Noted that differences in image size between countries, i.e., 600 × 600 in RDD2020 and 1920 × 1080 for CN2021, lead to the predicted box with various
thickness).

and we report the domain adaptative road damage detection
performance on the target domain. Notably, the F-RCNN
indicates the trained model directly transfers to the target

domain without adaptation methods, while the Oracle implies
the model is trained and tested on the same labeled or source
domain, e.g., trained on Japan2020 and tested on Japan2020.
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Fig. 7. Visualizations on RDD2020 and RDD2021, respectively. For each row, we present the Ground-Truth box (GT box), the predicted boxes on RDD2020
and RDD2021 achieved by YOLOv5 [19] and Faster RCNN [12]. Obviously, the model suffers from low-confidence predictions or false negatives due to the
scarce of sample on RDD2020, while RDD2021 provides a large amount of damage types and appearances, facilitating the more accurate and robust detection
performance. Best viewed in color.

JaIn-DA Results As tabulated in Table I, our method shows
the compelling domain adaptation performance with the m AP
of 0.5958, which surpasses all comparisons by a substantial
margin. DA-RDD provides at least doubled detection accu-
racy gains over the baseline F-RCNN, and more importantly,
it fairly outperforms the Oracle on the D00 (0.6556 vs.

0.6038) and D40 (0.6204 vs. 0.6127) categories, as well as the
m AP metric (0.5958 vs. 0.5886). The remarkable adaptation
performance gains indicate the effectiveness and supriority of
the proposed method.

JaCz-DA Results Table II lists the adaption results between
Japan and Czech. It is observed that DA-RDD also achieves
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better cross-domain performance than other adaptation meth-
ods, e.g., 0.5535 (DA-RDD) vs. 0.4079 (UaDA). Moreover, 
it is inferior to the Oracle method by 0.0155 m AP , despite 
a slight improvement is reported on the D20 class (0.5050 vs. 
0.5048). Generally, DA-RDD exhibits the considerable robust-
ness to a new challenging environment, and generalizes 
well to the unseen scenario with the marginal performance 
degradation.

JaCn-DA Results It is much difficult to detect the road 
damage because of the severe class-imbalanced problem in 
CN2021. As demonstrated in Table III, F-RCNN reports poor 
m AP  performance particularly in Net  (0.0624) and Pothole  
(0.1256), due to the scarce of damage sample. DA-RDD signif-
icantly facilitates the baseline in all evaluation metric, and still 
offers the outstanding boosts over other adaptation methods. 
Furthermore, the performance of DA-RDD approaches to the 
Oracle with only 0.025 m AP  apart (0.5651 vs. 0.5901), 
which further suggests the unversality and generalization.

Finally, domain adaptation results across different countries 
are visualized in Fig.6. For simplicity, we refer to the ground-
truth box (GT box), and list the predictions achieved by 
F-RCNN (Faster RCNN without adaptation), DA-RDD and 
the Oracle methods. Intuitively, DA-RDD shows the signifi-
cant cross-domain road damage detection performance on par 
with or closed to the Oracle, particularly in the challenging 
scenarios with different illuminations and layouts.

C. Ablation Study

Further, ablation studies are conducted to investigate the
effect of each component on domain adaptation. For simplicity,
all ablation experiments are performed on the adaptation
from Japan to India (JaIn-DA). We adopt F-RCNN [12] as
the baseline, and introduce image-level and instance-level
feature alignment methods to measure the performance gain,
respectively.

1) Image-Level Feature Alignment: We incorporate the
baseline F-RCNN with an intermediate domain (Inter-Do)
and importance weighting (ImWeight) strategy. As shown in
Table IV, Inter-Do substantially improves the baseline by
0.2007 m AP (0.1989 → 0.3996), especially 0.2503 AP gains
in D10, demonstrating the superiority of interpolated feature
space. It bridges the domain gap between the source and
the target features, and alleviates the difficulty of adaptation
task. Besides, ImWeight receives a considerable m AP boost
(0.3996 → 0.4688), which suggests the discriminative feature
is beneficial to cross-domain feature alignment.

2) Instance-Level Feature Alignment: Based on image-level
feature alignment, we further consider contextual feature ( f ∗

c )
at different scales and RoI feature interaction (

⊗
or

⊕
)

method. As listed in Table IV, concatenating low-level context
information, e.g., f 1

c and f (1,2)
c , with RoI feature can sig-

nificantly facilitate the adaptation performance, with 0.0678
(0.4688 → 0.5366) and 0.0301 (0.5366 → 0.5667) m AP
improvements respectively. It is reasonable that more object
details, i.e., color and shape, can be exploited in the shal-
low layer to recover the damage instance. More importantly,
results in the last columns claim that tensor product is more

effective for RoI feature interaction when aggregating with
contextual representations at three resolutions (0.5958 vs.
0.5740). In general, ablation studies verify the effectiveness
and advancement of proposed methods in domain adaptation
task.

D. Large-Scale Damage Detection Performance

Additionally, large-scale road damage detection using
YOLOv5 [19] and Faster RCNN [12] detectors are performed
on RDD2020 and RDD2021, and remarkable detection per-
formance gains on RDD2021 can be shown in the Table V.

In each row, we observe considerable performance incre-
ments in both two methods between different datasets. Specif-
ically, YOLOv5 receives 0.1869 ∼ 0.3206 m AP boosts
from 4 distress classes, meanwhile Faster RCNN reports
0.1 m AP gains on average on RDD2021. For each column,
Faster RCNN always presents much better performance in all
damage categories on both RDD20220 and RDD2021, such
as 0.3282 m AP (YOLOv5) vs. 0.6687 m AP (Faster RCNN)
on RDD2020 D00, 0.3662 m AP (YOLOv5) vs. 0.7330 m AP
(Faster RCNN) on RDD2021 D10. More visualization results
can refer to the Fig.7. Generally, the substantial detection
performance improvements on various crack types for different
methods demonstrate the effectiveness and superiority of large-
scale road data, and we expect RDD2021 would facilitate the
empirical studies on road damage detection in the future.

V. CONCLUSION

In this paper, we firstly incorporate unsupervised domain
adaptation (UDA) with crack identification, and propose
DA-RDD for cross-domain road damage detection. To be spe-
cific, image-level feature alignment across different domains is
developed with an intermediate space and feature importance
weighting, and instance-level feature alignment further aggre-
gates RoI feature with multi-scale contextual information to
recover the instance details for progressive data distribution
alignment between domains. Extensive domain adaptation
experiments are conducted on four countries from RDD2020
and CN2021. DA-RDD reports compelling and advanced
adaptation performance on par with or closed to the full
supervision Oracle method, and provides substantial perfor-
mance gains over the baseline without adaptation and other
counterpart methods by a significant margin, indicating its
effectiveness and superiority. Additionally, we further develop
a large-scale road damage detection dataset (based on Road
Damage Dataset 2020 (RDD2020) [1]) termed as RDD2021,
that comprises 100k synthetic images with bounding-box
annotations on 4 main crack categories. Empirical studies
demonstrate the massive pavement distress data can signifi-
cantly facilitate the road damage detection performance.

In the future, we attempt to develop more effective and
efficient domain adaptation in the context of road damage
detection, and further explore feature alignment method for
universal cross-domain detection. Furthermore, more pave-
ment images would be generated to augment the rare crack
type, i.e., D01, D11, and we expect the large-scale road
damage dataset is beneficial to the development of related
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works. Last but not least, more efforts on extensive domain
adaptative tasks would be also investigated based on the
proposed intermediate domain and feature adversarial learning
strategies.
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