Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control

Mallik, W. and Santra, S. (2020) Mitigation of vortex-induced vibration lock-in using time-delay closed-loop control. Nonlinear Dynamics, 100(2), pp. 1441-1456. (doi: 10.1007/s11071-020-05589-4)

Full text not currently available from Enlighten.

Abstract

We investigate the closed-loop control of a circular cylinder showing lock-in phenomena due to vortex-induced vibrations (VIV). The control action was implemented by a sampled-data proportional-integral-derivative (PID) controller to suppress the large amplitudes due to lock-in. The controller was first applied to a linearized system to observe its stability characteristics based on the eigenvalues of the system. Another method was also proposed, which employs a novel, time-dependent Lyapunov function that is positive definite at sampling times but not necessarily between the sampling times. A new set of sufficient conditions in terms of linear matrix inequalities is derived to obtain the sampled-data PID control gains for the VIV system. The PID controller tuned with these gains for various delays was applied to control the nonlinear responses of the circular cylinder during the lock-in. The results showed that the PID controller significantly reduced the rise in lock-in amplitude compared to only proportional control and for certain delays was able to completely mitigate the effects of lock-in. It was also observed that for delays ranging from 0.1 to 0.14 s, the nonlinear system was destabilized with increasing proportional gains as indicated by the eigenvalue analysis of the linearized system. Even under such situations, properly tuned integral and derivative gains could significantly reduce the amplitude rise otherwise observed due to lock-in of the uncontrolled system. Finally, an on-off control scheme was also proposed, which, if optimized properly, can restrict the lock-in amplitude to some prescribed limit by only using the control for some fraction of the total operational time. Thus, it can potentially save control power.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Mallik, Dr Wrik
Authors: Mallik, W., and Santra, S.
College/School:College of Science and Engineering > School of Engineering > Autonomous Systems and Connectivity
Journal Name:Nonlinear Dynamics
Publisher:Springer
ISSN:0924-090X
ISSN (Online):1573-269X

University Staff: Request a correction | Enlighten Editors: Update this record