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Abstract

Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family:
Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and
evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting
immunity with one single immunization.
Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate
the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the
viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses
across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown
to reduce transmission by mosquitoes.
Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in
intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633
strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the
2delCVV mutant was reduced by more than a 100-fold.
Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally
design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk
of reversion to virulence and transmission.
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Introduction

The Orthobunyavirus genus contains several human
and animal pathogens. One emerging virus in this genera

is Cache Valley virus (CVV), which is a zoonotic orthobu-
nyavirus that causes abortions and teratogenic effects in large
animals and rare but severe encephalitis in humans (Camp-
bell et al, 2006; Nguyen et al, 2013; Sexton et al, 1997;
Wilson et al, 2017; Yang et al, 2018). CVV has been iso-
lated from several mosquito species and animals such as

Aedes, Anopheles, Coquillettidia, Culiseta, Ochlerotatus,
and Psorophora (Andreadis et al, 2014; Yang et al, 2018) and
cattle, sheep, and caribou (Calisher et al 1986). Serological
evidence of potential infections has also been found in horse,
elk, and white-tailed deer (Calisher et al, 1986).

Although CVV has caused significant agroeconomic los-
ses, no research has truly investigated the economic burden
from the disease (Lopez et al, 2021). Currently, there are
no licensed vaccines commercially available for the con-
trol of CVV in animals or humans. As observed with several
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viral diseases, live-attenuated vaccines (LAVs) are the most
effective tool for disease control (Davis et al, 2019). This is
because many LAVs can potentially elicit a long-lasting
protective immunity with one single immunization such as
the yellow fever (YF) 17D LAV (Collins and Barrett, 2017).

A live-attenuated candidate vaccine for CVV was evalu-
ated in this study to not only aid in the event of an outbreak
but also to advance our knowledge in vaccine development
for other related bunyaviruses. Because all orthobunya-
viruses are evolutionarily related and possess common motifs
encoded by shared sequences, the attenuation process of
CVV caused by genetic deletions can be a proof of concept
for the development of candidate LAV for other related
viruses such as La Crosse virus. The gene deletions are
hypothesized to attenuate the virulence phenotype of CVV,
thus restricting the vaccine viruses’ ability to replicate in
mosquitoes.

Most live-attenuated arbovirus vaccines with excellent
safety profiles have been shown to lose the ability to infect
and replicate in mosquitoes to prevent the possible trans-
mission due to the deployment of LAVs in the field (Monath
et al, 2020). For example, two highly effective LAVs for
arboviruses, YF 17D vaccine and Japanese encephalitis
SA14-14-2 vaccine, are unable to replicate and disseminate
in mosquitoes (Chen and Beaty, 1982; Danet et al, 2019). In
contrast, vaccine strains that did not reach a safe level of
attenuation can often infect, multiply, and disseminate in
mosquitoes.

One example of this was the Venezuelan equine enceph-
alitis virus LAV TC-83, which is capable of infecting biting
mosquitoes after equine vaccination (Pedersen et al, 1972).
Similarly, the partially attenuated Rift Valley fever virus
(RVFV) Smithburn LAV was transmitted by Culex pipiens
and caused outbreaks in Egypt, which demonstrates the risk
for vaccine viruses to mutate and ultimately revert to the vir-
ulence phenotype (Ahmed Kamal, 2011; Kamal et al, 2018).

The attenuated phenotype of LAVs for flaviviruses and
alphaviruses in mosquitoes has been investigated in multiple
systems (Davis et al, 2022; Gorchakov et al, 2012; Kaiser
et al, 2019a; Kaiser et al, 2019b; McElroy et al, 2008;
McElroy et al, 2006; McElroy et al, 2005; Plante et al, 2015;
Rossi et al, 2020; Wang et al, 2017), whereas there is a major
gap in knowledge of the attenuation process of bunyaviruses
in mosquitoes. Specific genetic loci that govern the infection
process of bunyaviruses across multiple genera are not well
understood, warranting the investigation of the attenuated
phenotype of CVV caused by the simultaneous deletion of
the NSs and NSm genes.

To date, the virulence phenotype of multiple orthobunya-
viruses, including Bunyamwera virus (BUNV) and Schmal-
lenberg virus (SBV), has been attenuated by the deliberate
removal of virulence factors in the viral genome (Kraatz et al,
2015; Szemiel et al, 2012). The orthobunyavirus genome
consists of three negative-sense RNA segments, small (S),
medium (M), and large (L), which code for various struc-
tural and nonstructural (NS) proteins (Hughes et al, 2020).
Orthobunyaviruses have two known virulence factors, the
NSs gene encoded in the S segment and the NSm gene
encoded in the M segment (Elliott, 2014).

Deletion of either virulence factor was previously suffi-
cient for virulence attenuation, as demonstrated with BUNV,
the prototype orthobunyavirus (Bridgen et al, 2001; Szemiel

et al, 2012). The simultaneous deletion of NSs and NSm
genes fully attenuated the virulence phenotype of SBV, an
emerging orthobunyavirus, in immunocompromised mice
(Kraatz et al, 2015). In addition, in a previous study, we
demonstrated that sheep inoculated with the candidate vac-
cine 2delCVV, lacking the NSs and NSm genes, developed a
robust neutralizing antibody response with titers that would
likely protect them from infection with wild-type CVV
(wtCVV) (Ayers et al, 2022).

Previously, Seligman and Gould (2004) raised concerns
regarding the potential for arbovirus LAVs to infect mos-
quitoes. Herein, we determine the capacity of a candidate
CVV LAV strain that lacks the virulence factor NSs and NSm
genes (2delCVV) to replicate in mosquitoes as compared
with the CVV 6V633 wild-type strain. In a previous study,
CVV did not require NSs to support replication in mosquito
cell lines Aag2, similar to the deletion of NSm in Oropouche
virus; therefore, attenuation of CVV in mosquitoes may be
possible through the simultaneous deletion of NSs and NSm
(Dunlop et al, 2018; Tilston-Lunel et al, 2015). The dele-
tion of the virulence factors has also reduced the ability of
RVFV to enter, replicate, and disseminate from the midgut
epithelial cells (Kading et al, 2014). In addition, the atten-
uated phenotype of BUNV NSs deletion mutant has also
included the reduced multiplication kinetics in infected mos-
quitoes (Szemiel et al, 2012).

We have previously shown that Aedes (Ae.) albopictus and
Culex (Cx.) tarsalis are competent vectors for CVV (Ayers
et al, 2019; Ayers et al, 2018). Ae. albopictus has a broader
geographic distribution throughout North America and has
recently been found to be infected with CVV in New York
State, potentially indicating a northeastern U.S. expansion in
the range of this virus (Dieme et al, 2022; Kamal et al, 2018).

Therefore, Ae. albopictus mosquitoes are considered an
important vector for the endemic transmission of CVV and
an appropriate model system to study the attenuating effect
caused by the simultaneous deletion of NSs and NSm.
Because the multiplication kinetics of 2delCVV is signifi-
cantly reduced and does not reach the threshold infectivity
required for mosquito per os infection (data not shown), Ae.
albopictus were intrathoracically inoculated with either
CVV 6V633 or 2delCVV to investigate the replication kinet-
ics by bypassing the viral entry process. Our results demon-
strated that the double deletion mutant of CVV displayed
an attenuated phenotype based on the lower multiplication
kinetics when compared with the wild-type 6V633 CVV
strain.

Materials and Methods

Cells and viruses

The prototype 6V633 strain of CVV, originally isolated
from infected Culiseta inornata in Cache Valley, Utah, in
1956 (Holden and Hess, 1959), was used as the wild-type
virus for the intrathoracic inoculation. The strain was
obtained from the laboratory collection of Dr. Richard M.
Elliot (Watret et al, 1985). In a previously published study,
the sequences of all three genomic segments were deter-
mined (GenBank acc. nos. KX100133.1, KX100134.1, and
KX100135.1) (Groseth et al, 2017). Virus stocks were prop-
agated and titered in African green monkey kidney epithelial
Vero 76 cells that were maintained in Leibovitz’s L-15 media
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(Thermo Fisher Scientific, Waltham, MA) supplemented
with 10% fetal bovine serum, 10% tryptose phosphate broth,
penicillin/streptomycin, and l-glutamine (Ayers et al, 2019;
Ayers et al, 2018; Huang et al, 2015). The 2delCVV candidate
vaccine was created using the same methods as previously
described (Ayers et al, 2022; Dunlop et al, 2018).

Mosquitoes and challenge

Intrathoracic injection of mosquitoes was performed
with 7- to 10-day-old Ae. albopictus (F4), which were
derived from eggs collected from the city of Trenton,
Mercer County, NJ, in July 2016. Mosquitoes were reared
at 28�C, relative humidity of 80%, and a 12 h light:12 h
dark photoperiod.

For intrathoracic inoculation, mosquitoes were cold anes-
thetized and inoculated with *0.5 lL of either the CVV
6V633 strain or the 2delCVV strain, as previously described
(Huang et al, 2020). The experimentally challenged mos-
quitoes were maintained at conditions as described earlier
for 7 days. Up to three mosquitoes were collected after injec-
tion and titrated to confirm the presence of infectious viruses.
Intrathoracically inoculated mosquitoes were then collected
by mechanical aspiration at 7 days postinfection (dpi) for
analysis.

Detection of infectious viruses

Infection status of each mosquito was determined by the
detection of CVV using the tissue culture infectious dose
50% (TCID50)-based titration method with Vero76 cells, as
previously described (Ayers et al, 2019; Higgs et al, 2006;
Huang et al, 2015). Infectivity of mosquitoes was used to
determine the infection rate and multiplication kinetics of
the wtCVV 6V633 strain and the 2delCVV strain. Infection
rates were then calculated using the percentage of infected
mosquitoes among all mosquitoes tested at each time point.
Growth kinetics of CVV in infected mosquitoes was deter-
mined based on the titers of CVV in the whole mosquitoes
at 7 dpi.

Statistical analysis

The infection rate percentages were compared using chi-
squared test with Yate’s correction. Titers of infected mos-
quitoes were compared with Mann–Whitney rank sum test
between the two groups with the infectious titers after non-
normal distribution. All statistical analyses were conduc-
ted using GraphPad (San Diego, CA) and Excel software
(Redmond, WA).

Results

As expected, intrathoracic injection with either the CVV
6V633 strain or the 2delCVV candidate vaccine led to the
establishment of infection in Ae. albopictus. There was no
significant difference in the infection rates produced by
2delCVV and the CVV 6V633 strain at 7 dpi (CVV 6V633:
83.1% [49/59] vs. 2delCVV: 97.5% [39/40], chi-squared
test with Yates’s correction: w2 = 3.682, df = 1, p = 0.0550)
(Table 1). Mosquitoes injected with the 2delCVV candidate
vaccine had significantly lower infectivity at 7 dpi than mos-
quitoes infected with wtCVV (CVV 6V633: 6.0 log10T-
CID50/mL vs. 2delCVV [median titer]: 3.5 log10TCID50/mL;

Mann–Whitney test: U = 75.5, p < 0.0010) (Fig. 1). In con-
clusion, the deletion of NSs and NSm genes significantly
reduces the multiplication kinetics of CVV in mosquitoes.

Discussion

The development of safe and immunogenic LAVs for
emerging bunyaviruses with minimal potential to revert to
the virulence phenotype has become a priority for human
and animal health in multiple geographic regions. It is also
important that the bunyavirus LAVs exhibit reduced infec-
tion, dissemination, and multiplication kinetics in mosqui-
toes, preventing mosquitoes from transmitting vaccine
viruses to livestock or humans. Data generated in this study
demonstrated that the 2delCVV vaccine candidate was res-
tricted in its replication in intrathoracically inoculated Ae.
albopictus compared with the CVV 6V633 wild-type strain.

Along with the reduced multiplication kinetics of the
2delCVV strain in the vertebrate host SFT-R cells (Dunlop
et al, 2018), this candidate CVV LAV has a lower potential of

Table 1. Comparison of Infection Rates in Aedes

albopictus Mosquitoes Intrathoracically

Injected with CVV 6V633 or 2delCVV

Group Mosquitoes tested 7 dpi

CVV-6V633 59 83.1% (49/59)
2delCVV 40 97.5% (39/40)

CVV, Cache Valley virus; dpi, days postinfection.

FIG. 1. Titers of CVV in Aedes albopictus at 7 dpi.
A Mann–Whitney test was used to compare the viral titers
between the two groups of mosquitoes (****p < 0.001). The
maximum and minimum values are displayed by the vertical
lines connecting the largest and smallest viral titer in the
data set. The horizontal bar represents the median titer of
whole mosquitoes. CVV, Cache Valley virus; dpi, days
postinfection.
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transmission by mosquitoes, similar to the attenuated phe-
notype of the YF 17D vaccine strain in Ae. aegypti. It is
important to note that the simultaneous deletion of NSs and
NSm genes has been proven to significantly impair the
multiplication kinetics of CVV and related orthobunya-
viruses in vertebrate hosts (Bridgen et al, 2001; Kraatz et al,
2015). The likelihood of 2delCVV to multiply to high vire-
mic titers is low.

The low multiplication kinetics of 2delCVV in mos-
quitoes observed in this study further suggests the utility
of the 2delCVV mutant as a candidate vaccine. In the
unlikely but possible event that a mosquito acquires vire-
mic bloodmeal containing the 2delCVV in nature, the low
multiplication kinetics will limit the dissemination and
minimize the likelihood of transmission. In addition, the
yield of progeny virions is low and consequently can fur-
ther reduce the risk of reassortment between the 2delCVV
and wtCVV.

Although the YF 17D vaccine was able to infect mosqui-
toes, it was unable to disseminate to the secondary tissues
and failed to transmit to a novel host (Danet et al, 2019).
This suggests that the midgut escape barrier and the midgut
infection barrier restrict this LAV from replication and
transmission. Similarly, Ae. aegypti and Ae. albopictus were
orally challenged with ChimeriVax vaccine candidates and
resulted in such low titers that it would be unlikely for these
mosquitoes to facilitate transmission (Higgs et al, 2006).
Restriction of 2delCVV was observed in this study.

But the detailed mechanism(s) of attenuation remains
undefined. The most plausible hypothesis is that the simul-
taneous deletion of NSs and NSm interferes with the virus–
vector interactions required for multiplication of CVV after
the establishment of infection in mosquitoes. Furthermore, it
is unlikely that the 2delCVV mutant is defective in the cell
entry process because the 2delCVV mutant has the same
coding sequence for the two structural proteins and showed
no demonstrable difference in the infection rate compared
with the parental wild-type 6V633 strain.

The findings in this study also suggest the NSs and NSm
genes are necessary for efficient growth in Aedes species
mosquitoes. The specific role of NSs and NSm in mosquitoes
still needs to be defined since NSs is not essential for viral
growth in cell culture and NSm has been hypothesized to
be dispensable for virus replication in mosquito cell lines
(Elliott, 2014; Tilston-Lunel et al, 2015). Although unnec-
essary for viral growth in cell lines, the presence of these
genes suggest they are necessary to overcome the cellular
defenses in the midgut. In a previous study, the deletion of
NSs in BUNV was unable to bypass the cellular defenses;
however, when these barriers were overcome the vaccine
viruses were capable of spreading to the secondary tissues
and salivary glands (Szemiel et al, 2012).

More recently, a human vaccine candidate for RVFV
lacking the NSm gene was unable to infect, replicate, or be
transmitted by multiple mosquito species (Campbell et al,
2022). Therefore, the NSs and NSm genes appear to be
required for the efficient replication of bunyaviruses in mos-
quitoes. In conclusion, 2delCVV exhibited an attenuated
phenotype in mosquitoes through the reduced replication
kinetics observed when compared with the wild-type strain
and this attenuated phenotype reflects the functions of the
NSs and NSm genes.
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