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Editorial on the Research Topic

Cardiac optogenetics: Using light to observe and excite the heart

This is the editorial to the special edition “Cardiac optogenetics: using light to observe

and excite the heart.

The application of fluorescent voltage sensitive dyes to study excitable cells was

established 50 years ago (Tasaki et al., 1969) but only recently has chemical and imaging

technology developed sufficiently for its mainstream use. In contrast, the field of cardiac

optogenetics was established only a decade ago by publications demonstrating light-

mediated excitation of the heart in mice (Bruegmann et al., 2010), zebrafish (Arrenberg

et al., 2010) and cardiomyocytes in vitro (Abilez et al., 2011; Jia et al., 2011). Ever since, the

subject of optogenetics has expanded to encompass a number of different applications.

Early translational approaches considered light-mediated cardiac resynchronization

therapy (Nussinovitch and Gepstein 2015), defibrillation (Bruegmann et al., 2016;

Crocini et al., 2016; Nyns et al., 2017) and cardioversion (Bruegmann et al., 2018;

Nyns et al., 2019). In this regard, Diaz-Maue et al. developed a mesh of electrodes and

LEDs to correlate electrical rotor activity during arrhythmias with defibrillation efficacy of

optogenetic stimulation and Patrick Boyle’s group explored in simulations the use and

application of anion conducting channelrhodopsins (Ochs et al.). While leading also to

depolarization in cardiomyocytes (Kopton et al., 2018), the much larger ion conductance

improved the efficiency of optogenetic defibrillation, which is an intriguing result directly

demanding experimental verification. State-of-the-art solutions for one of the biggest

hurdles of translation, the development of implantable light devices has been expertly

summarized and thoughtfully discussed by Igor Efimov’s group in this issue (Madrid

et al.).
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One big advantage of optogenetic stimulation is the cell type-

specific expression providing not only the chance for pain-free

stimulation but also to characterize the specific role of different

cell types by cell type-specific (e.g. ventricular cardiomyocytes

versus Purkinje fibers) stimulation (Zaglia et al., 2015; Hulsmans

et al., 2017; Wang et al., 2017) as well as imaging (Quinn et al.,

2016) within the heart. In this context, Zaglia and Mongilo have

expertly summarized new developments of optogenetic

stimulation to assess the function and role of the intracardiac

nervous system (Scalco et al.), emphasizing the heterocellular,

increasingly complex composition and functions of specific

cardiac tissues, and further raising the importance of

optogenetic strategies to explore these.

Moreover, the range of applications of voltage-sensitive dyes

combined with optogenetic stimulation in basic cardiovascular

research have been critically reviewed by a group of scientists

from the European Society of Cardiology Working Group for

Cardiac Cellular Electrophysiology (Mullenbroich et al.). The

review examines many of the novel techniques that optical

physics have provided to extend the use of optical probes and

actuators while also posing the next set of challenges to be

addressed to extend further the applicability of these

techniques. In this content, Jan Lebert and Jan Christoph

present new algorithms for the analysis of voltage imaging

with motion tracking stabilization to avoid the alterations of

cardiac electrophysiology by contraction inhibitors with

significant side effects (Lebert et al., 2022). Furthermore,

Wegener and colleagues took advantage of transgenic

biosensor mouse models to analyze the cytosolic and

mitochondrial glutathione redox potential in single

cardiomyocytes and the intact heart. Thereby they were able

to show that Ca2+ leak caused by a ryanodine receptor missense

mutation increases mitochondrial energy demand and ROS

production under conditions of catecholaminergic stress

(Wegener et al.). Finally, Philipp Sasse’s group expanded the

optogenetic toolbox for cardiac research demonstrating that the

human coneopsin allows to control Gi signaling in embryonic

stem cell derived cardiomyocytes (Cokic et al.). Thus, the three

canonical G-protein pathways of the heart (Makowka et al., 2019;

Wagdi et al., 2022) can now be investigated and their underlying

kinetics precisely determined.

Daniel Pijnappel’s group characterized potential long term

effects of optogenetic stimulation via channelrhodopsins (Ordog

et al.) and the groups of Christina Schüler and Leonardo Sacconi

developed new methods and platforms for cardiac toxicity

screening (Credi et al.; Engel et al.) which is one of the

evolving cardiac research fields in which the use of

optogenetic stimulation is becoming more and more standard

(Klimas et al., 2016; Lapp et al., 2017; Rehnelt et al., 2017).

Notably, the optical transparency of zebrafish and their rather

easy handling as animal model as well as fast generation and

genetic manipulation of transgenic animals, has led to their

increasing use to study heart function using optogenetics

(Baillie et al.), whereas intact hearts from mice and even

bigger animals have to be cleared for imaging of the cell

composition and structure (Olianti et al., 2022; Ren et al.).

In conclusion, this special issue is covering the broad range of

dye-based imaging and optogenetic applications in the heart and

the advances made in each branch of the subject by new technical

improvements and comprehensive reviews. We hope that we and

all contributors are able to trigger further interest in and advance

the use of optogenetic stimulation and imaging within the field of

cardiac research.
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