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A B S T R A C T   

Previous studies have evidenced how the local prediction of physical stimulus features may affect the neural processing of incoming stimuli. Less known are the 
effects of cognitive priors on predictive processes, and how the brain computes local versus cognitive predictions and their errors. Here, we determined the dif
ferential brain mechanisms underlying prediction errors related to high-level, cognitive priors for melody (rhythm, contour) versus low-level, local acoustic priors 
(tuning, timbre). We measured with magnetoencephalography the mismatch negativity (MMN) prediction error signal in 104 adults having varying levels of musical 
expertise. We discovered that the brain regions involved in early predictive processes for local priors were primary and secondary auditory cortex and insula, whereas 
cognitive brain regions such as cingulate and orbitofrontal cortices were recruited for early melodic errors in cognitive priors. The involvement of higher-level brain 
regions for computing early cognitive errors was enhanced in musicians, especially in cingulate cortex, inferior frontal gyrus, and supplementary motor area. Overall, 
the findings expand knowledge on whole-brain mechanisms of predictive processing and the related MMN generators, previously mainly confined to the auditory 
cortex, to a frontal network that strictly depends on the type of priors that are to be computed by the brain.   

1. Introduction 

According to predictive coding theory, audition is an active process 
where models of expectations for the incoming sounds are constantly 
updated based on expectations (also termed priors) when errors occur 
(Friston and Kiebel, 2009; Garrido et al., 2009). Recent neuroimaging 
studies provide empirical support for this theory with electroencepha
lography (EEG) or magnetoencephalography (MEG) recordings of the 
mismatch negativity (MMN), which indexes early predictive errors of 
acoustic features (i.e., deviations from prior expectations within the first 
120–250 ms from the onset of the deviant stimulation) (Näätänen et al., 
2007; Näätänen, 1995). These studies also substantiate the existence of 

ascending, forward connections in the auditory cortex that convey these 
prediction errors to higher-order brain areas, signalling the ‘new’ in
formation in external stimuli, and of backward connections from 
higher-order areas of the auditory cortex to predict the activity of 
lower-order areas (Koelsch et al., 2019; Wacongne et al., 2012). 

However, most studies that have measured the MMN do so for simple 
acoustic feature errors and analyze only the MEEG sensor signal and 
parameters: only a minority of MMN studies have provided a clear 
reconstruction of the neural sources. These studies returned a network of 
active brain areas that were mainly localized in the auditory cortex and 
especially in Heschl’s gyrus and the superior and middle temporal gyri 
(L. Bonetti, Bruzzone, et al., 2021; Fitzgerald and Todd, 2020; 
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Marco-Pallarés et al., 2005; Waberski et al., 2001). Additional, weaker 
generators of the MMN were localized in the inferior frontal cortex and 
cingulate gyrus (Fitzgerald and Todd, 2020; Marco-Pallarés et al., 2005; 
Waberski et al., 2001). Functional magnetic resonance imaging (fMRI) 
studies have further confirmed the involvement of superior temporal 
gyrus and right inferior and middle frontal gyri in the generation of the 
MMN (Molholm et al., 2005; Schall et al., 2003). Taken together, the 
current literature supports the hypothesis that auditory cortex is the 
main generator of the MMN elicited in response to errors of acoustic 
priors, with frontal generators also involved – perhaps in the process of 
involuntary “attention switching” and prior updating (Heilman & Van 
Den Abell, 1980; Kastner and Ungerleider, 2000; Korzyukov et al., 2003; 
Mesulam and Marchsel, 1981; Posner, 2016). 

Yet the predictive coding theory holds that forward and backward 
connections should also convey and predict, respectively, the cognitive 
features of stimuli beyond their low-level (e.g., acoustic) features 
(Friston, 2018; Friston and Kiebel, 2009; Koelsch et al., 2019). Within 
this framework, music listening is a peculiar case, involving the pre
diction of both lower-level acoustic features using knowledge (priors) 
accumulated from life-long exposure to all kinds of sounds and, at the 
same time, music-specific priors based on exposure to a specific musical 
culture (Brattico and Pearce, 2013a, 2013b; Koelsch et al., 2019). 
Together, these predictions allow us to detect changes and mistakes (e. 
g., in tonality, harmony, transposition, or rhythm) that make music 
either interesting and pleasurable or, conversely, boring, and dissonant. 
However, the brain areas that generate these cognitive prediction errors, 
and whether they differ from those underlying the MMNs for low-level 
acoustic features (i.e., by recruiting more frontal sources) are, thus far, 
open research questions. 

Despite the rich cognitive information contained in musical se
quences, most musical MMN experiments (including the fMRI ones) 
have used simple auditory oddball paradigms in which the acoustic 
features inserted in sequences of coherent sounds (e.g., pitch, rhythm, 
location, timbre) are broken by sudden, infrequent deviant sounds (Risto 
Näätänen, 2018; Risto Näätänen et al., 2011). These studies have 
revealed the automatic predictive processes for sounds that rely on 
feedforward and backward projects from and to the auditory cortex, but 
they bear little resemblance to the variety of sounds and features 
encountered in music. Accordingly, the newer “multi-feature” paradigm 
(Risto Näätänen, Pakarinen, Rinne, & Takegata, 2004) (Fisher et al., 
2008; Pakarinen et al., 2007), introduces a deviation in a single feature 
into every second sound of a musical pattern, thus allowing for the 
recording of several prediction errors – including cognitive ones. In one 
version of this paradigm, six deviants were used (pitch, slide, duration, 
timbre, location, and intensity), obtaining reliable MMNs for each (L. 
Bonetti et al., 2018; L. Bonetti, Haumann, Vuust, Kliuchko and Brattico, 
2017; Mu et al., 2016; Vuust et al., 2011a; Vuust et al., 2012). Similarly, 
in the latest “MusMelo” version of this paradigm, six deviants are 
inserted in a loop of one elaborated musical melody (Mari Tervaniemi, 
Huotilainen, & Brattico, 2014), (Putkinen et al., 2014), crucially 
including two distinct categories of deviants: cognitive or high-level 
deviants and acoustic or low-level ones. Cognitive deviants refer to 
changes in the melodic line (melodic contour) of the melody, altering 
the meaning of the music since they give rise to a varied version of the 
original melody. Conversely, acoustic deviants sound merely like “mis
takes” during the musical performance without producing any actual 
change of the melodic line. Hence, the MusMelo paradigm offers a 
unique possibility of measuring the neural indexes of cognitive versus 
acoustic priors and their related prediction error signals, and of locating 
the subservient neural sources. 

To summarize, much is known on the MMN prediction error signal 
and its neural substrate in the auditory cortex for acoustic features. 
However, research on the role of frontal MMN generators is still scarce 
and inhomogeneous. This is particularly true with regard to music 
perception, which draws so heavily on both acoustic and cognitive 
features and is dependent on the fast, automatic predictive processes 

that are indexed by MMN. Related work has been conducted on the early 
right-anterior negativity (ERAN) which is typically elicited when par
ticipants attentively listen and detect chord violating the conventions of 
Western harmony (Garza Villarreal, Brattico, Leino, Østergaard and 
Vuust, 2011; Koelsch et al., 2001, 2019), and which relies on the right 
homologue of infero-frontal Broca’s area and parietal regions. However, 
such attentive processes would not explain how we can very promptly 
grasp even abstract, culture-dependent violations of musical conven
tions without the need of focusing on listening and how understanding 
of musical sounds automatically unfolds over time without any 
conscious effort. 

In this study, we therefore wished to localize the automatic predic
tive processes throughout the whole-brain that are responsible for the 
fast (120–250 ms from the deviant stimulation) generation of error 
signals during music listening, and to determine whether these signals 
differ when the error is computed against acoustic versus cognitive 
priors. To this goal, we investigated in a large sample of over 100 par
ticipants the neural sources of acoustic versus cognitive errors of musical 
melodies, as indexed by MMN. We hypothesized to observe stronger 
frontal MMN generators for cognitive deviants, and increased responses 
in the auditory cortex to MMNs elicited by acoustic deviants. 

We also assessed how the activity in MMN generators were modu
lated by musical expertise, for both acoustic and cognitive errors. The 
MMN has been repeatedly connected to cognitive abilities (Antonio 
Criscuolo, Bonetti, Särkämö, Kliuchko, & Brattico, 2019; Franklin et al., 
2008), musicianship, musical learning, and musical cognitive abilities 
(Brattico et al., 2009; Koelsch et al., 1999; Mari Tervaniemi, Just, 
Koelsch, Widmann, & Schröger, 2005; Vuust et al., 2011b, 2012). For 
instance, Putkinen and colleagues (Putkinen et al., 2014) showed 
enhanced MMNs in children exposed to musical training, especially for 
melody modulation, mistuning and timbre that were not existent before 
exposure to the musical training. Similarly, Kliuchko and colleagues 
(Kliuchko et al., 2019) discovered an overall stronger MMN to timbre, 
pitch and slide for jazz compared to classical musicians and 
non-musicians and amateurs. Tervaniemi and colleagues (Mari Terva
niemi, Janhunen, Kruck, Putkinen, & Huotilainen, 2016) showed that 
MMNs were enhanced for tuning deviants in classical musicians, for 
timing deviants in classical and jazz musicians, and for transposition 
deviant in jazz musicians. Moreover, fMRI evidence has consistently 
demonstrated how musical expertise refines cognitive priors, for 
instance, allowing musicians to notice subtle harmonic changes and 
their action-observation areas and higher-order frontal areas to become 
more activated during mere music listening (Gold et al., 2019; Sal
impoor et al., 2015). For all of these reasons, we hypothesized that 
musical expertise would increase both acoustic and cognitive MMNs at 
the sites of their generators. 

2. Methods 

2.1. Participants 

Participants were volunteers recruited with fliers in social media or 
posted in academies and universities, and they were compensated for 
the time spent in the lab with vouchers that could be used for culture and 
sport activities (e.g. museums, concerts, swimming pools, etc.). Prior to 
the beginning of the experiment, participants filled in the informed 
consent. The experimental procedures, included in the wide research 
protocol named “Tunteet” (“Emotions” in Finnish), complied with the 
Declaration of Helsinki – Ethical Principles for Medical Research, and 
were approved by the Ethics Committee of the Hospital District of 
Helsinki and Uusimaa (approval number: 315/13/03/00/11, dated 11th 

March 2012). The “Tunteet” protocol consisted of two days. In the first 
day, the experiment comprised 60 min of MEEG recordings and con
sisted of approximately 3 h spent at the Biomag laboratory (including 
welcoming, preparation, instructions, questionnaires and forms filling, 
and dismissal). In the second day, MRI recordings for obtaining the 
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structural images of each participant were conducted, no later than two 
weeks from the MEEG recordings. Previous studies from our group used 
different and independent parts of this large dataset which involved 
slightly different subgroups of the participants who took part in the 
“Tunteet” protocol. This occurred because a few participants did not 
complete the full data collection, as it usually happens when conducting 
large experimental protocols like this one. Extensive details on the 
previous works published using data from “Tunteet” are described in 
Kliuchko and colleagues (Kliuchko et al., 2019), Haumann and col
leagues (Haumann et al., 2016), Criscuolo and colleagues (Criscuolo 
et al., 2019), and Bonetti and colleagues (Bonetti et al., 2018, 2017). In 
the current study, we focused on the MEG data collected while partici
pants were presented with the “Musmelo” paradigm, which is described 
in detail in the next paragraphs. Moreover, it is important to state that 
this data has never been reported in any previous paper. The sample of 
participants who were presented with the “Musmelo” paradigm and 
therefore analysed in the current study consisted of 104 volunteers: 44 
males and 60 females (age range: 18–51 years old, mean age: 28.24 ±
7.92 years). All participants declared to be healthy and reported no 
current or previous drug nor alcohol abuse. In addition, they were not 
under any kind of medication, they did not have any neurological or 
psychiatric disorder, and declared to have normal hearing. Finally, their 
educational, economic, and social statuses were homogeneous, as 
studied and reported in Criscuolo and colleagues (Criscuolo et al., 2019). 

Since musicianship has been connected to modulation of MMN re
sponses 17,39,50–52, we recruited participants with different levels of 
musical expertise. Specifically, the average formal musical training 
received by our participants was 5.88 ± 7.12 years (ranging from 0 to 28 
years of musical training). Indeed, our samples comprised musicians 
who obtained a professional musical education or graduated from 
Sibelius Academy and University of Helsinki, amateur musicians who 
had only few years of formal musical training, and non-musicians. 

2.2. Experimental design and stimuli 

To detect the brain predictive responses to cognitive and acoustic 
deviants, we used the Melodic Multifeature paradigm (MusMelo) 
introduced by Tervaniemi and colleagues (Tervaniemi et al., 2014) and 
Putkinen and colleagues (Putkinen et al., 2014) while participants’ brain 

activity was recorded by means of magnetoencephalography (MEG). 
The MusMelo paradigm consisted of brief recursive melodies 

composed by the author Minna Huotilainen. These melodies were 
played with the standard timbre correspondent to digital piano tones 
(McGill University Master Samples) and followed typical Western tonal 
musical harmonies and configurations. 

The melodies started with a triad (duration of 300 ms), followed by 
four tones of different length, plus an ending tone (duration of 575 ms). 
Subsequent tones were always separated by 50 ms silence. Additionally, 
a 125 ms silence after the ending tone was inserted. Thus, one melody 
lasted for 2100 ms in total. Such melodies were presented for 15 min in a 
looped, recursive manner. Within these repeated melodies, six different 
deviants (changes) were inserted. Importantly, these deviants occurred 
in a random order and at random places within the melody, thus it was 
not possible for the participants to predict when the deviant occurred. 
For this reason, the inter-melody gap of 125 ms did not represent an 
issue for the detection of the MMN. To be noted, all deviants occurred in 
random places within the melody but did not alter the onset of the 
sounds. The only deviant which represented an exception was the 
Rhythm mistake which was created by introducing a silent gap of 100 
ms before the deviant sound. 

The six deviants were divided into low-level, acoustic deviants and 
high-level, cognitive deviants. 

The key difference between the two categories of deviants is that 
low-level, acoustic deviants did not alter the melodic contour of the 
musical stimuli, but introduced acoustic mistakes (e.g., small variations 
in pitch or rhythm that were perceived as mistakes and not drastic 
changes of the melodies). Conversely, high-level, cognitive deviants 
operated a profound change in the melodies that were perceived as 
proper variations. One melody could contain several changes, as illus
trated in Fig. 1. Finally, participants were not required to pay attention 
to the stimuli because the MMN is a signature of the automatic brain 
prediction error and is almost completely independent on attention. As 
commonly done in MMN studies (see, for example, Bonetti et al., 2021a, 
b,c; Bonetti et al., 2018; Brattico et al., 2006; Escera et al., 2000; Fisher 
et al., 2008; Garrido et al., 2009; Näätänen et al., 2007; Näätänen et al., 
2004; Putkinen et al., 2014; Tervaniemi et al., 2014; Tervaniemi et al., 
2016), at the same time of the sound stimulation, participants were 
presented with a muted, captioned, movie that they chose before the 

Fig. 1. Melodic multi-feature (MusMelo) paradigm.  
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beginning of the experiment. 
As follows, we provided details on the acoustic deviants:  

1. Mistuning (half of a semitone upwards, up to 3% of the fundamental 
frequency of the sound). It occurred in the 14% of the melodies and 
could happen in the first, second or fourth tone of the melody.  

2. Timbre deviant (flute timbre instead of the standard piano timbre). It 
occurred in the 8% of the melodies and could happen in the first, 
third or fourth tone of the melodies.  

3. Rhythm mistake (also known as Timing delay) (100 ms silent gap). It 
occurred in the 8% of the melodies. It could happen in the first, 
second or third tone. 

Conversely, these were the characteristics of the cognitive deviants:  

1. Melody modulation occurred in the 12% of the melodies. It consisted 
of a pitch change of the third or fourth tone. It endured until a new 
melody modulation was introduced.  

2. Rhythm modulation occurred in the 7% of the melodies and could 
happen in the second or third tone. There were two possible alter
natives for rhythm modulation, either a short tone was replaced by a 
long tone (tone lengthening) or a long tone was replaced by a short 
one (tone shortening).  

3. Transposition occurred in the 16% of the melodies and could occur in 
the first triad. In this case, after introducing the chord transposition 
the following melodies kept the converted key until a new chord 
transposition was presented. 

Finally, all cognitive deviants were musically plausible, both when 
the change involved the melodic contour and the rhythm contour. 

To be noted, when depicting the MMN waveform (e.g. Fig. 2) ‘time 0’ 
indicates the specific onset of the deviant stimulation (e.g. for Melody 
modulation, it indicates the first tone where the melody changed; for 
Rhythm modulation the first tone where the rhythm of the melody 
changed; for Transposition the first chord where the tonality changed; 
for Mistuning the tone that was slightly edited in terms of pitch; for 
Timbre the tone that introduced a different timbre; for Rhythm mistake 
the tone that introduced the mistake (100 ms delay) in terms of rhythm). 

The stimuli were presented using Presentation software (Neuro
behavioural Systems, Berkeley, CA). Importantly, before starting the 
experiment, we have conducted an objective test to determine the 

hearing threshold of each ear of each participant. Once detected those 
thresholds, we have adjusted the volume of the stimuli by setting it to 50 
dB above the measured hearing thresholds. In this way, we have made 
sure that the volume perception of the sound stimulation was exactly the 
same for every participant in both ears. Apart from the adjustment of the 
volume in case the hearing thresholds of the two ears were diverse, there 
were no differences between the presentation of the sounds in the two 
ears. 

Finally, in a separate session, the structural images of the partici
pants’ brain were acquired by using magnetic resonance imaging (MRI). 

2.3. Data acquisition 

MEG data was collected at the Biomag Laboratory of the Helsinki 
University Central Hospital. The measurements were conducted in a 
magnetically shielded room (ETS-Lindgren Euroshield, Eura, Finland) 
with Vectorview™ 306-channel MEG scanner (Elekta Neuromag®, 
Elekta Oy, Helsinki, Finland). The MEG scanner had 102 sensor ele
ments. Specifically, it had 102 orthogonal pairs of planar gradiometer 
SQUID sensors and 102 axial magnetometer SQUID sensors. We placed 
electrodes above and below the left eye and close to the external eye 
corners on both sides of the face of the participants to record horizontal 
and vertical eye movements. Furthermore, we recorded the continuous 
head position of the participants by using the head position indicator 
(HPI) coils that were placed on the forehead and behind the ears of 
participants. Moreover, for each participant we recorded the fiducial 
points corresponding to nasion and to the prearicular anatomical land
marks by using the Isotrack 3D digitizer (Polhemus, Colchester, VT, 
USA). The HPI coils and fiducial points were necessary to perform co- 
registration between MEG and MRI data at a later stage of analysis. 
Finally, the MEG data was registered with a sampling rate of 600 Hz. 

The recorded MRI data was the structural T1, required for the source 
reconstruction of the MEG signal. The MRI scanning was conducted 
using a 3 T MAGNETOM Skyra whole-body scanner (Siemens Health
care, Erlangen, Germany), plus a standard 20-channel head-neck coil. 
The measurements were done at the Advanced Magnetic Imaging (AMI) 
Center (Aalto University, Espoo, Finland). Details of the T1-weighted 
structural images are reported as follows: 176 slices; matrix = 256 ×
256; field of view = 256 × 256 mm; pulse sequence = MPRAGE; slice 
thickness = 1 mm; interslice skip = 0 mm. Later in the analysis pipeline, 
we co-registered each individual T1-weighted MRI scan to the standard 

Fig. 2. MMN to all deviants (MEG channel 1341). 
Waveform depicting the MMN responses (deviant 
minus standard) to the six deviants occurring in the 
MusMelo paradigm (melody modulation, rhythm 
modulation, transposition, mistuning, timbre, and 
rhythm mistake). The time series were recorded at the 
MEG magnetometer channel 1341, which is a typical 
channel shown in MMN studies. Dash lines show the 
standard error, computed independently for each 
time-point t using the formula stdt̅̅

n
√ . Where stdt is the 

standard deviation at time t, and n is the number of 
participants. The grey area highlights the different 
peaks of the MMN to the six deviants included in the 
study. X-axis shows time (in seconds), while y-axis 
amplitude of the signal in fT. Time 0 indicates the 
specific onset of the deviant stimulation (e.g. for 
Melody modulation, it indicates the first tone where 
the melody changed; for Rhythm modulation the first 
tone where the rhythm of the melody changed; for 
Transposition the first chord where the tonality 
changed; for Mistuning the tone that was slightly 
edited in terms of pitch; for Timbre the tone that 
introduced a different timbre; for Rhythm mistake the 
tone that introduced the mistake (delay fo 100 ms) in 
terms of rhythm).   
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MNI brain template through an affine transformation. Then, we refer
enced such image to the MEG sensors space by employing the Polhemus 
head shape data and the three fiducial points collected prior to start the 
MEG recording. 

2.4. Data pre-processing 

We preprocessed the raw MEG sensor data by using the signal space 
separation solution implemented in MaxFilter (Taulu and Simola, 2006) 
which attenuated the interference originated outside the scalp. 

Afterwards, we converted the data into the SPM format and further 
analysed it in Matlab (MathWorks, Natick, Massachusetts, United States 
of America) by employing OSL (OHBA Software Library), a freely 
available toolbox that relies on a combination of FSL (Woolrich et al., 
2009), Fieldtrip (Oostenveld et al., 2011), SPM (Penny et al., 2007), as 
well as in-house-built functions. 

First, a few segments of the data contaminated by large artefacts 
were removed after visual inspection. Second, we corrected the brain 
data for the interference of eyeblinks and heart-beat artefacts by using 
independent component analysis (ICA). We used the ICA implemented 
in the OSL software by the OHBA group of the University of Oxford, UK, 
written in Matlab. This procedure decomposed the original signal in 
independent components. Then, we identified and discarded the com
ponents that picked up the eyeblink and heart-beat activities. Finally, we 
rebuilt the signal by using the remaining components (Mantini et al., 
2011). After the preprocessing steps, we epoched the signal in 4130 
trials (one for each sound) lasting 700 ms each (with 100 ms of 
pre-stimulus time that was used for baseline correction). To be noted, in 
a few cases the number of trials was lower than 4130. This happened 
when a few segments of the data were previously discarded due to the 
presence of large artefacts. 

2.5. MEG sensor analysis 

Although our focus was on the MEG source reconstructed brain data, 
a first analysis on MEG sensors data was computed, in accordance with 
state-of-the-art guidelines about best practice in MEG analysis (Gross 
et al., 2013). 

Thus, according to a large number of MEG and electroencephalog
raphy (EEG) task-related studies (L. Bonetti, Brattico, Carlomagno, et al., 
2021; Brattico et al., 2006; Gross et al., 2013), we averaged the trials 
over conditions, and we combined planar gradiometers by sum-root 
square. Then, we assessed whether the deviant stimuli elicited a clear 
MMN and P300 signal by contrasting the brain responses to our six 
categories of deviants against the standard stimuli. Since this contrast 
has been done for each deviant (six), each time point (182, ranging from 
0 to 300 ms from the onset of the deviant stimuli), and each MEG 
combined gradiometer channel (102), we have corrected for multiple 
comparisons by using Bonferroni correction and thus lowering the 
p-value to 4.5e-07 (0.05/(6 * 182 * 102)). In this analysis, we used 
combined gradiometers only because of their better signal-to-noise ratio 
than magnetometers when performing analysis on the MEG sensor level 
(Gross et al., 2013). The results showed that the MMN was strongly 
elicited among all deviants, are illustrated in Fig. 2. The detailed sta
tistical results showing significant time-points and channels for each 
deviant are reported in Table ST1. 

2.6. Source reconstruction 

We reconstructed the neural sources of the brain activity recorded on 
the scalp by the MEG channels, applying the widely adopted procedure 
named beamforming. Here, we used the OSL implementation consisting 
of a local-sphere forward model and a beamformer approach as the in
verse method (Hillebrand and Barnes, 2005; Huang et al., 2004; Li et al., 
2004). The local-sphere forward model considers the MNI-co-registered 
anatomy as a simplified geometric model, and it fits a sphere separately 

for each sensor (Nolte, 2003). Then, the beamforming employs a 
different set of weights sequentially applied to the source locations to 
isolate the contribution of each source to the activity recorded by the 
MEG channels for each different time point. Importantly, we used all 
MEG channels (both magnetometers and non-combined planar gradi
ometers) for performing the source reconstruction. Moreover, the 
covariance matrix necessary for computing the weights required for the 
beamforming was calculated using the data for all the experimental 
conditions (i.e. all deviants and standards). Finally, we used a 
three-dimensional eight-mm grid which resulted in a brain parcellation 
of 3559 dipoles (sources). 

2.7. Neural sources of MMN peaks 

We computed an independent GLM sequentially for each time point 
at each dipole location, where we contrasted each deviant category 
against the standard stimuli. This procedure, computed independently 
for each participant, allowed us to detect the contrast of parameter es
timates (COPEs) for the brain activity specifically associated with the 
detection of the deviant stimuli (i.e. the MMN in source space). These 
results were then submitted to a second-level (group) analysis, using 
one-sample t-tests with spatially smoothed variance obtained with a 
Gaussian kernel (full-width at half-maximum: 50 mm). 

Although the analysis was computed for each time-point in the 
epoch, we were only interested in the brain sources of the MMNs peak, 
since the focus of the current study was on the early automatic predic
tion error indexed by MMN and elicited by cognitive and acoustic de
viants. Thus, first we detected the peak MMN activity independently for 
each deviant. To this aim, we have used the large corpus of previous 
studies of MMN (see, for example, Bonetti et al., 2021a,b,c; Bonetti et al., 
2018; Brattico et al., 2006; Escera et al., 2000; Fisher et al., 2008; 
Garrido et al., 2009; Näätänen et al., 2007; Näätänen et al., 2004; Put
kinen et al., 2014; Tervaniemi et al., 2014; Tervaniemi et al., 2016) 
which clearly showed that MMN peaks between 120 and 250 ms from 
the onset of the deviant stimulus. Thus, we have searched for the min
imum amplitude (since the MMN is a negative component) within that 
time-window, independently for each deviant. In this way, we were sure 
to identify the MMN peaks based both on the indications from the pre
vious literature and on objective methods specifically related to our 
stimuli. Second, after identifying the MMN peaks, we extracted and 
averaged the group-level results around those peaks (considering a small 
time-window of ±25 ms around each MMN peak). This procedure 
returned the strength of the MMNs to the six deviants for each brain 
dipole. To correct for multiple comparisons, we performed a 
cluster-based permutation test with 5000 permutations which allowed 
us to isolate the clusters of brain activity underlying the generation of 
the MMNs. Since we computed six tests (one for each deviant), we have 
used an α level of 0.0017 (0.05/6), corresponding to a cluster forming 
threshold t-value = 3.3. 

2.8. MMNs to cognitive versus acoustic deviants 

After detecting the sources of the brain signals underlying the MMNs 
peak, we performed a further analysis to assess whether such sources 
differed according to the category of deviants. Specifically, we were 
interested in assessing whether cognitive deviants (transposition, mel
ody modulation and rhythm modulation) elicited an MMN with different 
brain sources than acoustic deviants (mistuning, timbre, rhythm 
mistake). Thus, first we averaged together the neural activity of the 
three deviants forming the two categories. We conducted this procedure 
independently for each participant. Second, we computed a t-test for 
each brain dipole comparing the brain activity underlying cognitive 
versus acoustic deviants. Finally, to correct for multiple comparisons, we 
performed cluster-based Monte-Carlo simulations (MCS) (Bonetti, 
Brattico, Bruzzone, et al., 2021; Bonetti, Brattico, Carlomagno, et al., 
2021; Bonetti et al., 2020; Kroese et al., 2011). Specifically, the MCS 
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consisted of detecting the spatial clusters of significant dipoles (dipoles 
whose test had a p-value lower than the MCS α level) in the original data 
and assessing whether they were significant or occurred by chance. First, 
spatial clusters were identified in the original data. Then, we permuted 
the original data and detected the clusters in this new permuted set of 
brain values. We computed this procedure 1000 times, obtaining a 
reference distribution of cluster sizes detected for each permutation. 
Finally, the original cluster sizes were compared to the reference dis
tribution and considered significant if they were bigger than 99.9% 
(MCS p-value of .001) of the permuted cluster sizes. In this case, we 
computed two MCS, one for the significant dipoles where cognitive 
deviants were stronger than acoustic ones, and another one for the di
poles where the acoustic deviants were stronger than the cognitive ones. 
Remarkably, while cognitive versus acoustic deviants returned a sig
nificant cluster only with a standard cluster-forming threshold p-value =
.05, acoustic versus cognitive deviants returned a significant cluster 
even when lowering the cluster-forming threshold p-value to 1.0e-04, 
indicating a very large significant difference. Details of the outcomes 
of these analyses are reported in the Results section. 

2.9. Cognitive, acoustic deviants and musicianship 

The last step of our analysis pipeline was to assess whether there was 
a relationship between musical expertise and the brain areas activated 
during the perception of cognitive and acoustic deviants. Thus, we 
computed Pearson’s correlations for each brain dipole between the 
participants’ years of music playing and their brain activity underlying 
deviant detection. Afterwards, we corrected for multiple comparisons 
employing an MCS analogous to the one described above. In this case, 
since we computed two independent MCS analyses, one for the cognitive 
and one for the acoustic deviants, we used a cluster-forming threshold p- 
value = .01 and an MCS p-value = .001. To strengthen the reliability of 
our results, we computed an additional analysis by assessing whether 
participants’ age and sex affected the relationship between the neural 
responses to cognitive and acoustic deviants and the participants’ 
musical expertise. As done before, we computed one statistical test for 
each brain dipole. In this case, we performed one multiple linear 
regression for each brain voxel inserting the neural data as dependent 
variable and musical training, age, and sex as independent variables. 
Then, we corrected for multiple comparisons using the same cluster- 
based Monte-Carlo simulations that we described above (cluster-form
ing threshold p-value = .01 and an MCS p-value = .001). 

2.10. Deviants with different spectral content 

Finally, four out of six deviants presented a relevant change in 
spectral content (i.e. Mistuning, Melody modulation, Transposition and 
Timbre deviant), while the other two did not (Rhythm mistake and 
Rhythm modulation). Thus, we computed an additional analysis by 
averaging the neural sources of the MMN peaks for those two categories 
of deviants (on the one hand Mistuning, Melody modulation, Trans
position and Timbre deviant and on the other hand Rhythm mistake and 
Rhythm modulation) and contrasting them by computing t-tests for each 
brain source, mirroring the procedure described above for cognitive 
versus acoustic deviants. 

3. Results 

3.1. Experimental design and MMNs detection 

Our study had three main aims: reconstructing the neural sources of 
the deviants inserted in a melodic multifeature paradigm (i), assessing 
whether such neural sources differed across cognitive and acoustic de
viants (ii), investigating the relationship between the neural sources of 
cognitive and acoustic deviants and the musical expertise of the par
ticipants (iii). 

We employed the Melodic Multifeature paradigm (MusMelo), which 
was introduced by Tervaniemi and colleagues (Tervaniemi et al., 2014) 
and Putkinen and colleagues (Putkinen et al., 2014) and consists of a 
series of deviants breaking cognitive (transposition, melody modulation 
and rhythm modulation) or acoustic (mistuning, timbre, and rhythm 
mistake) musical features (Fig. 1). Thus, it is the ideal paradigm to assess 
whether the MMNs neural sources vary depending on the characteristic 
of the deviants (cognitive versus acoustic). To address our research 
questions, we presented our 104 participants with the MusMelo para
digm while we collected their brain activity using MEG. 

A) Graphical depiction of the MusMelo paradigm, used during 
magnetoencephalography (MEG) recording. The MusMelo consists of 
brief recursive melodies played consecutively in a loop. In these mel
odies, six different deviants have been inserted. The deviants belonged 
to two categories: acoustic deviants (mistuning, timbre, rhythm 
mistake) and cognitive deviants (melody modulation, rhythm modula
tion, transposition). B) Graphical schema showing the beginning of the 
Musmelo paradigm. This example shows that the melodies started with a 
triad (duration of 300 ms), followed by four tones of different length, 
plus an ending tone (duration of 575 ms). Subsequent tones were always 
separated by 50 ms silence. Additionally, a 125 ms silence after the 
ending tone was inserted. Thus, one melody lasted for 2100 ms in total. 
Such melodies were presented for 15 min in a looped, recursive manner. 
Within these repeated melodies, the above-described six deviants were 
inserted. Importantly, as illustrated in the figure, these deviants 
occurred in a random order and at random places within the melody, 
thus it was not possible for the participants to predict when the deviants 
occurred. 

Although our focus was on the neural sources of the MMNs elicited 
by the six deviants of the MusMelo, prior to computing the analysis in 
MEG source space, we verified that deviants and standards had elicited a 
significantly different neural signal, as recorded by the MEG sensors. We 
computed one-sample t-tests for each MEG-combined gradiometer 
channel (102), each time point (152, ranging from 50 to 300 ms after the 
onset of the stimuli), and each deviant, comparing the brain response to 
the deviant versus the standard stimuli. We corrected for multiple 
comparisons by using Bonferroni correction which resulted in an 
adjusted p-value of 5.3e-07 (0.05/ (6 * 152 * 102)). Here, we used 
combined gradiometers because their signal-to-noise ratio is usually 
better than magnetometers when computing analysis at MEG sensor 
level (in Bonetti et al. (2018) and Haumann et al. (2016)) quantitative 
measures of signal-to-noise ratio for this same dataset are illustrated). 
Our results showed that significant differences in the brain activity eli
cited by deviants versus standards were clearly identified among several 
MEG channels and time points (p < 5.3e-07). T-values showing the effect 
size of this difference for each time-point, as well as the percentage of 
significant MEG channels over time, are reported in detail in Table ST1. 
Moreover, Fig. 2 illustrates a representative MEG magnetometer channel 
which shows the polarity of the differences between the activity evoked 
by deviants minus standards. The plot clearly illustrates the MMN peaks 
for the six deviants that we used in the subsequent analysis. 

3.2. Neural sources of MMN peaks 

After verifying the reliability of our paradigm in detecting clear 
MMN signals, we reconstructed the sources of the neural signal by 
combining the MEG and MRI data of each participant. Specifically, as 
widely done in the field, we used a local-sphere forward model and a 
beamformer approach as the inverse method (see Methods for details). 
Our procedure returned a time series describing the strength of the 
neural signal over time for each category of stimuli (deviant and stan
dard) and for each of the reconstructed 3559 brain sources (dipoles). 

Then, we contrasted the neural activity underlying deviants versus 
standards, focusing on the brain sources generating the MMN peaks 
(considering a time window of ±25 ms around each of the MMN peaks). 
We corrected for multiple comparisons using a cluster-based 
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permutation test 65 with 5000 permutations which allowed us to isolate 
the significant clusters of brain activity underlying the generation of the 
MMNs. Since we computed six tests (one for each deviant), we have used 
an α level of 0.0017 (0.05/6), corresponding to a cluster forming 
threshold t-value = 3.3. 

As depicted in Fig. 3 and reported in detail in Table ST2, these an
alyses (p < .0017) returned a main involvement of the primary and 
secondary auditory cortices, especially for timbre, rhythm mistake, 
melody modulation, and mistuning. Remarkably, medial cingulate gyrus 
and hippocampal regions were also strongly activated by the presenta
tion of the deviant stimuli. This result was particularly evident for 
melody and rhythm modulation, rhythm mistake, and timbre. Finally, 
transposition, which is a rather cognitive and complex deviant, elicited 
activity mainly localized in the anterior part of the cingulate and in the 
inferior frontal gyrus. 

3.3. MMNs to cognitive versus acoustic deviants 

After detecting the sources of the brain signals underlying the MMNs 
peak, we performed a further analysis to assess whether these sources 
differed when comparing cognitive (transposition, melody modulation, 
and rhythm modulation) versus acoustic (mistuning, timbre, and 
rhythm mistake) deviants. Thus, first we averaged together the neural 
activity of the three deviants in each category. Second, we computed a t- 
test for each brain dipole comparing the brain activity underlying 
cognitive versus acoustic deviants. Finally, to correct for multiple 
comparisons, we performed cluster-based MCS (MCS p-value < .001). 

When using a cluster-forming threshold p-value < .05 (see Methods 
for details), we identified a small, but significant cluster of activity 
where cognitive deviants had a stronger neural signal than acoustic 
ones. This cluster was localized in the medial cingulate gyrus. 

Remarkably, when computing the MCS to identify the clusters where 
the brain activity was stronger for acoustic versus cognitive deviants, we 
observed a large cluster which was largely significant (cluster forming 
threshold p-value < 1.0e-04). This cluster mainly originated in the right 

primary auditory cortex, but extended to secondary auditory cortex, 
insula, frontal operculum, and hippocampal regions (Fig. 4A and 
Table ST3). 

3.4. Cognitive, acoustic deviants, musicianship, and spectral features 

Finally, we wished to assess whether there was a relationship be
tween musical expertise and the neural sources of the MMNs elicited by 
cognitive and acoustic deviants. Thus, we computed Pearson’s correla
tions between the participants’ years of music playing and their brain 
activity underlying deviant detection. This analysis was computed for 
each brain source originating the peak of the MMNs. We corrected for 
multiple comparisons employing an MCS analogous to the one described 
above (cluster-forming threshold p-value < .01 and MCS p-value < .001). 

This analysis showed significant clusters of positive correlations 
between musical expertise and neural response to deviants (Fig. 4B and 
C, Table ST4). Interestingly, such relationship was particularly evident 
for the cingulate, inferior frontal gyri, and supplementary motor area. 

We complemented the analysis using Pearson’s correlations by 
employing multiple linear regressions to assess whether participants’ 
age and sex affected the relationship between the neural responses to 
cognitive and acoustic deviants and the participants’ musical expertise. 
The results corrected for multiple comparisons (using the same cluster- 
based MCS described above) confirmed the relationship between higher- 
order brain areas and musical expertise, especially with regards to 
cognitive deviants (Fig. S1 and Table ST4). 

Finally, since four out of six deviants presented a relevant change in 
spectral content (i.e. Mistuning, Melody modulation, Transposition and 
Timbre deviant), we computed an additional analysis by contrasting 
them against the ones with no spectral changes (i.e. Rhythm modulation 
and Rhythm mistake). As reported in Table ST5 and illustrated in 
Fig. S2, this analysis showed that deviants characterized by spectral 
change presented a stronger activity in the right auditory cortex and in 
the precuneus. 

Fig. 3. Brain sources of the MMN to all deviants depicted in brain templates. The colorbar indicates t-values obtained by contrasting the brain response to deviant 
versus standard sounds considering the full sample of 104 participants. The top row illustrates acoustic deviants, while the bottom row depicts cognitive deviants. 
Overall, acoustic deviants show strong activity in the auditory cortex, while cognitive deviants highlight the contribution of cingulate and frontal brain areas to the 
generation of the MMN. 
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4. Discussion 

In this study, we aimed to assess the brain automatic prediction error 
indexed by the MMN elicited by cognitive and acoustic deviants inserted 
in a musical context. Results revealed that the neural sources of the 
MMNs were mainly localized in the auditory cortex. However, core 
clusters of significant activity were also clearly localized in the cingulate 
gyrus, hippocampal, and frontal areas. In addition, weaker cluster of 
significant activity were observed in postcentral gyrus and caudate. 
However, these last, weaker clusters may be the results of the artificial 
source leakage which is normally associated with MEG source recon
struction of strong neural activity. Notably, the contrast between 
cognitive versus acoustic deviants showed stronger activity within the 
cingulate gyrus for the cognitive deviants. Conversely, the acoustic de
viants elicited stronger responses in the auditory cortex. At last, we 
revealed that musical expertise modulated the sources of the brain 
prediction error indexed by MMN to both categories of deviants. 
Notably, such modulation was stronger for cognitive deviants and 

involved especially the cingulate, inferior frontal gyri, and supplemen
tary motor area. Finally, these results occurred independently on the 
attention of the participants since while they were presented with the 
sound stimulation they were asked to watch and focus on a silent movie. 
Thus, our study suggests that even when behavioral responses are not 
required, the brain is showing a rather strong ability to automatically 
discriminate the fine-grained difference between deviants that are 
characterized by cognitive or acoustic features. 

The brain sources which generated the MMNs were coherent with 
the sources reported by previous literature. Specifically, several studies 
showed that auditory cortex, and especially Heschl’s gyrus together with 
superior and middle temporal gyri, and the hippocampal area are pri
marily implicated in the generation of the MMN (Fitzgerald and Todd, 
2020; Marco-Pallarés et al., 2005; Tervaniemi et al., 2006a,b; Waberski 
et al., 2001). In addition, we detected sources in the medial and anterior 
cingulate gyrus, hippocampal areas, and frontal operculum/inferior 
frontal gyrus. This is also supported by previous research which high
lighted frontal generators of MMN (Waberski et al., 2001), proposing 

Fig. 4. MMN to acoustic versus cognitive deviants and musical expertise 
(A) Depiction in brain templates of the contrast between cognitive versus acoustic deviants considering the full sample of 104 participants. The colorbar shows the t- 
values emerged from the contrast. Specifically, the red colour indicates the brain areas that were more active for cognitive versus acoustic deviants, while the blue 
colour shows the brain areas that were more active for acoustic versus cognitive deviants. This plot indicates that the medial cingulate gyrus was more active for the 
cognitive deviants, while a large network of brain areas around the right auditory cortex was more engaged during processing of acoustic versus cognitive deviants. 
(B) Depiction in brain templates of the correlation between musical expertise and MMN to acoustic (left) and cognitive (right) deviants. The colorbar shows the r- 
value obtained from the correlations. Specifically, the red colour indicates positive correlations between MMN and musical expertise. No negative correlations (that 
would have been indicated in blue) were observed in this case. The plot shows that musical expertise is positively associated with the neural sources of the MMN, 
especially in the medial cingulate gyrus and right orbito-frontal cortex, and particularly in response to cognitive deviants. (C) Depiction in brain template of cognitive 
(top row) and acoustic (bottom row) deviants, independently for three categories of participants, characterized by low (up to two years of musical training, n = 42), 
medium (between three and ten years of musical training, n = 27), and high (more than 10 years of musical training, n = 32) musical expertise. The colorbar shows 
the strength of the neural activity weighted by the intra-trial and -individual variance. This plot confirms that higher musical expertise is associated with stronger 
neural activity in higher-order brain areas, especially with regards to the cognitive deviants. 
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that they were necessary for the process of switching attention to the 
deviant stimulation (Heilman & Van Den Abell, 1980; Kastner and 
Ungerleider, 2000; Mesulam and Marchsel, 1981; Posner, 2016). 
Moreover, apart from Melody modulation, all the other deviants pre
sented a hemispheric lateralization. In fact, Timbre, Rhythm mistake, 
Rhythm modulation and Transposition deviants were associated with 
neural sources that were mainly localized in the right hemisphere. This 
result is very common when dealing with fast processing of auditory 
stimulation. Indeed, several studies (Fitzgerald and Todd, 2020; 
Marco-Pallarés et al., 2005; Posner, 2016; Waberski et al., 2001) showed 
a stronger involvement of the right hemisphere, especially with regards 
to auditory cortex and inferior-frontal regions. On the contrary, it is 
interesting to observe that the Mistuning deviant was associated with 
both left and right hippocampus and mainly left auditory cortex. This 
may be a true effect suggesting that modulation of melodies (as it hap
pens for Mistuning) may be more related to the left hemisphere (as a 
matter of fact, Melody modulation also showed a slight predominance of 
left-over right hemisphere although the difference was subtle). How
ever, it should also be noted that the Mistuning deviant used in this study 
was elicited by a very small mistuning of the standard sounds and pre
sented one of the weakest MMNs among the six deviants. Thus, the weak 
MMN to Mistuning may also be directly related to the small strength of 
the deviation that did not allow the recording of a strong signal in both 
hemispheres. 

Interestingly, we detected a dissociation between the sources un
derlying processing of cognitive versus acoustic deviants. Indeed, while 
auditory cortex was primarily recruited by the processing of acoustic 
deviants, a higher-order area such as the medial cingulate gyrus was 
stronger for the cognitive deviants. Moreover, insula and frontal brain 
areas such as anterior cingulate gyrus and inferior frontal gyrus 
exhibited greater activity than auditory cortex when observing the MMN 
sources of two of our cognitive deviants, namely rhythm modulation and 
transposition. In particular, the transposition deviant is thought to be 
the most cognitive deviant of the paradigm. Indeed, Putkinen and col
leagues (Putkinen et al., 2014) showed that transposition was the only 
deviant not evoking larger MMN in music-trained children than in 
control ones. These findings broadened our understanding of MMN 
sources and auditory prediction error. In fact, there was no evidence in 
favour of a higher switching of attention for the cognitive versus 
acoustic deviants. Thus, the higher involvement of frontal brain regions 
observed in our study for the cognitive deviants should not be connected 
to the “attention switching” hypothesis (Heilman & Van Den Abell, 
1980; Kastner and Ungerleider, 2000; Mesulam and Marchsel, 1981; 
Posner, 2016) mentioned above. Conversely, we argue that cognitive 
and acoustic deviants elicit two diverse types of auditory prediction 
error. As a matter of fact, acoustic deviants are perceived as “mistakes” 
occurring in the music. On the contrary, cognitive deviants are actual 
changes of the musical information carried by the melodies. In other 
words, in the first case the brain may simply notice an impaired quality 
of the musical information, while in the second scenario, the prediction 
error operated by the brain would be more complex, leading to the 
understanding that musical information has actually changed. 

Notably, even though automatic and independent of a participant’s 
attention, the prediction error associated with changes in musical in
formation were generated by higher-order brain areas usually associated 
with language processing and conscious cognitive abilities, such as 
inferior frontal gyrus (Fadiga, Craighero, & D’Ausilio, 2009; Kotz et al., 
2002; Tyler et al., 2011) and cingulate gyrus (Apps et al., 2016; Bach 
et al., 2008; Hampson et al., 2006). Conversely, our findings suggest that 
musical “mistakes” such as imprecise rhythms, small mistunings, or 
sudden variations in timbre would not require such complex processing. 
Indeed, in this case, the recruitment of the auditory cortex would be 
enough to detect the changes in the physical, acoustic features of the 
sounds. 

Among our results, of particular interest is the role of cingulate gyrus 
which has been previously connected to several functions, including 

prediction error. For example, Alexander and colleagues (Alexander and 
Brown, 2019) highlighted the role of anterior cingulate cortex (ACC) in 
processing behavioral error and signalling deviations between expected 
and observed events, describing it within the framework of reinforce
ment learning. Similarly, an activation likelihood estimation (ALE) 
meta-analysis investigated the neural correlates of prediction error in 
reinforcement learning. Authors found that ACC, medial prefrontal 
cortex (mPFC) and striatum were the key brain areas underlying pre
diction error, in studies that used both rewarding and aversive re
inforcers (Garrison et al., 2013). Another fMRI study investigated the 
brain activity underlying a numerical Stroop task, reporting activity in 
the ACC when participants processed errors in the task (Critchley et al., 
2005). Along this line, another contribution claimed that ACC learnt to 
predict error likelihood in each context, even for trials in which there 
was no error (Brown and Braver, 2005). A simulation study on mPFC 
and ACC provided modelling evidence in support of the role of these 
brain structures for error likelihood, signalling mistakes, and reward, 
concluding that they are central for learning and predicting the likely 
outcomes of actions whether good or bad (Alexander and Brown, 2011). 
Furthermore, Bonetti and colleagues (Bonetti, Brattico, Bruzzone, et al., 
2021; Bonetti, Brattico, Carlomagno, et al., 2021; Bonetti et al., 2020) 
showed that cingulate gyrus is of primary importance for both active 
encoding and recognition of auditory sequences, and that its involve
ment positively correlate with the strength of the recognition (Fernan
dez Rubio et al., 2022a; Fernandez Rubio et al., 2022b). Their findings 
revealed that the cingulate is more central within the whole-brain 
network when encoding sounds than when resting (Bonetti, Brattico, 
Carlomagno, et al., 2021). Moreover, they found that recognition of 
previously learned compared to novel melodies was associated with 
stronger cingulate activity (Bonetti, Brattico, Bruzzone, et al., 2021; 
Bonetti et al., 2020). Along this line, a recent meta-analysis (Pan
do-Naude et al., 2021) on music perception, imagery and production 
highlighted the involvement of cingulate gyrus when participants were 
asked to do a variety of different tasks concerning music listening and 
production, and mental manipulation of sounds. Taken together, this 
evidence supports the idea that cingulate gyrus may be a key structure 
for extracting information from musical sequences and signalling vari
ations from the previously learned melodies. 

Conversely, acoustic “mistakes” involving basic acoustic features of 
musical sounds may recruit a more restricted network of auditory brain 
areas. This evidence is supported by previous studies employing simpler 
oddball and multi-feature paradigms which highlighted the primary role 
of auditory cortex in the MMN generations. For instance, Marco-Pallares 
(Marco-Pallarés et al., 2005) and colleagues reconstructed the main 
sources of MMN measured with EEG within supratemporal and middle 
temporal cortex, bilaterally. Similarly, Waberski and colleagues 
(Waberski et al., 2001) found the main generators of MMN in supra
temporal brain regions. They also reported secondary sources, with a 
longer latency, localized in the cingulum and right inferior temporal 
gyrus. Notably, this conclusion was reached even in intracranial elec
troencephalography (iEEG) recording, where MMN sources were 
observed in Brodmann areas 21 and 42, corresponding to middle tem
poral gyrus and posterior transverse temporal cortex, respectively 
(KROPOTOV et al., 1995). Moreover, additional evidence pointed out 
that the auditory cortex is mainly implicated in the processing of basic 
acoustic features of sounds and music. For instance, in a classic work, 
Zatorre and colleagues (Zatorre et al., 2002) argued that auditory 
cortices in the two hemispheres are specialized to extract fundamental 
acoustic features of both music and speech such as temporal and spectral 
content of sounds. Specifically, they reported that temporal resolution 
was better in left auditory cortical regions while spectral resolution of 
the sounds was greater in right auditory cortical regions. In a more 
recent review, King and colleagues (King et al., 2018) highlighted the 
complexity of the auditory cortex and its important role also for 
high-level cognitive processes. Still, they reiterated that auditory cortex 
shows selectivity for sound features, which is likely at the basis of 
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processing of natural sounds, such as during speech and in real-life 
listening scenarios. 

Finally, we revealed that musical expertise modulated the brain 
sources of the prediction error signal elicited by cognitive and acoustic 
deviants. Notably, this modulation was primarily evident in high-order 
brain areas such as the cingulate, inferior frontal gyri, and supplemen
tary motor area. Moreover, this relationship was primarily evident for 
the cognitive deviants. This finding is coherent with a large corpus of 
studies which showed that the brains of musicians are different from 
non-musicians’. Indeed, the musician’s brain has been suggested as a 
model of neuroplasticity (Münte et al., 2002), being shaped by 
long-lasting musical training. This hypothesis was further supported by 
several longitudinal studies showing structural brain changes, especially 
in children, after exposure to musical training (Habibi et al., 2018; Hyde 
et al., 2009). Likewise, a recent meta-analysis revealed that structural 
and functional brain differences emerged when comparing the brain of 
musicians versus non-musicians (Criscuolo et al., 2022). Back to MMN 
research, several works reported a stronger MMN activity recorded in 
brains of participants with higher musical expertise (Brattico et al., 
2009; Koelsch et al., 1999; Tervaniemi et al., 2005; Vuust et al., 2011b, 
2012). Additionally, Vuust and colleagues (Vuust et al., 2012) found 
different brain responses even across diverse categories of musicians. 
For instance, they revealed that the brain of jazz versus classical musi
cians was more sensitive to pitch and pitch-sliding deviants, features 
which are particularly involved in jazz training. In light of previous 
findings, our results provide additional evidence that musical expertise 
is associated with higher-level processing of music in the brain. Further, 
our study suggests that to outperform non-musicians when extracting 
varied information from musical melodies, musicians rely on stronger 
activity of higher-order brain areas such as cingulate and inferior frontal 
gyri, and supplementary motor area. 

In conclusion, our study showed that the brain employs different 
strategies for processing cognitive and acoustic auditory early prediction 
error as indexed by MMN, and that musical expertise modulates such 
mechanisms. Future research is called to investigate auditory prediction 
error in a wider array of cognitive and acoustic deviants and assess 
whether similar results arise when performing attentive tasks which 
require a conscious elaboration of the musical information. In addition, 
while in this study we specifically focused on the neural sources un
derlying MMN responses to cognitive and acoustic deviants, future 
studies may investigate later brain mechanisms to assess whether the 
neural processing of cognitive and acoustic deviations is also discrimi
nable 300–600 ms after the onset of the sound irregularities. Likewise, 
our study provided a preliminary result related to deviants which were 
characterized by spectral change, pointing to a stronger involvement of 
right auditory cortex and precuneus cortex for deviants with greater 
spectral change. Future research may develop novel experimental par
adigms specifically designed to better investigate such topic. Finally, as 
previously done by Tervaniemi and colleagues (Tervaniemi et al., 
2006a,b) and Pulvermüller and Shtyrov (2006), an additional indication 
for future studies consists of investigating acoustic and cognitive de
viants in contexts different from music, such as employing linguistic 
experimental design and investigating speech sound MMNs. 
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