

Bahadir, O., Siebert, J. P. and Aragon-Camarasa, G. (2023) A Deep

Learning-Based Hand-eye Calibration Approach using a Single Reference

Point on a Robot Manipulator. In: 2022 IEEE International Conference on

Robotics and Biomimetics (ROBIO2022), Xishuangbanna, China, 5-9

December 2022, pp. 1109-1114. ISBN 9781665481090 (doi:

10.1109/ROBIO55434.2022.10011774).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/285114/

Deposited on: 10 November 2022

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1109/ROBIO55434.2022.10011774
http://eprints.gla.ac.uk/290386/
http://eprints.gla.ac.uk/

A Deep Learning-Based Hand-eye Calibration Approach using a Single
Reference Point on a Robot Manipulator

Ozan Bahadir1, Jan Paul Siebert1 and Gerardo Aragon-Camarasa1

Abstract— We present a hand-eye calibration approach based
on a deep learning-based regression architecture to find the
transformation between the robot end-effector and an external
camera. For this, we hypothesise that it is possible to track a
single reference point in the robot’s end-effector to estimate
the hand-eye geometric transformation using a deep neural
network and a 3D vision system. To explore this hypothesis,
we design three experiments to study the different components
of our proposed network architecture while solving isolated
cases of the hand-eye calibration problem. Our experimental
results using a simulated environment show that our proposed
approach has less than 1 mm error for translation and less
than 2.31 degrees error for orientation. We also carried out
experiments for our third approach in two real robotic testbeds
(a Universal Robot 3 and the Rethink Baxter robot). Our
approach achieves 2 mm and 5.9 degrees, 4.53 mm and 9.2
degrees of errors for the Universal Robot UR3 and the Rethink
Baxter robot.

I. INTRODUCTION

With the advances in sensor and artificial intelligence tech-
nologies, robots have found new applications in aerospace,
medicine and agriculture, to name a few. Robots sense
their environment via different sensors, but vision is the
most prominent sensor because of their low price and the
ability to provide an understanding of the robot’s envi-
ronment. Vision sensors need to be integrated within the
robot’s kinematic frame, and this process is called hand-
eye calibration. Hand-eye calibration involves finding the
geometric transformation between the sensor and the robot
to transfer camera measurements into the robot workspace.
In the literature, the hand-eye calibration problem is solved
by collecting several cameras poses and the corresponding
robot’s end-effector poses which are then passed to a hand-
eye calibration algorithm that estimates the transformation
between the camera and the robot [1].

Early approaches that have successfully solved the hand-
eye calibration problem relied on offline data collection to
acquire the required poses of the camera and robot’s end-
effector to perform hand-eye calibration. The main limitation
of offline hand-eye calibration approaches is that they are
not flexible against camera pose changes with respect to
the robot base after obtaining the geometric transformation
model between the camera and the robot’s world coordinate
frame. To overcome this problem, online hand-eye calibra-
tion approaches [2] [3] have been developed over the last

1 School of Computing Science, University of Glasgow, G12 8QQ, Scot-
land, United Kingdom; {Ozan.Bahadir}, {Paul.Siebert},
{Gerardo.AragonCamarasa}@glasgow.ac.uk

Ozan Bahadir thanks the funding received by the Turkish Ministry of
National Education for this research

Fig. 1. The geometric representation of the proposed hand-eye calibration
approach. The homogeneous transformation between the robot base and the
camera is represented by X. A1....n represents the pose of the reference
point with respect to the robot base, while B1....n are the camera pose with
respect to the reference point.

decade, the most recent leveraging deep learning. Although
current hand-eye calibration methods have significant suc-
cess, a robust and flexible method that recalibrates the system
without data recollection and is easily deployable to other
robotic environments is needed.

In this paper, we propose that it is possible to carry out
hand-eye calibration by tracking the known transformation
of a single reference point on the robot’s end-effector with
respect to both the robot base and the camera via a 3D vision
system. For this, we devise three experiments that explore the
hand-eye calibration problem (Fig. 1). We implement our
experiments in a simulated environment; while we test our
final neural network architecture in two real-world robotic
testbeds (a Universal Robot and a Rethink Baxter, as shown
in Fig. 2). In this paper, the camera is not attached to the
robot but is located at a given pose in the environment, as
shown in Fig. 1. Our contributions are threefold:

1) We demonstrate that it is possible to estimate the cam-
era pose by tracking a single reference point defined by
the robot’s kinematic chain and automatically detecting
this reference point using a 3D vision system.

2) We show that hand-eye calibration with single RGB
and depth images has more competitive accuracy for
position and orientation errors than classical hand-eye
calibration methods and the state-of-the-art.

3) We show that it is possible to carry out hand-eye
calibration without explicit camera extrinsic calibration
(i.e. camera pose).

Fig. 2. (a) and (b) depict the two real-world robotic testbeds used in this
paper, as observed from the camera view.

II. RELATED WORK

By having knowledge of the end-effector poses and the
corresponding camera poses, either a mathematical model or
deep learning model is needed to find the geometric trans-
formation between the robot’s end-effector and the camera.
AX “ XB is the simplest mathematical formulation for
hand-eye calibration, where X is the hand-eye geometric
transformation, while A and B represent the relationship
between two or more successive end-effector poses and the
camera pose, respectively. This formulation can be decom-
posed into orientation and position and solved separately or
simultaneously. Tsai [4] proposed a closed-form solution to
separately estimate the orientation and position. However,
Tsai’s approach has introduced hard constraints, such as the
upper bound for the distance between the camera and the
robot centre. It also suffers from singularities for 0 and π
radians. Hence, Chou and Kamal [5] used quaternions to
address this singularity problem. On the other hand, [6] and
[7] proposed simultaneous approaches to solve AX “ XB.

AX “ XB approaches are highly affected by the quality
of the camera and robot calibrations. To solve this problem,
AX “ Y B has emerged as a new mathematical representa-
tion for hand-eye calibration. In this formulation, A and B
represent the pose of the robot’s end-effector and the pose
of the camera, respectively; while Y is the geometric trans-
formation between the robot base and the world coordinate
base, and X is the hand-eye transformation. Zhuang et. al
[8] and Hirsh et. al[9] proposed to separately get orientation
and position components of the transformation between the
robot and the camera for AX “ Y B formulation. Li et.
al [10] propose a Kronecker product-based approach to
simultaneously calculate both the translation and orientation
components of X and Y . They also reveal that the Kronecker
product has better performance than quaternion and dual-
quaternion approaches. Zhao [11] also proposed a linear
programming solution to simultaneously obtain components
of unknown transformations of X and Y .

Another model for hand-eye calibration is to utilise the 3D
to 2D points projection error. In this formulation, differences
between the estimated pixel locations of n keypoints and
their actual pixel location in m different frames are used
as an objective function for hand-eye calibration. Andreff et
al [12] proposed an approach that consisted of estimating
the camera pose via Structure-from-Motion (SfM). Haller et
al [13] extended [12] and estimated the position and orien-
tation components of the unknown hand-eye transformation

between the camera and the robot. Zhi and Schwertfeger [14]
propose an iterative projection-based approach for hand-eye
calibration.

In contrast to classic feature detection methods, deep
learning-based keypoint detection approaches have gained
attention over the last decade. In [3] and [15], deep learning
architectures were proposed to detect 2D key points on
images. Then they employed a Perspective-N-Point (PnP)
algorithm [16] to get the camera pose with respect to the
robot base. To the best of our knowledge, only one approach
[17] directly employs deep learning to solve hand-eye cal-
ibration. In contrast to our approach, they considered the
eye-in-hand configuration: in other words, they attached the
camera to the robot’s end-effector. Although they employed
three architectures for hand-eye calibration, they presented
that a direct regression model has better performance than
others. However, they only used images to regress the camera
pose with respect to the robot’s end-effector, while ignoring
the corresponding end-effector poses. The camera pose could
be acquired from images as in our approach, but the corre-
sponding end-effector poses should also be considered as
noted in Section II.

To the best of our knowledge, only one approach [17]
directly employs deep learning to solve hand-eye calibration.
In contrast to our approach, they considered the eye-in-
hand configuration: in other words, they attached the camera
to the robot’s end-effector. Although they employed three
architectures for hand-eye calibration, they presented that a
direct regression model has better performance than others.
However, they only used images to regress the camera pose
with respect to the robot’s end-effector, while ignoring the
corresponding end-effector poses. The camera pose could be
acquired from images as in our approach, but the correspond-
ing end-effector poses should also be considered as noted in
Section II.

III. METHODOLOGY

Fig 1 shows the hand-eye calibration formulation in this
paper. A, B, and X are the pose of the reference point with
respect to the robot base, the pose of the camera with respect
to the reference point, and the geometric transformation be-
tween the camera and the robot base, respectively. The poses
of the end-effector or reference points and the corresponding
poses of the camera in consecutive frames should be known
for hand-eye calibration. Note that the reference point we
used in this paper is defined as the last reference frame in the
robot’s end-effector that is connected to the robot’s kinematic
chain. Hence, we proposed three main research questions
that test the usability of deep learning-based approaches as
a solution to hand-eye calibration.
Q1 In contrast to closed-form hand-eye approaches, is it

possible to find the geometric transformation between
the camera and the robot where camera and robot
calibrations are known in advance by using a neural
network?

Q2 Is it possible to find the camera’s pose with respect to
the reference point by observing the motions of this

reference point via a 3D vision system and using deep
learning as a calibration model?

Q3 Is it possible to carry out hand-eye calibration where
camera calibration is not known by observing the mo-
tions of a reference point via a 3D vision system and
employing a deep learning-based regression architec-
ture?

We conduct experiments in a simulation environment
for all these research questions. For Q3, we also conduct
experiments in the real world because it is not possible to
get ground truth for Q1 and Q2 in the real world. In Q1, we
aim to test the feasibility of a deep learning-based approach
as a hand-eye calibration model. In this experiment, it is
assumed that the robot calibration and the camera calibration
are known. We thus design a deep learning-based regression
architecture that takes as input the known transformation
of the reference point (A) and the camera pose (B), and
it outputs the unknown hand-eye transformation (X).

In Q2, we investigate the applicability of a deep learning-
based regression model for camera calibration. In this ex-
periment, the extrinsic camera parameters are unknown, as
opposed to the Q1 configuration. We thus estimate these
extrinsic parameters with respect to the reference point by
tracking the reference point using a 3D vision system. We
also extend the regression model in Q1 to input the pose
(A) of the reference point with respect to the robot’s world
frame and the corresponding RGB and depth images. This
architecture outputs the pose (B) of the camera with respect
to the robot’s world reference frame.

Finally, in Q3, we aim to directly carry out hand-eye
calibration by using a deep learning-based regression ar-
chitecture. In this configuration, the robot calibration and
the camera’s intrinsic parameters are assumed to be known,
while the camera pose and the geometric transformation
between the camera and the robot base are unknown. Poses
of the reference point (A) in n frames and the corresponding
RGB and depth images are used as inputs to a DL-based
regression architecture that estimates the unknown geometric
transformation (X). Fig. 2 shows the the experimental setup
and network architecture for Q3.

IV. SIMULATION EXPERIMENTS

We conducted experiments for all research questions in
Section III in a simulation environment. Data generation,
designed deep learning-based regression architectures and
experimental results are discussed in the following subsec-
tions.

A. Data Generation

A virtual Universal Robot 10 (UR10) and an RGBD
camera are deployed in the PyBullet simulation environ-
ment. Figure 3(a) shows our data generation approach. We
place this camera in over 106 locations in the PyBullet
environment, and the robot end-effector is moved to 50
different configurations for each camera pose. For Q1, the
reference point poses with respect to the robot base (A) and
the camera base (B), and the homogeneous transformation

between the robot base and the camera (X) are recorded for
each end-effector configuration. For Q2, we capture RGB
and depth images, and the reference point poses with respect
to the robot base (A), and the homogeneous transformation
(B) between the camera and the reference point (camera’s
extrinsic parameters with respect to the reference point) for
each end-effector configuration. Finally, we capture RGB
and depth images for each end-effector configuration as well
as the geometric transformations of A and X for Q3. We
randomly select 21 camera poses for the test set in 106
camera configurations, which means we have 21x50 unseen
data points.

In our data, X, A, and B consist of a seven-element array
where the first three elements represent the position, and
the last four elements are the orientation parameters (unit
quaternion) of the transformation. Each RGB image are 16´

bit with a resolution of 1024x1024 pixels, while each depth
image is 16 ´ bit with a resolution of 1024x1024 pixels.

B. Network Architectures

We design a deep learning-based regression architecture
for Q1 which outputs the geometric transformation between
the robot base and the camera. We train our architecture
separately to estimate this transformation’s position and
orientation components since the solution spaces of these
components are in different units. The designed architecture
for Q1 consists of three fully connected layers with a ReLU
activation function. We use euclidian and quaternion spaces
for position and orientation, respectively. This network starts
with 512 neurons and systematically halves each layer except
the last layer, which is three and ten for position and
orientation, respectively. For position estimation, the last
three neurons directly represent the camera’s position with
respect to the robot base in 3D cartesian space. However,
for orientation estimation, the last ten neurons are converted
4x4 symmetric matrix S(θ) and passed the Quadratically
Constrained Quadratic Program-based model presented [18]
to produce the unit quaternion representing the camera’s
orientation in 3D cartesian space. The designed architec-
ture was trained end-to-end for 50 epochs using Adam
optimiser[19], with a learning rate and batch size of 1e ´ 3
and 100, respectively, for the position. We used 100 epochs
for orientation without changing other parameters because
orientation learning is slower than the position.

A deep learning-based regression architecture was also
developed for Q2 and Q3. As opposed to the Q1 architecture,
our new network takes as inputs the RGB and depth images
(256x256 dimension) as well as the poses of the reference
point with respect to the robot base. For this architecture,
we were inspired by the U-Net architecture [20], and we
tailored its encoder part to extract features from RGB and
depth images separately (as shown in 3(b)). The encoders
consist of two double Conv2D-3x3 layers (stride set to 1
and padding 0), followed by a Maxpool-2x2 layer with ReLU
activation functions. Then, we concatenate encoded features
for RGB and depth images with the known transformation
A. Finally, we employ a fully connected network with three

Fig. 3. This figure shows our experimental design for Q2 and Q3. (a) our data collection process is shown where the camera is placed at m different
locations, and n different end-effector configurations are run for each camera pose. (b) we show our deep learning-based architecture. We separately extract
features from the RGB and depth images by using U-Net type encoders. Then, we concatenated these features with the known transformation of the
reference point with respect to the robot base (A). We trained our network separately for position and orientation estimation because their solutions are in
different metric spaces. This network outputs either the translation or orientation component of the unknown geometric transformations (B for Q2 and X
for Q3).

TABLE I
EXPERIMENTAL RESULTS IN SIMULATION

Position Error (mm) Orientation Error (degree)
Mean 1 Std Mean 1 Std

Q1 0.415 0.016 2.31 0.85
Q2 5.44 0.343 10.52 2.05
Q3 0.296 0.086 5.84 1.23

hidden layers to estimate either the translation or orientation
component of the unknown transformation B and X for Q2
and Q3, respectively. We trained our network separately
for position and orientation because of differences in their
solution spaces. For Q2 and Q3, we trained our network for
20 and 100 epochs by using Adam optimiser[19] for position
and orientation, respectively. We also used 4 mini-batches
and 1e ´ 3 learning rate for both of them.

C. Loss Function and Metric

We used the Mean Square Error (MSE) to train our models
for the position. After training, we used the Root Mean
Square Error (RMSE) metric to obtain the accuracy of the
solution in the original units (meters). After calculating the
RMSE for positions, we converted them to millimetres to
interpret them. For orientation, we employed the chordal
loss function presented in [18]. To interpret the orientation
parameters, we converted them to degrees.

D. Experimental Results

We trained our network three times for each research
question with parameters mentioned in Section IV-B. Table
I shows the mean and standard deviation of all research
questions’ position and orientation results. We directly com-
pared Q1 and Q3 because they are hand-eye calibration
solutions. However, direct comparison of Q2 with Q1 and
Q3 is not possible because Q2 is about the camera’s extrinsic
parameters only.

Our approach has 0.42 and 0.29 mm positional errors for
Q1 and Q3. This means that by using RGB and depth images

as inputs instead of processing only geometric transforma-
tions of the reference point has resulted in better results.
However, using images caused a higher standard deviation
(0.016 mm for Q1 and 0.086 mm for Q3). As for Q2, the
position error is 5.44 mm (standard deviation, 0.343 mm) and
orientation error is 10.52 degrees (standard deviation 2.05 de-
grees). Although these results are competitive, using multiple
reference points instead of one such as in our approach can
increase the success rate of explicit camera pose estimation.
However, the estimating the camera extrinsic parameters is
outside of the scope of this paper as we only consider the
hand-eye calibration problem. Future work would comprise
exploring the effects of multiple reference points to gather
further evidence to support Q2.

V. REAL-WORLD EXPERIMENTS

A. Data Generation

a) Universal Robot (UR3) robotic testbed: We
equipped the UR3 robot with a Shadow Modular Grasper
[21] with three fingers and three joints for each finger (total, 9
degrees of freedom) and selected the last link of one of these
fingers as a reference point. The UR3 has a repeatability of
0.1 mm. Then, we placed a Stereolab’s ZED camera [22]
in 24 different locations around the robot’s workspace. We
used the Robot Operating System (ROS)[23] to control the
robot and connect the camera. We employed the Tsai hand-
eye calibration method [4] for each camera pose to get a
baseline for the geometric transformation between the robot
base and the camera for each of the 24 different camera
locations (19 for training and 5 for testing). We carried out
Tsai’s method[4] five times for each camera configuration,
and we used the best calibration result as the input to our
regression neural network. The rationale for repeating the
calibration five times is that Tsai’s calibration depends on the
quality of pose sequences. Table II shows the average of the
best of these five hand-eye calibration attempts for the UR3
via [4]. Then, we allowed the robot to plan for 100 different

TABLE II
AVERAGE MEAN AND STD OF m CAMERA CONFIGURATION FOR TSAI

HAND-EYE CALIBRATION METHOD (GROUND-TRUTH) ON TWO ROBOTIC

TESTBEDS

Baxter UR3
Mean 1 Std Mean 1 Std

2.411380316 0.9667983579 1.039966529 0.4237020321

robot end-effector poses for each camera location, and we
captured RGB and depth images using the camera while we
recorded the poses of the reference point with respect to the
robot base using the ROS the Transform Library (TF)[24]
library. Overall, we captured 2400 RGB and depth images
of 1920×1080 image resolution.

b) The Rethink Baxter robotic testbed: The Baxter
robot with electric parallel grippers was used as a second
robotic testbed. Baxter has a repeatability in the left and
right arm of 2.9 mm and 3.3 mm, respectively [25]. As it
can be observed, the UR3 has better repeatability than Baxter.
This repeatability difference allows us to quantitatively mea-
sure whether our approach can accommodate tear and wear
as Baxter compliant actuation system inherently introduces
errors in the robot’s end-effector positioning.

The Seterolab’s ZED camera was placed in 19 configu-
rations (14 for training and 5 for testing), and Tsai hand-
eye calibration was employed to get a baseline for each
camera pose. As with the UR3, we carried out Tsai’s hand-
eye calibration five times for each camera configuration and
used the best calibration as the input to the neural network.
Table II shows the average of the best of these five hand-eye
calibration attempts for the Baxter via [26]. The right finger
of the right gripper in Baxter was selected as the reference
point for Q3. Similar to the UR3, we employed the ROS and
TF library to control the robot and get the reference point
transformations. For each camera configuration, we allowed
the end-effector on the right arm of the Baxter robot to
move to 85 different poses for each camera location. We also
capture the RGB and depth images and record the geometric
transformation between the robot base and the reference
point. Overall, we collected 1,615 RGB and depth images
with an image resolution of 1920×1080 pixels.

B. Network Architecture

We develop a deep learning-based regression architec-
ture for Q3. This architecture is similar to the designed
architecture (Fig.3(b)) for Q3 in the simulation environment
(Section IV-B). However, we increase the double Conv2D-
3x3 layers (stride set to 1 and padding, 0) from two to five
because of the real-world complexity. The shallow network
had remarkable success in the simulation environment, and
during the development of this architecture, we found that
we needed a deeper network for these experiments. We train
our network for 20 epochs using the Adam optimiser with
four mini-batch and a learning rate of 1e ´ 4 for position
and orientation parameters estimation. We train our network
three times with the same seed to account for the variation
coming from the optimiser. We record all training repetitions

TABLE III
EXPERIMENTAL RESULTS FOR BAXTER AND UR3 ROBOTS

Position Error (mm) Orientation Error (degree)
Mean 1 Std Mean 1 Std

Baxter 4.543 0.081 9.2 1.35
UR3 2.07 0.331 5.8 1.02

in our results.

C. Real-world Results

Table III summarises the position and orientation results
for Q3 for the Baxter and UR3 robotic testbeds. As stated
in Section V-B, we employed Tsai’s hand-eye calibration to
obtain a baseline and as the input to our neural network. For
the UR3 robotic environment, our approach has 2.07 mm and
5.8 degrees of error in the test set (i.e. unseen camera and
robot’s end-effector poses) for translation and orientation,
respectively. For Baxter, our approach obtained 4.54 mm
and 9.2 degrees of error in the test set for translation and
orientation, respectively. As expected, the difference between
the UR3 and Baxter calibration results is due to Baxter being
inherently inaccurate; however, our approach is able to only
double the error and still remain below similar approaches
reported in the literature (see Table IV).

We employ the indirect error function presented and used
in [4], [17] to make a fair comparison with the literature
because the results are highly dependent on the experimental
setup, the robot and the camera. However, this error function
shows the repeatability of a hand-eye calibration approach
which is independent to the robotic environment. That is,
the indirect error function is given in Eq. V-C.

ϵstd “
1

k

K
ÿ

k“1

1

m

m
ÿ

j“1

˜

1

n

n
ÿ

i“1

}xkji ´ µkj}22

¸
1
2

p4q

where k, m, and n are the neural network training rep-
etitions (see Section V-B), the total number of unseen
camera configurations and the total number of end-effector
configurations for each camera configuration.xkji represents
the predicted position value for kth repetition, jth camera
configuration, and ith end-effector configuration. Moreover,
µkj is the positional mean of the kth repetition and jth camera
configuration.

Table IV shows the comparison between our baseline,
the state-of-the-art and our approach. The first two rows
summarise the best Tsai’s hand-eye calibrations in our
experiments for the Baxter and UR3 robots. We run five
times Tsai’s hand-eye calibration method for each camera
configuration. In comparison with the state-of-the-art deep
learning approaches, our approach has less variance and
is close to the best Tsai’s calibration we obtained in our
experiments. That is, Lee et al. [3] and [17] report an indirect
error of 27.4 mm and 10.4 mm with respect to their sample
mean, respectively. This represents a difference of 23.45 mm
and 6.45 mm with respect to our approach in the UR3.
We note that [3] and [17] do not use a reference point
that is aligned to the robot’s kinematic chain but, instead,

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART

Method Position(ϵstdpmmq)
Tsai-Baxter (22.41˘29.96)
Tsai-UR3 (15.5˘19.24)

Keypoint+PnP lee2020camera (27.4˘4.7)
Direct Regression valassakis2022learning (10.4˘4.0)

Our approach-Baxter (9.66˘1.58)
Our approach-UR3 (3.95˘1.25)

they relied on the captured images to infer the hand-eye
calibration parameters. In our approach, we explicitly defined
a reference point from which a neural network can create an
embedding that takes into account the robot’s end-effector
and the kinematic chain (i.e. robot calibration in Sec. II).

VI. CONCLUSIONS

We have described a deep learning-based hand-eye cal-
ibration approach that enabled us to find the unknown
geometric transformation between the robot base and an
external camera without data recollection after training the
network. In our experiments, the motion of a single point
(reference point) selected on the robot’s end-effector were
tracked via a 3D vision system. We also proposed three
research questions (Section III). For Q1, we showed that
a deep learning-based regression model can be used as a
hand-eye calibration model instead of mathematical models
(e.g. [4]). In this approach, we assumed that the robot and
camera calibration are known, and we directly estimated the
unknown transformation via a deep learning-based regression
model. For Q2, camera calibration is unknown; hence, we
tailored this regression approach by adding two encoders
for RGB and depth images to find the camera’s extrinsic
parameters. Finally, we employed this network architecture
to estimate the unknown transformation between the camera
and the robot base in Q3. We conducted experiments in a
simulation environment for all these research questions, and
our experimental results reveal that a deep learning model
can be used as a hand-eye calibration. To further validate
our approach, we also performed experiments for Q3 on
two real robotic environments (a Universal Robot 3 and the
Rethink Baxter robot), where we obtained an overall position
error of 2.07 and 4.54 mm, and orientation error of 5.8
and 9.2 degrees, respectively. These results show that our
approach is robust to camera pose changes while only having
a repeatability error of 3.95% and 9.6% for unseen camera
poses (e.g. camera poses that were not used for training our
network).

REFERENCES

[1] J. Jiang, X. Luo, Q. Luo, L. Qiao, and M. Li, “An overview of hand-eye
calibration,” The International Journal of Advanced Manufacturing
Technology, pp. 1–21, 2021.

[2] K. Pauwels and D. Kragic, “Integrated on-line robot-camera cal-
ibration and object pose estimation,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
2332–2339.

[3] T. E. Lee, J. Tremblay, T. To, J. Cheng, T. Mosier, O. Kroemer,
D. Fox, and S. Birchfield, “Camera-to-robot pose estimation from a
single image,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 9426–9432.

[4] R. Y. Tsai, R. K. Lenz et al., “A new technique for fully autonomous
and efficient 3 d robotics hand/eye calibration,” IEEE Transactions on
robotics and automation, vol. 5, no. 3, pp. 345–358, 1989.

[5] J. C. Chou and M. Kamel, “Finding the position and orientation of a
sensor on a robot manipulator using quaternions,” The international
journal of robotics research, vol. 10, no. 3, pp. 240–254, 1991.

[6] K. Daniilidis, “Hand-eye calibration using dual quaternions,” The
International Journal of Robotics Research, vol. 18, no. 3, pp. 286–
298, 1999.

[7] R. Horaud and F. Dornaika, “Hand-eye calibration,” The international
journal of robotics research, vol. 14, no. 3, pp. 195–210, 1995.

[8] H. Zhuang, Z. S. Roth, and R. Sudhakar, “Simultaneous robot/world
and tool/flange calibration by solving homogeneous transformation
equations of the form ax= yb,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 4, pp. 549–554, 1994.

[9] R. L. Hirsh, G. N. DeSouza, and A. C. Kak, “An iterative approach
to the hand-eye and base-world calibration problem,” in Proceedings
2001 ICRA. IEEE International Conference on Robotics and Automa-
tion (Cat. No. 01CH37164), vol. 3. IEEE, 2001, pp. 2171–2176.

[10] A. Li, L. Wang, and D. Wu, “Simultaneous robot-world and hand-eye
calibration using dual-quaternions and kronecker product,” Interna-
tional Journal of Physical Sciences, vol. 5, no. 10, pp. 1530–1536,
2010.

[11] Z. Zhao, “Simultaneous robot-world and hand-eye calibration by the
alternative linear programming,” Pattern Recognition Letters, vol. 127,
pp. 174–180, 2019.

[12] N. Andreff, R. Horaud, and B. Espiau, “Robot hand-eye calibration
using structure-from-motion,” The International Journal of Robotics
Research, vol. 20, no. 3, pp. 228–248, 2001.

[13] J. Heller, M. Havlena, A. Sugimoto, and T. Pajdla, “Structure-from-
motion based hand-eye calibration using l minimization,” in CVPR
2011. IEEE, 2011, pp. 3497–3503.

[14] X. Zhi and S. Schwertfeger, “Simultaneous hand-eye calibration
and reconstruction,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1470–1477.

[15] J. Lambrecht, “Robust few-shot pose estimation of articulated robots
using monocular cameras and deep-learning-based keypoint detection,”
in 2019 7th International Conference on Robot Intelligence Technology
and Applications (RiTA). IEEE, 2019, pp. 136–141.

[16] V. Lepetit, F. Moreno-Noguer, and P. Fua, “Epnp: An accurate o (n)
solution to the pnp problem,” International journal of computer vision,
vol. 81, no. 2, p. 155, 2009.

[17] E. Valassakis, K. Dreczkowski, and E. Johns, “Learning eye-in-hand
camera calibration from a single image,” in Conference on Robot
Learning. PMLR, 2022, pp. 1336–1346.

[18] V. Peretroukhin, M. Giamou, D. M. Rosen, W. N. Greene, N. Roy,
and J. Kelly, “A smooth representation of belief over so (3) for deep
rotation learning with uncertainty,” arXiv preprint arXiv:2006.01031,
2020.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[21] S. R. Company, “Modular grasper,” https://modular-grasper.
readthedocs.io/en/latest/user guide/1 introduction/, 2022, last accessed
10 February 2022.

[22] S. Inc., “Zed,” https://www.stereolabs.com/zed, 2022, last accessed 10
February 2022.

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng et al., “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[24] T. Foote, “tf: The transform library,” in 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA). IEEE, 2013,
pp. 1–6.

[25] K. S. Chen, “Application of the iso 9283 standard to test repeatability
of the baxter robot,” 2015.

[26] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE Journal on Robotics and Automation, vol. 3, no. 4, pp. 323–344,
1987.

https://modular-grasper.readthedocs.io/en/latest/user_guide/1_introduction/
https://modular-grasper.readthedocs.io/en/latest/user_guide/1_introduction/
https://www.stereolabs.com/zed

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	SIMULATION EXPERIMENTS
	Data Generation
	Network Architectures
	Loss Function and Metric
	Experimental Results

	REAL-WORLD EXPERIMENTS
	Data Generation
	Network Architecture
	Real-world Results

	CONCLUSIONS
	References

