
IFAC PapersOnLine 54-1 (2021) 31–36

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2021.08.154

10.1016/j.ifacol.2021.08.154 2405-8963

Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Module Failure Feature Detection by
Cluster Analysis for Fleets of Civil Aircraft

Engines �

Hang Zhou ∗ Alexandra Brintrup ∗∗ Ajith Kumar Parlikad ∗∗∗

∗ Institute for Manufacturing, Department of Engineering, University
of Cambridge, Cambridge, UK (e-mail: hang.zhou@eng.cam.ac.uk)

∗∗ Institute for Manufacturing, Department of Engineering, University
of Cambridge, Cambridge, UK (e-mail: ab702@cam.ac.uk)

∗∗∗ Institute for Manufacturing, Department of Engineering, University
of Cambridge, Cambridge, UK (e-mail: aknp2@cam.ac.uk)

Abstract: During the operation of airplanes in the aviation industry, the stochastic environment
in which the airplanes are being operated creates high complexity in planning the fleet
overhauls for the aircraft engines. In order to perform efficient and cost-effective overhauls,
the maintenance approach is to exchange the modules that caused the removal of engines from
airplanes. Typical civil aviation engine consists of eight modules, in order to avoid disturbance
for engine end users (airlines), all the modules should be available and well planed in any period
of time window. This paper aims to provide a module planning solution based on the fleet
operational history of aircraft engines, in order to cluster the engine performances into featured
zones for overhaul module demand estimation.
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1. INTRODUCTION

The interest in the topic of fleet management has been
increasing in recent years, especially in the transportation
sector, e.g., airplanes (Burke et al. (2010)), trains (Lu and
Schnieder (2015)) and automobiles (Nair and Miller-Hooks
(2011)). Fleet management can be defined in a simple form
as: the managing fleets of equipment to meet customer
requests as they evolve over time, the equipment has to
serve customers who typically want to move from one
location to the next (Powell and Topaloglu (2005)). One
significant improvement for fleet management compared
to considering each member of the fleet independently is
the increase of efficiency in task planning (Sohoni et al.
(2011)), as well as saving costs on the fleet life-cycle. This
is particularly beneficial in fleet maintenance planning
(Sheng and Prescott (2019)), spare parts procurement
(Van Horenbeek et al. (2013)) and warehouse management
(Accorsi et al. (2017)). Cutting-edge technologies and al-
gorithms are proposed in the improvement of fleet opera-
tional research in recent years. Including multi-agent deep
reinforcement learning on managing fleet of taxi sharing
services Lin et al. (2018), cloud-based IoT management for
prefabrication transportation in public housing production
background Xu et al. (2019), the IoT-based architecture is
further discussed in its applications on multi-sensor based
predictive maintenance for a fleet of buses on keeping peak
performance of such vehicles Killeen et al. (2019). In order
to perform successful and effective fleet management, the
identification of similarities in performance characteris-
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tics for member assets within fleets is vital as it enables
clustering of similar assets within the fleet and develop
asset management strategies appropriate to each cluster
of assets.

Fleet planning is especially important in the aviation
industry. A typical design of civil aircraft engines con-
tains eight main modules: fan/low pressure compressor
(LPC), intermediate pressure compressor (IPC), high pres-
sure compressor (HPC), combustor (CBT), high pressure
turbine (HPT), intermediate pressure turbine (IPT), low
pressure turbine (LPT), and external gear box (Ackert
(2011)), as shown in Figure 1. An engine overhaul involves
identification of the modules that are the root causes of the
engine removal and replacement of the defective modules
for efficient and cost-effective maintenance. Effective plan-
ning of such overhauls is beneficial for both the engine
manufacturer and its airline customers, as it minimizes
the disturbance of flight operations. One key influential
factor in guaranteeing the effectiveness of this maintenance
strategy is sufficient availability of spare modules in any
given time window. In order to make accurate estimation
of the number and type of spares required, it is important
to understand the performance patterns of the fleet of the
engines with historical operational data, both at the entire
engine level and the module level.

In the aviation industry, the engine life is measured us-
ing two types of measurement scales: flight-hours and
the flight-cycles. There have been studies focusing on
the flight-hour measurement of operation (Kennet (1994);
MacMinn and Jones (1989); Painter et al. (2006); Ashby
and Byer (2002)) and flight-cycle measurement of opera-
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for engine end users (airlines), all the modules should be available and well planed in any period
of time window. This paper aims to provide a module planning solution based on the fleet
operational history of aircraft engines, in order to cluster the engine performances into featured
zones for overhaul module demand estimation.

Keywords: cluster analysis, unsupervised learning, aerospace engineering, maintenance

1. INTRODUCTION

The interest in the topic of fleet management has been
increasing in recent years, especially in the transportation
sector, e.g., airplanes (Burke et al. (2010)), trains (Lu and
Schnieder (2015)) and automobiles (Nair and Miller-Hooks
(2011)). Fleet management can be defined in a simple form
as: the managing fleets of equipment to meet customer
requests as they evolve over time, the equipment has to
serve customers who typically want to move from one
location to the next (Powell and Topaloglu (2005)). One
significant improvement for fleet management compared
to considering each member of the fleet independently is
the increase of efficiency in task planning (Sohoni et al.
(2011)), as well as saving costs on the fleet life-cycle. This
is particularly beneficial in fleet maintenance planning
(Sheng and Prescott (2019)), spare parts procurement
(Van Horenbeek et al. (2013)) and warehouse management
(Accorsi et al. (2017)). Cutting-edge technologies and al-
gorithms are proposed in the improvement of fleet opera-
tional research in recent years. Including multi-agent deep
reinforcement learning on managing fleet of taxi sharing
services Lin et al. (2018), cloud-based IoT management for
prefabrication transportation in public housing production
background Xu et al. (2019), the IoT-based architecture is
further discussed in its applications on multi-sensor based
predictive maintenance for a fleet of buses on keeping peak
performance of such vehicles Killeen et al. (2019). In order
to perform successful and effective fleet management, the
identification of similarities in performance characteris-
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tics for member assets within fleets is vital as it enables
clustering of similar assets within the fleet and develop
asset management strategies appropriate to each cluster
of assets.

Fleet planning is especially important in the aviation
industry. A typical design of civil aircraft engines con-
tains eight main modules: fan/low pressure compressor
(LPC), intermediate pressure compressor (IPC), high pres-
sure compressor (HPC), combustor (CBT), high pressure
turbine (HPT), intermediate pressure turbine (IPT), low
pressure turbine (LPT), and external gear box (Ackert
(2011)), as shown in Figure 1. An engine overhaul involves
identification of the modules that are the root causes of the
engine removal and replacement of the defective modules
for efficient and cost-effective maintenance. Effective plan-
ning of such overhauls is beneficial for both the engine
manufacturer and its airline customers, as it minimizes
the disturbance of flight operations. One key influential
factor in guaranteeing the effectiveness of this maintenance
strategy is sufficient availability of spare modules in any
given time window. In order to make accurate estimation
of the number and type of spares required, it is important
to understand the performance patterns of the fleet of the
engines with historical operational data, both at the entire
engine level and the module level.

In the aviation industry, the engine life is measured us-
ing two types of measurement scales: flight-hours and
the flight-cycles. There have been studies focusing on
the flight-hour measurement of operation (Kennet (1994);
MacMinn and Jones (1989); Painter et al. (2006); Ashby
and Byer (2002)) and flight-cycle measurement of opera-
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Fig. 1. Civil Aircraft Engine Module Overview

tion (Liao et al. (2018); Wang et al. (2018); Sayah et al.
(2020)). However, in the literature there is currently a gap
in the evaluation of civil aircraft engine performance by a
combination of the time-scale measurements. This paper
proposes an approach to evaluate the performance of the
engines with a dual time scale measurement in order to
provide a more comprehensive insight to services when
the fleet of engines are used in a mixture of long-haul,
medium-haul and short-haul flights.

Another key challenge is the complexity of engine over-
hauls associated with a combination of module failures.
Additionally, maintenance logbook records are often writ-
ten in natural language and do not always provide clear
indications of the failed modules. In order to obtain a
clearer insight of the engine level performance and the
module level performance, we propose a solution to bypass
the difficulty in the lack of clear informative maintenance
records - an unsupervised distribution based clustering
approach to divide the engine performances into featured
zones purely based on the statistical characteristics of the
data points. We then utilise the fraction of informative
maintenance records to validate the cluster results, and
finally construct a performance map of the hidden engine
module failure information.

The paper is structured as: in Section 2 the methodology
will be introduced, followed by the results and validation
in Sections 3, with conclusion and future work in Section
4 to end this paper.

2. METHODOLOGY

To enable the evaluation of engine level performance and
module level performance, in order to ultimately achieve
the goal of module demand estimation, the following
analysis steps are taken showing in figure 2. The key
steps are the definition of dual time scale performance, the
fleet survival analysis, the cluster analysis, the validation
by information extracted from the maintenance logbook,
and the application of the analytical results towards the
condition-based estimation of module demands for efficient
maintenance.

2.1 Fleet dual time scale performance re-evaluation

One concept this paper proposes is the performance re-
evaluation of the civil aircraft engines under dual time-
scale measurement. Due to the operation track-record
of each individual engine, the final symptoms being di-
agnosed from the engine which necessitates an overhaul
are either contributed more by the hour-measurement or
more by the cycle-measurement. A representative failure

Fig. 2. Flowchart of analysis steps

mechanism where the hour-measurement is critical is the
physical degradation of creep for components operating
under extreme high temperature (Kassner and Pérez-
Prado (2000)). A representative failure mechanism where
the cycle-measurement is critical is corrosion fatigue where
components are vulnerable with each take-off-landing cycle
due to cyclic loading. A typical corrosion fatigue process
for aviation components starts by particles striking the
surface of the metal material and scratching the anti-
corrosive coatings resulting in pits on the material surface.
The pit initiation is followed by crack propagation due to
fatigue (Zhou et al. (2017, 2018)), for which the crack
propagation rate is widely described by the Paris’ law
(Schütz (1996)).

In order to determine the contribution of the dual-time
scale measurement, both the data collected for engine
hour-to-failure and cycle-to-failure are normalized, taking
the largest value in the dataset as the upper boundary
and 0 as the lower boundary. Assume there are n indi-
vidual engines within the dataset of an engine family, and
each of the individual engine goes through an overhaul
with a measurement of hour hi and a measurement of
cycle ci where i ∈ [1, n]. Among all the measurements,
the maximum service time measurement by hour is hmax

and the maximum service time measurement by cycle is
cmax. For each individual engine with a performance dual

measurement
−−→
Sysi(hi, ci), the normalised dual measure-

ment is
−−→
Sysi = ( hi

hmax
, ci
cmax

), i ∈ [1, n]. The performance
re-evaluation based on the integration of both time scale
measurements is represented as the magnitude of the vec-
tor.

Perfi =

√
(

hi

hmax
)2 + (

ci
cmax

)2 (1)

2.2 Fleet survival analysis

The Kaplan-Meier estimator (Kaplan and Meier (1958))
is applied for the survival analysis of a family of aircraft
engines:

Ŝ(Perfi) =
∏

i:0≤Perfi≤Perfn

(1− di
si
) (2)

Here di represents the total overhaul cases recorded at
joint life estimation of Perfi, and si is the number of

survived engines that have not yet gone through over-
haul at the joint life estimation Perfi. Sorting the data
points within the dataset according to its survival analysis,
each data point contains three types of information: the
normalised hour value, the normalised cycle value and
the fleet survival rate value. These are represented as−−→
Sys

′

i = ( hi

hmax
, ci
cmax

, Ŝ(Perfi))
T . Thus the dataset for the

overhaul data with dual-time scale performance evaluation
and the survival analysis is expressed as:

SREngineFamily1 = [
−−→
Sys1

′
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Sys2
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, · · · ,
−−−→
Sysn
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]
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 (3)

SREngineFamily1 is a 3× n dimensional matrix.

2.3 Cluster Analysis

In order to perform the clustering analysis, the three-
dimensional dataset of SREngineFamily1 is in need of di-
mensionality reduction. One of the common dimensional-
ity reduction methods is Principal Component Analysis
(PCA). The purpose of performing PCA in the dataset
is that the clustering algorithm performs better while the
dataset maintains the most information and the topolog-
ical relationships among all the data points. Following
the PCA, the clustering of datapoints are trialed with
three major clustering approaches: the partition-based
approach, the fuzzy-based approach and the distribution-
based approach.

PCA The first data processing step, the PCA, is specif-
ically a three-dimensional to two-dimensional transferring
problem Jian Yang et al. (2004).

Clustering Methods Three distinctive clustering ap-
proaches are trialed in this research, based on three mea-
suring philosophies. First, the K-means algorithm, which
is a hard-clustering method where each data point is
allocated to one sub-group and one only based on the
measurement of distance among the datapoints and their
nearest cluster centroids. The distance metrics being used
the most frequently are Euclidean Distance (Warren Liao
(2005)) and Manhattan Distance (de Amorim and Hennig
(2015)). Second, the fuzzy C-means clustering method is
an extension of the hard-clustering K-means method. The
major difference is the inclusion of the fuzzy-partition ma-
trix (Warren Liao (2005)). Third, the distribution cluster-
ing approach, represented by the Gaussian Mixture Model
(GMM), allocates each observation in the dataset to the
distributions that are most likely to be the same. This
method is the main approach applied in this research,
while the K-means and the fuzzy C-means are used as
references to the determination of the most reasonable and
optimized number of clusters without prior knowledge of
the datasets.

According to the GMM, with a set of observations x =
(x1, x2, · · · , xn), and a weighted sum of m clusters. The
Gaussian mixture density is defined as (Hedelin and
Skoglund (2000)):

fx|w,θ̂(x | w, θ̂) =
m∑
i=1

wifx|θ̂i(x | θ̂i) (4)

where wi is the weight of each observation and the obser-
vation densities are:

fx|θ̂i(x | θ̂i) = (2π)−
k
2 det(Σi)

− 1
2 e−

1
2 (x−µi)

TΣ−1
i

(x−µi) (5)

Here, µi represents mean vectors and Σi represents the
covariance matrices. The purpose of the GMM clustering
is to obtain the parameters of clustered Gaussian distri-

bution parameters θ̂.

In order to obtain the optimised values for the parameters
in the GMM, the purpose is to the maximize the log-
likelihood function given N independent samples from the
identically distributed samples of x observations (Hedelin
and Skoglund (2000)).

L(θ̂) =

N∑
n=1

ln
m∑
i=1

wifx|θ̂i(xn | θ̂i) (6)

Where the expectation-maximization (EM) algorithm
(Dempster et al. (1977); Yang et al. (2012)) is applied.

Cluster Number Determination With limited to no prior
knowledge of the datasets, one obstacle for unsupervised
clustering analysis is the determination of the most suit-
able cluster numbers. There are several existing conven-
tional cluster number determination method, including the
elbow method (Green et al. (2014)) and the silhouette
statistic index (Xu et al. (2012)) for K-means clustering.
Applying the fuzzy partition coefficient (FPC) (Trauwaert
(1988)) for the fuzzy c-means clustering method. And both
the Bayesian Information Criterion (BIC) and the Akaike
Information Criterion (AIC) for the GMM method. How-
ever, it is well known that without pre-defined knowledge
and especially when the dataset contains high-complexity
information, the conventional clustering number determi-
nation can be ineffective (de Amorim and Hennig (2015)).
In this paper, the optimized cluster number is determined
by the unweighted fuzzy logic decision making approach,
by utilizing the values calculated from the fuzzy logic
membership (Agrawal et al. (2008)).

µi =





1, if Fi ≤ Fi
max

Fi
max−Fi

Fi
max−Fi

min , if Fi
max < Fi < Fi

min

0, if Fi ≥ Fi
max

(7)

Here, µi is the fuzzy logic membership value of the
ith objective function Fi. The normalized membership
function for each non-dominated solution is written as:

µ[h] =

∑p
i=1 µi[h]∑q

h=1

∑p
i=1 µi[h]

(8)

By definition, the optimal number of clusters refers to the
minimum normalized fuzzy membership value.
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Fig. 3. Sorted overhaul performance profile with survival
analysis for engine family

Fig. 4. PCA transformation on the ’Waterfall Model’ for
engine family 1

3. RESULTS AND VALIDATION

The datasets we use contain fleets of engine families; each
family has the same design and thrust, being used by
multiple airlines in very different operational environments
and regimes. The datasets, taken five rows from the engine
family 1 as an example, is shown in Table 1. Note that for
confidential reasons, the hour-to-failure and the cycle-to-
failure values are scaled by a factor.

Table 1. Example of dataset for engine family

Design
Model

Thrust
Level

Serial
Code

Airline
Overhaul
(Hour)

Overhaul
(Cycle)

Z A 1003 AL26 2.2× 108 1.9× 107

Z A 1054 AL28 3.4× 108 3.1× 107

Z A 1079 AL01 6.4× 108 4.5× 107

Z A 1078 AL11 1.2× 109 9.3× 107

Z A 1114 AL15 5.1× 108 4.3× 107

The information obtained from this dataset is the time-
to-overhaul of each engine from either newly purchased or
newly refurbished to its 100% of engine life, the time-to-
overhaul for each individual engine being recorded con-
tains both the hour-to-failure and the cycle-to-failure. Ap-
plying the fleet dual time scale performance re-evaluation
in section 2.1 and the fleet survival analysis in section 2.2,
the engine family forms the ’Waterfall Model’ as shown
in Figure 3. Following the PCA transformation, the data-
points are mapped to a two-dimensional coordinate shown
in Figure 4.

In order to determine the optimized cluster number, as
stated in section 2.3, all of the three clustering approaches

are tested on four different engine families, applying the
fuzzy logic decision making method. The results of the
determined cluster numbers are shown in table 2 for
comparison. Even though the three clustering methods
have different measurements justifying the belonging of
each datapoint towards determined clusters, fundamen-
tally they are all unsupervised learning processes. With
minimum prior knowledge, it is reasonable that the three
methods, with a unified cluster number optimization algo-
rithm, should achieve a similar number of cluster numbers
without being largely different.

Table 2. Summarised optimal cluster number

Cluster Methods
Engine
Family1

Engine
Family2

Engine
Family3

Engine
Family4

K −means 5±1 5±1 5±1 5±1
Fuzzy C −means 4±1 4±1 5±1 6±1
GMM 7±1 5±1 5±1 7±1
Optimal 6 5 5 6

The fuzzy logic decision solved two difficulties the con-
ventional determination methods face. First, the clus-
ter performances tend to unify with different clustering
method: even though the approaches are fundamentally
different, they all reach a certain agreement of the most
optimal cluster for a data being collected from each aircraft
engine family. Second, the distribution based clustering
algorithm, the GMM, by conventional method, is sensitive
with the size of the dataset, particularly when the overhaul
datasets of the four engine families in this research contains
as many as over 1400 records for engine family 1 and as
few as 200 records for engine family 4. With the fuzzy
logic technique, the GMM clustering provides a stable
performance.

Table 3. Example of dataset for engine family

Cluster
(C1)

Cluster
(C2)

Cluster
(C3)

Cluster
(C4)

Cluster
(C5)

Cluster
(C6)

Sub 1 37.5% 18.6% 8.7% 4.4% 25.8% 11.5%

Sub 2 - 35.6% - - - -

Sub 3 - - 41.7% 13.1% 25.8% -

Sub 4 - - 12.2% 33.3% - 9.4%

Sub 5 - - 29.6% 23.2% 38.7% 18.8%

Sub 6 - - - - - 46.9%

Sub 7 25.0% 13.6% - - - -

Sub 8 20.8% 18.6% - - - -

Sub 9 16.7% 13.6% 7.8% 26.1% 9.7% 13.6%

By definition, the optimal number of clusters refers to
the minimum normalized fuzzy membership value . The
associated normalized fuzzy membership values are shown
in Figure 5.

After the determination of the optimized cluster numbers,
the GMM is applied on the datasets, and the cluster results
by a visual observation is shown in Figure 6 (taken the
engine family 1 as an example for the final cluster results).

In order to validate the rationality of the cluster results, a
further step is taken, which is to extract the root cause
of engine removal from the maintenance logbook. The
maintenance logbooks contain descriptions of engine re-
movals in natural language. However, the information that
clearly states the failed modules is limited. We applied
the natural language processing and recognition, to utilize
all the clearly stated removal reasons and validate the

Fig. 5. Normalized fuzzy membership values for four engine
families

Fig. 6. GMM clustering on engine family 1 with the
optimal number of determined clusters

cluster results. Table 3 lists the validation results, com-
bining the extracted knowledge and statistical inference,
to conclude the hierarchy of the risky modules in each of
the determined clusters. Due to confidential reasons, the
exact module names are not provided in the table, but
they are the eight modules of the civil aviation engines
plus fan case, in total represented by nine sub-systems,
or nine ’Sub’s. The example shown here is the validation
results of the engine family 1. The columns represent the
percentage of failed subsystems within each cluster.

The validation results provide the evidence that there is a
distinctive featured failure hierarchy within each divided
clusters based on the engine performances. Each cluster is
distinctive with one leading root cause on one of the mod-
ules for engine removal (red in Table 3), which proves the
rationality of the unsupervised learning result. It is worth
noticing that the clustering results are distribution based
clustering analysis, meaning the determination of main-
tenance records in its allocated cluster is by confidence.
The final module demand estimation is thus calculated by
considering the confidence of the engine useful life falling

into one cluster by the location of the data value in the
distribution confidence zones.

4. CONCLUSION AND FUTURE WORK

One important application of the clustering results lies
in the estimation of module demands in any given time
window for spares planning purposes. With the fleet of
engine being used by airlines everyday, the location of the
engines in the ’Waterfall Model’ is dynamic. The end-of-
life engines are refurbished through overhaul and rejoins
the fleet at the starting point with 100% remaining useful
life. Dynamically the fleet of engines enters one of the
six clustered zones with a different probability of failure,
bearing a degradation feature presented in the results
of this paper. Such properties of the clustering analysis
enable the application of this research as an efficient and
accurate health monitoring and module demand estima-
tion tool, both at the engine level and at the module level,
for the purpose of efficient and cost-effective maintenance
planning.

The next step of this research is to describe the three-
dimensional ’Waterfall’ model and the featured clustering
zones using mathematical functions to improve the sim-
plicity and usability of the research results.

REFERENCES

Accorsi, R., Bortolini, M., Gamberi, M., Manzini, R., and
Pilati, F. (2017). Multi-objective warehouse building
design to optimize the cycle time, total cost, and carbon
footprint. Int J Adv Manuf Technol, 92, 839–854. doi:
https://doi.org/10.1007/s00170-017-0157-9.

Ackert, S. (2011). Engine maintenance concepts for fi-
nanciers - elements of turbofan shop maintenance costs.

Agrawal, S., Panigrahi, B.K., and Tiwari, M.K. (2008).
Multiobjective particle swarm algorithm with fuzzy
clustering for electrical power dispatch. IEEE Trans-
actions on Evolutionary Computation, 12(5), 529–541.
doi:10.1109/TEVC.2007.913121.

Ashby, M.J. and Byer, R.J. (2002). An approach for
conducting a cost benefit analysis of aircraft engine
prognostics and health management functions. In Pro-
ceedings, IEEE Aerospace Conference, volume 6, 6–6.
doi:10.1109/AERO.2002.1036124.

Burke, E.K., De Causmaecker, P., De Maere, G., Mul-
der, J., Paelinck, M., and Vanden Berghe, G. (2010).
A multi-objective approach for robust airline schedul-
ing. Comput. Oper. Res., 37(5), 822–832. doi:
10.1016/j.cor.2009.03.026.

de Amorim, R.C. and Hennig, C. (2015). Recovering the
number of clusters in data sets with noise features using
feature rescaling factors. Information Sciences, 324,
126–145. doi:https://doi.org/10.1016/j.ins.2015.06.039.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977).
Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39(1), 1–38.

Green, R., Staffell, I., and Vasilakos, N. (2014). Divide
and conquer? k-means clustering of demand data allows
rapid and accurate simulations of the british electricity
system. IEEE Transactions on Engineering Manage-
ment, 61(2), 251–260. doi:10.1109/TEM.2013.2284386.



 Hang Zhou  et al. / IFAC PapersOnLine 54-1 (2021) 31–36 35

Fig. 5. Normalized fuzzy membership values for four engine
families

Fig. 6. GMM clustering on engine family 1 with the
optimal number of determined clusters

cluster results. Table 3 lists the validation results, com-
bining the extracted knowledge and statistical inference,
to conclude the hierarchy of the risky modules in each of
the determined clusters. Due to confidential reasons, the
exact module names are not provided in the table, but
they are the eight modules of the civil aviation engines
plus fan case, in total represented by nine sub-systems,
or nine ’Sub’s. The example shown here is the validation
results of the engine family 1. The columns represent the
percentage of failed subsystems within each cluster.

The validation results provide the evidence that there is a
distinctive featured failure hierarchy within each divided
clusters based on the engine performances. Each cluster is
distinctive with one leading root cause on one of the mod-
ules for engine removal (red in Table 3), which proves the
rationality of the unsupervised learning result. It is worth
noticing that the clustering results are distribution based
clustering analysis, meaning the determination of main-
tenance records in its allocated cluster is by confidence.
The final module demand estimation is thus calculated by
considering the confidence of the engine useful life falling

into one cluster by the location of the data value in the
distribution confidence zones.

4. CONCLUSION AND FUTURE WORK

One important application of the clustering results lies
in the estimation of module demands in any given time
window for spares planning purposes. With the fleet of
engine being used by airlines everyday, the location of the
engines in the ’Waterfall Model’ is dynamic. The end-of-
life engines are refurbished through overhaul and rejoins
the fleet at the starting point with 100% remaining useful
life. Dynamically the fleet of engines enters one of the
six clustered zones with a different probability of failure,
bearing a degradation feature presented in the results
of this paper. Such properties of the clustering analysis
enable the application of this research as an efficient and
accurate health monitoring and module demand estima-
tion tool, both at the engine level and at the module level,
for the purpose of efficient and cost-effective maintenance
planning.

The next step of this research is to describe the three-
dimensional ’Waterfall’ model and the featured clustering
zones using mathematical functions to improve the sim-
plicity and usability of the research results.
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