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Abstract

Biological measurements are often contaminated with large amounts of non-stationary

noise which require effective noise reduction techniques. We present a new real-time deep

learning algorithm which produces adaptively a signal opposing the noise so that destructive

interference occurs. As a proof of concept, we demonstrate the algorithm’s performance by

reducing electromyogram noise in electroencephalograms with the usage of a custom, flexi-

ble, 3D-printed, compound electrode. With this setup, an average of 4dB and a maximum of

10dB improvement of the signal-to-noise ratio of the EEG was achieved by removing wide

band muscle noise. This concept has the potential to not only adaptively improve the signal-

to-noise ratio of EEG but can be applied to a wide range of biological, industrial and con-

sumer applications such as industrial sensing or noise cancelling headphones.

Introduction

Low signal-to-noise ratios (SNR) exist in many application domains, such as communications,

acoustics or biomedical engineering. In particular, the Electroencephalogram (EEG) [1–3] has

a low SNR ratio because of its low amplitudes, in the range of a few μV, which are contami-

nated by numerous sources, often orders of magnitude larger than the EEG signal itself [4]. In

this work, we target EEG as an example application and remove non-stationary electromyo-

gram (EMG) noise. However, this concept of algorithmic SNR enhancement is not limited to

this particular use case.

There are two categorical approaches to increasing the SNR of an EEG signal: real-time pro-

cessing and offline post-processing. Concerning the latter, by far the most popular approach is

principal component analysis (PCA) or independent component analysis (ICA) [5–9]. PCA

and ICA methods pre-analyse the raw signals in order to identify and separate the signal and

noise components. This analysis is offline, requires the signal and noise relationships to be

constant over time, and demands high computational power.
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Real-time algorithms, on the other hand, filter the EEG signals as they arrive, sample by

sample, and do not rely on offline pre-analysis, for example, bandpass filters, the short time

Fourier Transform or wavelet transform [10–12]. These techniques still require prior knowl-

edge of the noise to tune the filter parameters. However, muscle noise is non-stationary due to

both voluntary and involuntary contractions of surrounding facial muscles. A solution to this

problem is real-time adaptive filtering in which the noise is removed by an adaptive algorithm

[13–15]. In cases where EEG electrodes are placed on top of the head (i.e. around Cz), one can

assume that noise polluting the EEG originates from further afield and affects all electrodes in

equal measure, while the EEG signals originate locally [16]. A second auxiliary electrode can

be used for measuring the noise solely, this can then be subtracted from the main EEG elec-

trode signal. The most popular design for such an auxiliary electrode is a ring-shaped electrode

around the main EEG electrode where the noise is simply subtracted, this is called the “Laplace

operator” [16–20]. While the idea of simply subtracting the noise is perfect in theory, in prac-

tice, the relationship between the EEG generated in the brain and the resulting signals at the

electrodes are complex and dynamic. This calls for a smart, compound electrode that imple-

ments an adaptive filter to continuously learn about the changing signal and noise conditions.

In this paper, we present a proof of concept for a novel, compound electrode which is inex-

pensive and readily manufacturable, in combination with a new deep learning algorithm. This

system adaptively removes the noise from the EEG by algorithmically creating an opposing

signal to the noise which is, in turn, used to cancel out the noise. This is demonstrated below

by the removal of wideband muscle (EMG) noise.

Methods

General signal requirements

Let us consider a signal ~d½n�measured with an ordinary electrode placed on the head of a sub-

ject:

~d½n� ¼ b½n� þm½n�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

r½n�

þ c½n�
ð1Þ

which is a superimposition of three signals:

1. c[n] is the signal of interest generated by a stimulus or voluntarily, for example, in the set-

ting of a brain-computer interface (BCI),

2. b[n] is the background EEG activity which is involuntary and unaffected by the stimulus,

and

3. m[n] is the accumulation of all artefacts, in particular muscle activity (EMG). The latter two

signals form the total baseline noise r[n] contaminating the EEG component c[n] which is

of interest for diagnostics or BCI applications.

The task is now to reduce r[n] as much as possible with the help of an opposing signal which

ideally eliminates the noise from ~d½n�. As outlined in the introduction, we assume that the

EEG originates locally from a small surface area of the head and that artefacts originate further

afield and, therefore, they have a global and uniform strength across the scalp of the subject.

The use of a second and linearly independent measurement would provide more informa-

tion about the relationship between the global noise and the local EEG signal. Consequently, a

compound electrode (Fig 1A and 1B) is designed with the addition of an annular ring-like

outer electrode around the inner electrode, which acts as the noise reference. Thus, the
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compound electrode collects two separate signals:

~d½n� ¼ r½n� þ c½n� Inner electrode : signalþ noise ð2Þ

~x½n� ¼ h½n� � ðr½n� þ a � c½n�Þ Outer Ring electrode : noise reference ð3Þ

where 0< α� 1 models the crosstalk between the inner ~d½n� and outer ~x½n� electrode signals,

as the signal c[n] of the inner electrode d[n] will also stray into the outer ring. The noise in

turn should ideally be present at both the inner part of the electrode ~d½n� and the outer, ring

electrode ~x½n� but in practice, it will be a filtered version and is modelled with the filter h[n].

The goal of the learning algorithm is to render the signal from the inner electrode ~d½n� as

noise-free as possible so that ideally only c[n] remains. Naively, one could simply subtract the

outer electrode signal ~x½n� from the inner one ~d½n� to obtain a noise-free EEG but in practice,

this is not possible because of changing noise-characteristics which are modelled here with the

filter h[n]. Instead, we present a new machine learning algorithm which learns in real-time

(i.e., when the data is being collected) to alter the signal from the outer noise reference elec-

trode ~x½n� in such a way that it eliminates the noise from the inner electrode which then results

in a noise-free EEG signal. In the next two sections, we describe the electrode and the deep

neural filter algorithm, respectively.

Fabrication of the compound electrode

To record both the noisy EEG and a noise reference, a new compound electrode was designed

(Fig 1A and 1B). The physical design of the electrode was driven by durability, ease of manu-

facture and reliability. Polylactate acid (PLA) was chosen as the electrode material due to its

compatibility, flexibility, and adhesive nature to silver/silver-chloride (Ag/AgCl) ink [21].

Ag/AgCl paste was selected for the conductive portion. Ag/AgCl was selected over alternative

materials such as gold or stainless steel as it is conformable (in ink form) allowing easy applica-

tion to the PLA and inexpensive. In addition, Ag/AgCl has a low half-cell voltage [22], mean-

ing any oxidisation of the electrode will have a minimal effect on the sensitivity of the

electrode. The combination of a flexible backing with conductive paste versus conventional,

rigid, and often uncomfortable gold/platinum electrodes [23, 24], is advantageous as it allows

for optimal skin-electrode contact. This optimal contact ensures minimal inter-electrode

Fig 1. Electrode and deep neural filter. A: Photo of the manufactured compound electrode. The top wire (yellow) connects to the inner electrode and the bottom

wire (blue) to the outer ring electrode. B: Top schematic view of the new compound electrode showing the inner electrode and the outer ring electrode. C: Signal

processing of the two signals originating from the inner and outer ring electrodes: ADC = Analogue Digital Converter, Cond = standard signal conditioning such

as high-pass filtering and 50 Hz removal. T = time delay.

https://doi.org/10.1371/journal.pone.0277974.g001
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impedance resulting in an increased SNR for that electrode whilst also providing more comfort

to the patient [25], making long-term monitoring applications more viable. The compound

electrode consists of two raised ring portions separated by a channel. The PLA geometry was

3D printed and the surface areas of the different electrode compounds were:

Ainner Ring ¼ p � ð6 mmÞ2 ¼ 113 mm2

AOutside ¼ p � ð16 mmÞ2 ¼ 804 mm2

AInside ¼ p � ð10 mmÞ2 ¼ 314 mm2

AOuter Ring ¼ AOutside � AInside

AOuter Ring � 490 mm2

ð3Þ

When selecting the optimal surface areas, there is always a trade-off between localisation and

signal strength. Increasing the area results in more contact area and thus receiving a stronger

signal [26], but decreases the spatial resolution of the signal. In our application, we assume that

EEG has a narrow spatial localisation and therefore requires a small surface area. We also

assume that the noise has a broad spatial localisation as it is predominantly EMG artefacts per-

turbing the scalp all-across. An increase in the outer electrode area would, in theory, allow us

to capture more EMG-noise for the algorithm to self-tune, however, as the signal strength is

already orders of magnitude lower than the noise any realistic adaptation of surface area

(given the necessity of comfort and localisation) would most likely result in negligible SNR

enhancements.

A layer Ag/AgCl paste was deposited on each of the raised rings using a plastic spatula. The

Ag/AgCl was then cured at 70˚C for 1 hour. Fig 1A shows the final printed electrode with

Ag/AgCl applied. Two wires were connected to each electrode substrate by melting the copper

onto the flexible PLA geometry using a soldering iron. Next, pure silver paste and epoxy were

applied to the contact point to ensure reliable electrical contact and solidify the connection,

respectively. This electrode has proven to be robust and easy to both manufacture and inte-

grate into a headband or EEG cap as a wearable device.

Experimental setup for EEG recording

Ethical approval for this experiment was obtained from the ethics committee at the Institute

of Neuroscience and Psychology, School of Psychology at the University of Glasgow, refer-

ence number 300210055. In total, 20 subjects were recruited. Subjects were instructed to read

an information sheet detailing the experiments and were permitted to participate after pro-

viding written consent. Every participant signed two copies of the consent form, one for the

investigator and another for the participant to keep. The ethical approval letter, the informa-

tion sheet and the consent forms are bundled together with the open-access dataset [27]. The

data was acquired using a two-channel data acquisition device (“Attys”, www.attys.tech) with

the data acquisition programs attys-ep and attys-scope. Referring to the interna-

tional 10–20 system, our compound electrode (see Fig 1A and 1B) was placed on the subject’s

head at Cz, with its inner part connected to the positive input of Channel 1 and its outer ring

electrode to the positive input of Channel 2 of the Attys. The A2 electrode (standard adhesive

electrode behind right ear) was connected to the negative input of Channel 1, and the A1

electrode (standard adhesive electrode behind left ear) was connected to the negative input of

Channel 2 which also acted as ground. In the remainder of the paper we will just refer to the

“inner” part and “outer” ring of the compound electrode and their corresponding signals (see
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Eqs 2 & 3). Each subject held two sessions with no intervals to guarantee consistent electrode

signals:

1. In this session the subject generates EEG polluted with EMG noise. To achieve this the sub-

ject was asked to contract their jaw muscle every 15 secs for two minutes to generate EMG

noise. The sampling rate was fs = 500 Hz and was chosen to obtain a flat response in the

EEG frequency band of 0. . .100 Hz due to the sigma-delta converter’s smooth roll-off

towards the Nyquist frequency of 250 Hz.

2. This session is used to obtain the signal power of a noise-free EEG. Since the subject cannot

be paralysed to obtain EMG-free EEG signals, evoked potentials have been chosen to aver-

age out EMG noise. P300 visually induced oddball stimuli were used to determine the pure

EEG signal c[n] and its power (5 minutes). A black and white chequerboard inversion was

presented every second and brightly-coloured horizontal bars as oddballs were randomly

interspersed every 7 sec to 13 sec. The subject had the task of silently counting the number

of oddball stimuli. The sampling rate was fs = 250 Hz; since the evoked potentials have low-

frequency components, only their peak power is of interest in this work.

We are now going to describe our new adaptive noise reduction algorithm which was then

used to remove the EMG noise from the recordings of the different subjects.

Deep Neural Filter (DNF)

Fig 1C shows the block diagram of our Deep Neural Network (DNN) which in conjunction

with the additional building blocks becomes our novel Deep Neural Filter (DNF) to remove

noise (see [28] for the source code). Recall that the deep network exploits the assumption that

the signal from the outer electrode x[n] ideally just contains the noise and that the DNN learns

to subtract it from the signal d[n] originating from the inner electrode at the summation node

“X”.

The error signal e[n] of the network is also the final output of the DNF as is the case with

LMS noise cancellation frameworks. This might appear counter-intuitive, as in classical appli-

cations of neural networks, the error e[n] is expected to converge to zero. At the same time, for

filtering applications, the output is expected to be the clean signal. The key to resolving what

appears to be a contradiction is to realise that before learning the output of the DNF e[n] is a

superposition of both EMG-noise and the pure EEG-signal. The noise component is expected

to converge to zero through learning, leaving only the clean EEG-signal available at the output.

This is possible because the learning that takes place within the DNF network is not solely

driven by the error feedback e[n], rather, it is driven by the correlation of the error feedback

e[n] and the noise reference x[n]. If these two signals correlate, meaning some components of

the noise is present at the output of the DNF, these shared components will be removed by the

remover y[n]. This process will continue until the error feedback e[n] and the noise reference

x[n] no longer correlate, meaning no components of the EMG-noise have remained at the out-

put of DNF. This marks successful learning. In other words, the noise component of the out-

put e[n] has converged to zero despite it being a non-zero signal, this remaining component is

the clean signal. In practice, the noise reference x[n] often contains a certain amount of the

pure EEG signal c[n] which results in a reduction of the EEG signal at the DNF output. On the

other hand, any uncorrelated noise between inner and outer electrodes such as thermal noise

(approx. 65 nV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:38064910� 23 J=K � 4 � 310 K � 1 KO � 250 Hz

p
) or ADC-converter noise

(approx. 100 nV) has no impact on learning and passes through the DNF.

As outlined above the goal is to reduce EMG noise. However, eye-blink artefacts and slowly

changing electrode drift have much higher noise power than EMG. Given that we are
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interested in EMG, we need to provide the reference noise input x[n] with the muscle noise

spectrum and remove the much more powerful low-frequency artefacts such as eye movement

or baseline wander. We do this by employing a high-pass filter which captures the typical

EMG spectrum which is flat above 20 Hz but slowly decays in power below 20 Hz [29] (see

also Fig. AC in S1 Appendix). To force the DNF to learn the noise features of the EMG and

not those of the EOG we set the 2nd order Butterworth high-pass for the noise reference x[n]

to fcx ¼ 5 Hz which gives a shallow rise in the passband. The high-pass filter frequency for the

inner signal d[n] is not critical and was set to fcd ¼ 0:5 Hz to simply remove the DC from the

DC-coupled ADC converter so that all signals are DC-free:

d½n� ¼ g �HPfcd ½n� � BS½n� � LPADC �
~d½n� ð5Þ

x½n� ¼ g �HPfcx ½n� � BS½n� � LPADC � ~x½n� ð6Þ

where HPfcd ½n� and HPfcx ½n� are the 2nd order high-pass Butterworth filters for the inner and

outer electrodes, respectively. BS[n] is a 2nd order Butterworth notch filter against powerline

interference at 50 Hz. LPADC is the low-pass characteristic of the sigma-delta converter with a

cutoff at about half the sampling rate. The gain was set to γ = 1000 so that each neuron in the

input layer of the neural network received values of approximately ±0.2V. The DNF uses as

activation function tanh which saturates for values above approximately one but the input

range of x[n] at ±0.2 will steer clear of any hard saturation. This also prevents vanishing gradi-

ents as the derivative of tanh will be close to one in this regime and will be far off from becom-

ing zero which only happens when tanh saturates. On the other hand at 0.2 the tanh is in its

non-linear regime and the network will use its non-linear properties.

Inspired by a Finite Impulse Response (FIR) filter, we send the signal of the outer electrode

x[n] through a tapped delay line with

Ntapsx
¼
fs
fcx

ð7Þ

taps and then feed it into the Deep Neural Network (see Fig 1C). The signal d[n] is delayed by

Ntapsx
=2 so that the DNN has time to react to pulse-like muscle artefacts arriving at x[n].

The output of the Deep Neural Network y[n] is then used to remove the noise from d[n]:

e½n� ¼ d½n� � y½n� ð8Þ

Ideally, this is the noise-free EEG which is at the same time the error signal for the DNN and

back-propagated in real-time. Learning is “on” (i.e. in effect) at all times, meaning, the network

adjusts to the changes in the electrode contact as they happen.

The network used for DNF is a feed-forward neural network with fully connected layers

designed with L = 6 layers. The number of neurons I(ℓ) per layer index ℓ is calculated as:

b ¼ e
lnNtapsx
L� 1 ð9Þ

Ið‘Þ ¼
�Ntapsx

b‘� 1

�

where : ‘ : 1; . . . ; L ð10Þ

which guarantees that the output layer consists of exactly one neuron which then generates the

“remover” y[n]. In our case with Ntapsx
¼ 50 inputs to the DNF this results in: I = 50, 22, 10, 4,

2, 1 neuron(s) per layer which means that the first layer is fully connected with the same
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number of neurons to the delay line and then the number of neurons are reduced in the form

of a funnel as done in auto-encoders.

The weights of the neurons were initialised to a random value in the range of (0, 1]. Eq 11

below shows the forward propagation of the outer electrode signal x[n] through the first layer

of the network:

a0
j ½n� ¼ tanhðz0

j ½n�Þ ¼ tanh
XNtapsx

k¼0

ðo0

kjx½n � k�Þ

 !

ð11Þ

where x[n−k] is the filtered signal from the kth tap of the delay line for the outer electrode sig-

nal (Fig 1). In contrast to deep networks performing classification we filter a DC-free signal.

For that reason, there are no bias weights to keep the processing DC-free. The activation func-

tion is tanh because it is ideal for signal processing: it is linear at the origin and becomes non-

linear with growing signal strength so that learning can self-tune the non-linear processing. In

the frequency domain, this means the network self-tunes the number of harmonics it is adding

to the signals and thus to the remover y[n].

Similarly, these activations propagate through the deeper layers in the network:

a‘j ½n� ¼ tanhðz‘j ½n�Þ ¼ tanh
XIð‘Þ

i¼0

o‘

ija
‘� 1

i ½n�

 !

where : ‘ : 1; . . . ; L � 1 ð12Þ

Finally, in the output layer, this weighted sum results in the generation of the “Remover”

signal y[n]:

y½n� ¼ tanhðzL
0
½n�Þ ¼ tanh

XIðLÞ

i¼0

oL
i a

L� 1

i ½n�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

zL
0
½n�

0

B
B
B
B
@

1

C
C
C
C
A

ð13Þ

The “Remover” signal y[n] then ideally cancels out the noise from the inner electrode d:

e½n� ¼ d½n� � y½n� ð14Þ

As explained in previous sections, the output of the DNF e[n] is the noise-free EEG signal

and is also used for the learning of the neural network which is done by error backpropaga-

tion:

d
L
¼ e½n� ð15Þ

where δL is the error in the output neuron which is then backpropagated. For deeper layers

this is defined through the back-propagation as:

d
‘

j ¼
XK

k¼1

ðw‘þ1

jk d
‘þ1

k Þ � tanh
0
ðz‘j Þ where : ‘ : L � 1; . . . ; 0 ð16Þ

Remember that we keep the weighted sum z‘j well below one so that the derivative tanh0ðz‘j Þ
stays close to one preventing vanishing gradients.

The changes in weights that cause the optimum reduction in noise are dictated by gradient

descent rule:

Do‘
ij ¼ Za

‘� 1
i � d

‘

j ð17Þ

where η is the learning rate.
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It’s important to note that the effective learning rate ηe directly scales with the amplitude of

the noise reference x[n]:

Za‘� 1
i � d

‘

j � Zx½n�
|ffl{zffl}

Ze

� e½n�
ð18Þ

To have a constant effective learning rate one could either normalise the noise reference x[n]

or adjust the learning rate dynamically if the average amplitude of x[n] is changing. In this

work, we directly set the learning rates to accommodate the two different noise reference

amplitudes of x[n] for the P300 task (η = 10) and the jaw muscle task (η = 2.5) so that the effec-

tive learning rates were the same between the two tasks. The above equation also shows that

learning converges when the correlation between the noise reference x[n] and the error signal

e[n] weakens, meaning no frequency components of the noise present in the outer electrode

signal remain in the output of the DNF filter and thus the noise has been removed.

Calculating the signal-to-noise ratio

The signal from the inner electrode (Eq 2) is a mix of baseline EEG, EMG and the consciously

created EEG signal c[n]. To have a realistic estimate of c[n] we use the power of the primary

peak of the P300 evoked potential. To reduce the noise of the peak we took the median power

between 300 ms and 500 ms which takes into account the 100 ms latency of the wireless trans-

mission between the ADC and the P300 software. This means that in terms of the power of the

signal, we can think of the P300 as a pulse at t = 300ms which could be detected too, for exam-

ple, by setting up a P300 speller. Note that the median over this time interval will underesti-

mate the power slightly. However, this is deliberate because real-time BCI systems hardly

average over 5 minutes (they do so over seconds), meaning they deal with much lower signal

strengths for c[n] and thus using the median filter corrects for overly optimistic signal

strength.

In terms of noise, we are interested in the power of the EMG generated by facial muscles

and the jaw muscle but not in the low-frequency band such as electrooculogram (EOG) or

electrode drift. To assess mainly EMG and underlying EEG background noise we calculated

the periodogram with the Welch method which had a window length at the sampling rate giv-

ing the power density in bins of 1 Hz. The power density samples from 5 Hz. . .125 Hz were

summed up given the total noise power in the frequency band between 5 Hz and 125 Hz.

The SNR is then calculated as:

SNR ¼
medianðv2

P300;�100 msÞ
P125 Hz

k¼5 Hz WelchðvÞ½k�
ð19Þ

where v can be one of the following signals: a) the inner electrode signal d[n], b) the output e
[n] of the DNF, c) the output of a standard LMS-based FIR filter, and d) the output of the

Laplace operator by directly subtracting the raw outer electrode signal ~d½n� from the inner ~x½n�
one.

The recordings from the 20 subjects were then checked for valid EEG/EMG-signals and if

deemed acceptable, processed one by one by the deep neural filter where the network had to

learn from scratch (random re-initialisation of weights) for every subject. All parameters

stayed the same for all subjects.

PLOS ONE Real-time noise cancellation with deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0277974 November 21, 2022 8 / 17

https://doi.org/10.1371/journal.pone.0277974


Results

The data from the 20 subjects [27] were examined for electrode failure or strong external inter-

ference. Subject 2 had a faulty x[n] channel and subject 5 had unexplained strong artefacts pos-

sibly from a power surge. Thus, the results of subjects 2 and 5 were excluded but the data from

all other subjects are presented and analysed in this section. Before presenting the results of all

subjects, as an instructional example, we focus on subject 10 to gain a deeper understanding of

learning behaviour. Fig 2A shows the progress of real-time learning of the DNF over a period

of 2 mins for subject 10. “Inner” shows the signal d[n] of the inner part of the compound elec-

trode. The voluntary jaw muscle contractions every 15 seconds are clearly visible and indicated

with a “�”. Between the muscle contractions, the signal is most likely a mix of baseline EEG

and lower amplitude involuntary facial muscle (EMG) activity. The “Outer” trace shows the

signal from the outer ring electrode x[n] where the EMG bursts, caused by the jaw muscles, are

clearly visible. These two signals, “Inner” and “Outer”, are then sent into the Deep Neural Fil-

ter (DNF). The most important internal signal is the “Remover” y[n] which eliminates the

Fig 2. Signals and weight development from subject 10. The subject was asked to contract their jaw muscles every 15 seconds. The jaw contractions are indicated with

a “�”. A: Four signal traces, namely: the inner electrode signal d[n] which carries a mix of EEG and EMG, the outer electrode signal x[n] which is the noise reference, the

output of the DNN or the “remover” y[n], and the output of the DNF e[n] which is both the output and the error signal. B: Weight development: shows the Euclidean

weight distance from the initial weights of the 6 different layers over time. C: Detailed plot of the same signals as panel A between 89.5 s and 90.5 s. The jaw clench starts

at about 89.8 s.

https://doi.org/10.1371/journal.pone.0277974.g002
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noise (Eq 14). The result of the subtraction e[n] can be observed in the bottom trace “DNF

output”.

Processing of the two minutes of EEG recording at 500 Hz took 105 s on an Intel(R) Core

(TM) i7–5600U CPU running at 2.60 GHz and shows that the DNF filter is real-time on a gen-

eral purpose processor without the need for special GPU hardware. The DNN has in total 6

layers and their weight development, related to Fig 2A is shown in Fig 2B over the two min-

utes. Plotted is the weight distance from the initial randomly initialised weight values. Learning

is fastest during the jaw muscle contractions as the noise reference x[n] has a higher amplitude

and thus the effective learning rate is higher (Eq 18) during the jaw muscle bursts but also con-

tinues to learn between EMG bursts at a lower rate. From about 60 seconds, learning has stabi-

lised with only smaller adjustments to the weights till the end of the experiment. Because the

filter acts in a closed loop corrective action happens where the weights shrink again after a jaw

contraction indicating that jaw muscle recruitment and involuntary muscle activity cause

slightly different correlations so that the network re-adjusts.

Fig 2C shows a zoomed-in segment of Fig 2A between 89.5 s and 90.5 s at the onset of a jaw

clench at about 89.8 s. To see how the removal process works the first trace �d½n� shows the

delayed version of the inner electrode signal (see Fig 1). The noise reference x[n] from the

outer electrode is shown as it is fed into the DNF and then enters its tapped delay line. The

DNF then creates the remover signal y[n] which then cancels out noise in �d½n� which is dimin-

ished at the output of the DNF e[n] in the bottom trace which is also the error signal for train-

ing. As a detailed example of how the removal process works the section marked with the “#”

has been chosen. Remember that the DNF removes anything which is present in both the con-

taminated signal d[n] and the noise reference x[n]. This can clearly be seen that the large peak

is present in both the contaminated signal and the noise reference. Thus, the DNF learns to

remove this peak and leaves the rest of the signal intact. Note that e[n] is also the error signal

which is no longer correlated with the noise reference x[n] which averages out in the learning

rule Eq 17 and consequently, the weights stabilise which is the case at about 90 s into learning

(Fig 2B).

To calculate the SNR, the power of the signal and the power of the noise (see Eq 19) have to

be calculated separately. First, we focus on the signal power. As outlined above, the signal

power is estimated by calculating the power of the primary P300 peak, measured during exper-

imental session 2. Note that there is no need to send the EEG containing the P300 through the

DNF as the event-related averaging eliminates the EMG noise. However, as a sanity check we

inspected the P300 peaks before and after noise reduction, this is shown in Fig 3 for subject 10.

P300 has a low frequency by nature and with the DNF and LMS removing the higher EMG fre-

quencies, one expects that the shape of the P300 is not substantially altered which is confirmed

by comparing the unfiltered Fig 3A and filtered P300 Fig 3B and 3C. The original EEG, the

DNF output and the LMS filter all yielding clearly identifiable peaks and their squared values

represent the signal power. Comparing the P300 from the original electrode signal (A) with

that of the DNF (B) output the P300 peak of the DNF is reduced by approximately 1/4 (from

10 μV to 7.5 μV) while the LMS filter causes virtually no reduction. This means that the DNF

filter needs to reduce the noise even more than the LMS to achieve an overall SNR improve-

ment, as the DNF diminishes the P300 peak. However, this is expected as there is certainly

crosstalk between the inner electrode and the outer ring electrode (Eq 3) where EEG from the

inner electrode is also partially present at the outer electrode. Since the DNF removes anything

which is present in both the noise reference x[n] and its input signal d[n] it will treat the α> 0

crosstalk of the EEG signal at the outer electrode as noise and consequently reduces the ampli-

tude of the noise-free EEG at its output. Finally, it is evident that the Laplace operator
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completely removes the P300 peak effectively rendering the SNR calculations for a pure

Laplace operator impossible. Having calculated the signal power for the SNR, we move on to

consider the noise power.

In this section we calculate the noise power according to Eq 19. Fig 4A shows the power

spectral density of the signal from the inner electrode d[n] and the output from both the DNF

and a standard LMS-based adaptive FIR filter. The DNF filter achieves a nearly flat reduction

of the noise to about 0.1�10−11 V2/Hz for frequencies above 10 Hz while the original noise

from the inner electrode d[n] fluctuates widely between 0.2 � 10−11. . .0.8 � 10−11 V2/Hz. The

FIR filter tuned by LMS, being a linear filter with just one layer, also achieves a noise reduction

but falls short by simply reducing the spectral components in a nearly proportional way and is

not able to eliminate the noise peaks, for example at 35 Hz, 40 Hz or 45 Hz, but only reducing

Fig 3. P300 averages from subject 10. While looking at a chequerboard that inverted every second, the subject was presented with oddball stimuli every 7sec-13sec with

a random pattern. The recording was 5 minutes long. A: the event-triggered average from the inner electrode d[n], B: the event-triggered average from the output e[n] of

the DNF, C: the output from the LMS filter (adaptive FIR filter) and D: from the Laplace filter: ~d½n� � ~x½n� with DC and 50 Hz removed after the subtraction operation.

https://doi.org/10.1371/journal.pone.0277974.g003

Fig 4. Noise density and SNR calculations. A: Noise power density in bins of 1 Hz at the inner electrode d[n], the output of the DNF e[n], and the output of the

standard LMS-based adaptive FIR filter. B: SNR in dB calculated with Eq 19 at the inner electrode d[n] and the output e[n] of the DNF for every subject. C: SNR in dB

calculated with Eq 19 for the standard LMS-based adaptive FIR filter for every subject. D: The SNR differences from C) and D) for DNF (ΔSNRDNF = 4.1±2.8 dB) and

LMS-based FIR filter (ΔSNRLMS = 1.8±1.3 dB).

https://doi.org/10.1371/journal.pone.0277974.g004
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them. Given that both the DNF and the FIR filter tuned by LMS receive the same input signals

the smooth frequency spectrum of the DNF output is clearly a distinctive feature of this filter.

The individual SNR changes between the different subjects are shown in panel B and C for

DNF and LMS filters, respectively. It is evident that the worst SNR at −20dB can be improved

most where strong EMG bursts from the jaw muscles are eliminated as shown in Fig 2. For

some subjects the improvement has been marginal and this might be due to poor electrode

contact and thus little correlation between the inner and outer electrodes.

To test if the noise reduction has been statistically significant, we calculated the SNR for

every subject before and after filtering (in dB) to obtain the SNR improvement:

DSNR ¼ SNRinner � SNRDNF=LMS ð20Þ

Fig 4D shows the SNR improvements for both the DNF and the LMS filter. Both our new DNF

(p = 0.000013) and a LMS-tuned adaptive FIR filter (p = 0.000192) significantly improved the

SNR but the DNF is significantly better than the LMS filter (p = 0.000026).

Discussion

The least mean squares (LMS) technique to reduce noise in signals is well established [13],

where an FIR filter is trained to reduce the noise in a signal [30] with the help of one or more

reference signals. This has been shown to be effective against EOG by using as a reference for

both the horizontal and vertical EOG to remove the artefacts from an EEG [15] but requires

additional conventional electrodes placed above/below and left/right of the eyes. There have

been various approaches to using neural networks to generate the signal (called here

“remover”) which is used to eliminate the artefacts in the EEG signal [31]. While we use a stan-

dard encoder based deep net with a non-linear activation function, others used radial basis

functions [32] or functional link neural networks (FLNN) to generate non-linear decision

boundaries with non-linear functional expansion [33]. Even more computationally expensive

is an approach where the shortcomings of the FLNN are reduced with the help of an adaptive,

neural, fuzzy inference system [34]. In contrast, our deep network operates as a standard deep

net and off-the-shelf optimised architectures are widely available. In particular, encoder struc-

tures are very popular across application domains and are readily available, for example, audio

[35]. Thus, in terms of computational cost not only the standard encoder architecture is bene-

ficial because of its wide availability but also makes it possible to directly use deep learning

optimised hardware such as GPUs to perform the computations.

Traditionally, deep learning is a classifier and has been used to detect EEG artefacts with

high accuracy of up to 90% [36–38] but not to remove the artefacts from the EEG. Deep learn-

ing can also assist ICA-based algorithms [6, 9] to identify the principal components which

contain the EMG noise [39]. Direct removal of EMG noise has been investigated in the follow-

ing network structures: fully connected neural networks, simple convolutional networks, com-

plex convolutional networks, recurrent neural networks [40] and a new encoder/decoder-

based architecture called DeepSeparator [41]. Only the fully connected network, the recurrent

neural network and the DeepSeparator were stable during EMG removal. All these networks

received the entire time series, outputted the entire time series, were trained offline and are

thus not real-time. In contrast, our DNF performs continuous real-time training and filtering

at the same time. These networks were not trained by an error between reference noise and

the output of the filter but by an error between a clean EEG and the filter output [42, 43]

which also served as the performance measure. Since clean EEGs are not readily available, they

were, for example, generated with ICA from noisy EEGs [40]. The improvement of SNR before

and after filtering was not stated by Zhang et al. [40] but the error between clean EEG and filter
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output settles at about 10%. Overall, as Urigüen et al. [44] noted, most EEG noise reduction

studies are based only on synthetic signals and most only visually analyse their results.

With standard deep learning approaches [40, 41] where learning and filtering are done sep-

arately, there is always the risk of overfitting [45]. However, here learning is always “on” which

means that the DNF is constantly adapting to new signals and noise contingencies. The learn-

ing rate of the DNF rather determines how quickly it adapts where a high learning rate could

lead to “temporary overfitting” in particular on to large one-off artefacts whereas a low learn-

ing rate could not adapt to changing signal and noise contingencies.

The mechanical EEG electrode design is as old as the first EEG recordings [46] and the

standard Ag/AgCl cup electrodes have been the main staple of EEG recordings ever since [47].

A major concern has always been the resistance between electrode and skin [48] which has an

impact on the SNR of the EEG. The electrode resistance has become even more of a concern

with the advent of BCI and consumer EEG headbands which favour dry electrodes [49].

Besides active electrodes [50] novel electrode designs promise to help reduce the electrode

resistance [51, 52] in particular by using spring contact probes [53, 54]. However, these elec-

trode designs only improve the SNR by a better skin/electrode contact but do not take into

account the spatial distribution of signals versus noise which calls for compound electrodes.

The spatial distribution of electrodes has been in particular investigated with the rise of

brain-computer interfaces (BCI) where often the user is actively using their muscles and thus

creating a large amount of both EMG and movement artefacts [55]. It could be shown that the

central average reference (CAR) and both small and large Laplacian montages [20] improve

the SNR. This has been shown for Electrocardiogram (ECG) [18] by removing movement arte-

facts and for EEG [19]. Common to all approaches is the approximation and optimisation of a

2D spatial Laplace operator [17, 20, 56]. The more rings are employed at an optimal spacing

the more efficient the operator will be. The calculation of the Laplacian is usually performed

by the electrical summation of the EEG sources under each ring, digitisation and subtraction

from each other. However, this assumes that every ring can perform a perfect analogue spatial

averaging operation which is not the case in practice as electrode impedances will be inhomo-

geneous and changing over time. The analogue averaging over a ring can be overcome by mea-

suring from a large number of electrodes from an EEG cap and then approximating the

Laplace purely in software [16]—but this is computationally expensive and if using a standard

EEG cap, it has its limitations in spatial resolution. On the other hand, the above discussed

concentric ring electrode is the most feasible and practical hardware design [20], however, has

the drawback of assuming perfect recording conditions that are only present in ideal biophysi-

cal models but not in real setups. To overcome the shortcomings of hardwired computations

based on ideal models we use an adaptive algorithm to account for the imperfect nature of the

electrodes and the dynamic changes of electrode resistance over time, in particular when using

dry electrodes. By high-pass filtering the noise reference (i.e outer electrode) we can direct the

learning algorithm towards the noise it should focus on which here was EMG noise.

A particular area of concern is the choice of adequate conductive electrode material. Bio-

electrodes are in contact with the body and will, in turn, be exposed to biological electrolytes

which can, over time, cause oxidation of the electrode and degrade the electrode’s quality [24,

57, 58]. It can be concluded that precious metals are the obvious choice for conductive material

and many EEG electrodes utilise them to provide electrode conductivity [23, 59]. Due to the

cost of such metals, a superficial, thin coating is usually applied to a cheaper backing material

[52, 60], to provide high conductivity, good chemical stability and structural support for the

electrode, simultaneously minimising the cost [61]. The conductive layer selected for the

design discussed in this paper was also Ag/AgCl and was selected due to its high conductivity
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[52], chemical and electrical stability [24] and relative manufacturing simplicity as it can be

printed as an ink [52, 62].

Conclusion

To our knowledge, we are the first to perform simultaneous learning and noise reduction in

real-time with a deep neural network without the classical sequential process of training first

and then filtering. Specifically for removing EMG from EEG we have developed a novel elec-

trode which in conjunction with the real-time deep learning algorithm implements a con-

stantly adapting spatial Laplace filter. As a proof of concept, we have used data of 20 subjects

performing a jaw-clench to produce easily identifiable EMG signals. Future research will focus

on more realistic scenarios of EMG noise, for example playing a video game or performing a

manual task where noise levels change dynamically which requires possibly an adaptive learn-

ing rate as used by variable step size LMS filters [63]. We will also investigate other symmetri-

cal activation functions suitable for signal processing which are less computationally

expensive, yield faster convergence and are robust against vanishing gradients. Generally, the

DNF is also applicable to other domains such as noise cancelling headphones and will be

addressed in the future.
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