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Abstract Wave propagation characteristics of an
elastic bar coupled at one end with a single degree of
freedom, bi-stable, essentially nonlinear snap-through
element are considered. The free end of the bar is
subjected to sinusoidal excitations. A novel approach
based on multiple time scales and harmonic balance
method has been proposed to analytically investigate
the reflected wave from the nonlinear interface and the
dynamic response of the snap-through element. A uni-
fied approach to the non-dimensional representation of
the governing equations of motion, boundary condi-
tions and system parameters, which is consistent across
all the externally applied excitation frequencies and
excitation amplitudes, has been developed. Through
Taylor series expansion of the non-autonomous forc-
ing functions arising in the governing differential equa-
tions and natural boundary condition about an initial
stable configuration of the system and the proposed
asymptotic method, approximate closed-form analyti-
cal solutions have been derived for sufficiently small
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amplitudes of the excitation pulse. Numerical results
obtained through a finite difference algorithm validate
the asymptotic model for the same small amplitudes
of the excitation pulse. A stability analysis has been
subsequently performed for the discrete snap-through
element by using the extended Floquet theory for suf-
ficiently large amplitudes of the excitation pulse by
approximating the displacement at the nonlinear inter-
face as a sinusoidal function of time, and the Math-
ieu plot of the excitation frequency vs the excitation
amplitude showing the stable and unstable regions for
the motion of the snap-through element has been gen-
erated. The expressions derived here give the most
comprehensive and consistent description of the wave
propagation characteristics and the motion of the snap-
through element, which can be directly used in finite
difference analysis over a wide range of parameter val-
ues of the excitation pulse.

Keywords Essentially nonlinear systems · Bi-stable
snap-through element · Multiple time scales analysis ·
Harmonic balance method · Extended Floquet theory ·
Finite difference method

1 Introduction

Wave propagation in an elastic continuum is a sub-
ject of interest in many fields of engineering [1] and
has been explored for several decades from a theoret-
ical, computational and experimental perspective. In
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this context, a one/two-dimensional elastic continuum
ismore colloquially called awaveguide since theymin-
imize energy loss by restricting thewave propagation in
a specific direction/plane. These one-dimensional elas-
tic waveguides can be dispersion free, such as an elas-
tic bar propagating longitudinal waves, or can exhibit
dispersion, such as flexural waves in Euler–Bernoulli
or Timoshenko beams. However, in practical engi-
neering structures, such waveguides invariably inter-
act with structural components whose spatial scales
are much smaller than the elastic continuum and the
wavelengthof thewavephenomena that they encounter.
Such structural components can be modelled as dis-
crete elements by considering point masses, stiffness
and damping. The wave propagation characteristics
when elastic waveguides interact with linear discrete
elements are well known [2]. The present work primar-
ily dwells on the effect of weakly/essentially nonlinear
discrete elements on the wave propagation character-
istics in non-dispersive elastic waveguides. Since, in
general, closed-form analytical solutions are seldom
available for wave propagation problems in nonlinear
dynamical systems, in this paper, we propose a sys-
tematic approach based on classical perturbation tech-
niques like themethod ofmultiple scales (MMS) to find
the solutions. The analytical solutions are validated by
numerical results obtained computationally.

This paper focuses on the propagation characteris-
tics in an elastic bar coupled with a discrete nonlin-
ear end attachment. In general discrete nonlinear end
attachments can be mathematically modelled as the
Duffing oscillator with a stiffness nonlinearity or a Van
der Pol oscillator with nonlinear damping [3] or a geo-
metrically nonlinear snap-through truss. The general
governing differential equation of motion of such non-
linear end attachments can be given by:

d2x(t)

dt2
+ f (x(t), ẋ(t), t) = 0 (1)

There are quite a few known methods to solve non-
linear equations of the form (1). Some of them are
eigen/modal analysis, perturbation techniques, har-
monic balance method and method of averaging [4].
Analysis of dynamical systems comprising of non-
linear oscillators can be found in the existing litera-
ture dating back as early as the 80s. In 1982, Nayfeh
[5] investigated the response of single degree of free-
dom systems with quadratic and cubic nonlineari-
ties to a sub-harmonic excitation. In this paper, one

can get a general idea of how to apply the multiple
time scales analysis and harmonic balance method to
solve a nonlinear equation. In the context of more
recent works, Young Sup Lee et al. in [6] studied the
dynamics of a two degree of freedom system compris-
ing of a grounded linear oscillator coupled to a light
mass through an essentially nonlinear stiffness. This
seemingly simple system showed a very complicated
dynamical behaviour due to the essential nonlinear-
ity of the coupling stiffness even though the nonlinear
attachmentwas chosen to be very light, compared to the
main linear oscillator. In the context of energy harvest-
ingusingnonlinear oscillators,A.F.Vakakis [7] studied
the effect of inducing passive nonlinear energy sinks
in linear vibrating systems. He considered a system
composed of strongly coupled, grounded damped lin-
ear oscillators with a strongly nonlinear end attachment
and derived a set ofmodulation equations using an aver-
aging method and showed that nonlinear attachments
if designed properly, can act as passive energy sinks
of spurious vibrations. Vakakis et al. in [8] studied the
dynamics of linear discrete systems connected to local
essentially nonlinear end attachments andobserved that
if the system parameters are chosen properly and if the
external excitation is sufficiently strong, irreversible,
passive transfer of energy occurs from the chain to the
attachment. Another evidence of a strongly nonlinear
oscillator acting as a passive energy sink can be found
in the work of Manevitch et al. [9], where the model
considered was a semi-infinite chain of coupled lin-
ear, grounded oscillators, weakly coupled to a strongly
nonlinear oscillator at its free end. An important find-
ing of this work was that energy pumping can occur
evenwhen there is no damping in the system. In another
work [10] onproving thevibration isolating capabilities
of a single degree of freedom nonlinear oscillator with
high-static–low-dynamic stiffness, A. Carrella and co-
workers considered a lumpedmassmodel supported by
three springs to the base and compared the force and
displacement transmissibility by finding closed-form
solutions, considering a harmonic force on the mass
and a harmonic motion of the base in each case sepa-
rately. Even in the cases of asymmetrical loading con-
ditions, besides energy harvesting, the effectiveness of
a nonlinear oscillator with high-static–low-dynamic-
stiffness as a vibration isolator compared to a linear
oscillator has been proved in [11] by A. Abolfathi et.
al. Very recently, in a series of papers, Karlicic et al.
[12–15] employed the incremental harmonic balance
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(IHB) method in the context of nonlinear piezoelectric
energy harvesting. Also, a recent paper [16] byMQNiu
and LQ Chen studies the optimization of a quasi-zero
stiffness isolator via oblique beams.

Evidence of the use of a geometrically and essen-
tially nonlinear snap-through truss to effectively absorb
vibrations of the linear oscillator can also be found in
the existing literature. Avramov and Mikhlin [17] used
the nonlinear normalmode (NNM) approach to investi-
gate the phenomenon of elastic oscillations absorption
by a snap-through truss by considering a single degree
of freedom linear oscillator to represent an elastic con-
tinuum and a nonlinear absorber with three equilib-
rium positions (snap-through truss) attached to the lin-
ear oscillator. Considering the same system as in [17],
the authors in [18] studied the forced oscillations of the
snap-through truss close to its stable equilibrium posi-
tion by the classical multiple scales method. In their
next work on snap-through truss [19], Avramov and
Mikhlin investigated the possibility of absorption of
the forced oscillations underwent by a linear elastic sys-
tem using a snap-through truss. They used a combina-
tion of the nonlinear normal vibrations modes method,
the Rauscher approach and the asymptotic analysis to
study the forced oscillations of the essentially nonlin-
ear two degree of freedom system.More work on snap-
throughmotions of a system can be found in [20]where
the authors have studied the nonlinear normal mode
(NNM) of the snap-through motions of a shallow arch.
The stability of the snap-through motions was studied
by using the Ince algebraization and the method of Hill
determinants. In the context of studying the dynamics
of a single degree of freedom linear oscillator subjected
to harmonic forcing and coupled to a geometrically
nonlinear light end attachment by complexification-
averagingmethod, there is awork done in a recent paper
[21] by Yang Liu et. al. Very recently there have been a
couple of works [22,23], based on modal interactions,
byA.Mojahed and co-workers on the effectiveness of a
geometrically nonlinear oscillator in absorbing vibra-
tions, mitigating shocks and transferring energy in a
targeted manner.

The analysis of a dynamical systemcomprising of an
elastic continuum with discrete nonlinearity has been
a subject of interest in mechanics for quite some time
now.Nayfeh andAsfar [24] investigated the response of
a bar constrained by a nonlinear spring with cubic stiff-
ness nonlinearity to harmonic excitation. By using the
method ofmultiple time scales, they found closed-form

analytical solutions for the response of the bar in the
different cases of resonance. Theirwork did not address
the analysis of a bar coupled to a nonlinear oscillator,
but it presented a systematic procedure based on con-
ventional perturbation methods for finding the vibra-
tion response of an elastic continuum with a discrete
nonlinearity. Considering the similar model as in [24],
Lee et al. in [25] checked the validity of the asymptotic
solution obtained by Nayfeh from the method of mul-
tiple time scales by using the finite difference method
to find a numerical solution to the problem and then
comparing it with the asymptotic solution. One more
reference work in this context by Özkaya et al. [26]
deals with the nonlinear vibrations of a beam-mass sys-
tem by using the perturbation method of multiple time
scales to find the approximate analytical solutions. As
an example of a work on an elastic continuum inter-
acting with an essentially nonlinear end attachment,
we can take into account the paper by Avramov and
Gendelman [27] which focuses on the interaction of an
elastic beam subjected to a transverse periodic force,
with an essentially nonlinear oscillator attached to the
midpoint of the beam (the antinode for the first mode
of beam vibration). It was concluded from this work
that the nonlinear absorber could be used effectively
for absorbing the vibrations of the continuous, forced
system. In the same context, Mikhlin and Reshetnikova
[28] studied the dynamical interaction of an elastic sys-
tem and an essentially nonlinear absorber by approxi-
mating the continuous elastic systemby a linear oscilla-
tor with a relatively big mass and considering an essen-
tially nonlinear oscillator with a relatively small mass
to be linearly coupled to the bigger mass. They anal-
ysed the nonlinear normal modes of vibration to find
that a stable vibration absorption mode exists in a large
region of the system parameters. A paper by Krack et.
al [29] also studies the nonlinear modal interactions in
the presence of a friction-joint coupling between two
Euler–Bernoulli beams in order to find the efficacy of
friction damping in the presence of such interactions.

As we can see, the effectiveness of a nonlinear oscil-
lator as an irreversible, passive, nonlinear energy sink
and standard procedures to find analytical solutions for
the class of free/forced vibration problems involving
an elastic continuum with discrete nonlinearity can be
found extensively in the existing literature. In the con-
text of wave propagation in an elastic continuum with
a discrete nonlinear end attachment, Gendelman and
Manevitch [30] considered rectangular wave propaga-
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tion in an ideal elastic string attached to a strongly
nonlinear oscillator through a linear spring, subjected
to an external excitation in the form of a rectangular
pulse applied to the string at infinity. Considering the
oscillator mass to be negligible and the stiffness of the
coupling linear spring to be very large, the approximate
analytical solutionswere derived for the response of the
nonlinear oscillator. The conclusions drawn from this
work were that this kind of system can be successfully
described by a combination of asymptotic methods and
that energy pumping is possible from the elastic con-
tinuum to the nonlinear oscillator. We can find more
evidence of the use of asymptotic analysis for studying
the wave propagation behaviour in strongly/essentially
nonlinear dynamical systems, composed of discrete
particles forming a dimer chain, in a recent work of
Z. Ahsan and K. R. Jayaprakash [31]. The paper uses
the samemultiple time scales analysis to study the evo-
lution of solitary waves and primary pulses in granular
dimers with and without velocity proportional founda-
tion damping. In two more works [32,33], Jayaprakash
et al. studied the travelling waves in one-dimensional
nonlinear trimer granular lattice by employing numeri-
cal methods and the recently developed analytical pro-
cedure based on the singular, multi-scale perturbation
analysis. In another work on nonlinear trimer model
[34], V. Kislovsky et al. studied, both analytically and
numerically, the resonant mechanism governing the
inter-state transitions of locally excited regimes in a
chain of three coupled anharmonic oscillators subject
to localized excitation. In the context of elastic, soli-
tary wave scattering at softening-hardening interfaces
in strongly nonlinear metamaterials, there is a paper by
F. Fraternali et al. [35] which studies the wave propaga-
tion characteristics in the medium under impact load-
ing.

Based on the literature survey presented so far, it
can be said that the phenomenon of harmonic wave
propagation in an un-approximated elastic bar coupled
to a discrete nonlinear oscillator had not been dealt
with previously in detail. So, there is a dearth of lit-
erature when it comes to finding a closed-form ana-
lytical solution for this kind of a wave propagation
problem. The problem approached in [30] was some-
what similar to the work presented in this paper. But
the results were based on some obvious approxima-
tions which render them invalid in a more generalized
case. Moreover, the nonlinearity did not arise due to
the geometry/configuration of the system and also the

problem was not an essentially nonlinear one. Also,
the work did not give closed-form solutions for the
reflected pulse and did not attempt to solve the problem
by using conventional perturbation techniques. It was
mostly aimed at proving the effectiveness of the nonlin-
ear oscillator as an energy sink and at finding the con-
ditions favourable for maximum energy pumping from
the elastic continuum to the nonlinear oscillator. The
works covered in [31–33] use the conventional pertur-
bation analysis to address the wave propagation phe-
nomenon in nonlinear granular dimer/ trimer chains,
but not in an un-approximated elastic continuumwith a
discrete nonlinear end attachment. On the contrary, this
paper mostly aims at using classical perturbation tech-
niques (multiple time scales) and the harmonic balance
method to find closed-form solutions to the reflected
pulse in an un-approximated elastic bar/rod at the non-
linear interface and the dynamic response of the essen-
tially nonlinear oscillator at different levels of approx-
imation.

The problem studied in this paper considers an elas-
tic bar coupled to a snap-through truss/oscillator at one
end. The free end of the bar is subjected to a sinusoidal
displacement function. Examples of previous research
works focusing on the analysis of systems comprising
of a snap-through truss have been presented in this sec-
tion. A snap-through truss can be mathematically mod-
elled as a single degree of freedom spring-mass oscil-
lator with three equilibrium positions arising due to its
geometric configuration andmotion. Usually, the phase
plane plot of such an oscillator shows homoclinic orbits
with two centres as the two stable equilibrium points
and one saddle as the unstable equilibrium point in the
middle. When we couple such a snap-through element
with an elastic bar by means of linear springs and con-
strain themotionof the snap-through element in a direc-
tion perpendicular to the longitudinal axis of the bar, we
get an essentially nonlinear system with the nonlinear-
ity arising due to the geometric configuration. It cannot
be solved by conventional analytical methods without
a basic assumption which is small amplitudes of the
excitation pulse. With this necessary assumption and
our proposed asymptotic methodology, approximate
closed-form analytical solutions have been obtained
for the response of the bar as well as the snap-through
oscillator. The asymptotic results have been compared
to numerical simulations of the actual system, obtained
computationally by using an iterative finite difference
scheme and it has been shown that they match signifi-
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cantly. It has also been shown in this paper that if the bar
displacement at the nonlinear interface is approximated
by a generalized sinusoidal function of time which is
the superposition of the incident and reflected waves,
we can perform a Floquet analysis for the snap-through
oscillator in the case of sufficiently large amplitudes
of the excitation pulse. The stability/Floquet analysis
generates a Mathieu plot of excitation frequency vs
approximated excitation amplitude showing the stable
and unstable regions for the dynamic response of the
snap-through oscillator. The stability diagram can be
useful while determining important system excitation
parameters such as amplitude and frequency for which
the dynamic response of the oscillator becomes unsta-
ble/divergent and the oscillator exhibits a snap-through
motion.

2 Problem formulation

2.1 The model

Let us consider a homogeneous, isotropic, elastic bar
of mass M̃ , length L̃ and cross-sectional area A, which
is free at one end and coupled to a snap-through oscil-
lator of massm through a linear spring of stiffness con-
stant k as shown in Fig. 1. The snap-through oscillator
is connected to a rigid support through another linear
spring of stiffness constant k. The motion of the snap-
through oscillator is constrained to take place in the
vertical direction only. The force–deflection relation-
ship of the linear springs is given by F = kδ, where
δ is the deflection in the springs and F is the restoring
force. The natural un-deflected length of the springs is
L as shown in the initial configuration. For the purpose

of keeping the calculations simple, we have assumed
that both the springs have the same stiffness coefficient
(k) and same natural length (L).

The free end of the bar is subjected to a sinusoidal
excitation of the form Q(t) = Ā sin(�t). The excita-
tion is a displacement function, not a force, and it is
assumed to be imposed on the free end of the bar. But,
since the bar is a linear and non-dispersive medium, to
reduce the complexities in algebraic calculations asso-
ciated with constant phase terms, we shall consider the
incident wave in our analysis and calculations when it
strikes the nonlinear interface at x = 0 and consider
the time for analysis to be starting from that instant.
This means that a simple pre-calculated phase shift is
performed on the incident wave. All the subsequent
mathematical calculations shall be done including this
phase manipulation in the expressions and in the end
while illustrating the results graphically, we shall add
this phase shift back into our analytical solutions.While
deriving the equations of motion and boundary condi-
tions from the Lagrangian of the system initially, it will
be assumed that the displacement at the left end of the
bar be specified as per our problem definition. The ini-
tial displacements have been taken to be zero from their
corresponding positions as shown in the schematic of
the model in Fig. 1. u(x, t) and v(t) are the generalized
displacement functions of the bar and the snap-through
oscillator, respectively, where x is the longitudinal spa-
tial coordinate along the bar and t is time.

2.2 Equations of motion and boundary conditions

The diagram is shown for the stable equilibrium con-
figuration of the snap-through oscillator whose verti-

Fig. 1 Schematic of an
elastic bar coupled with a
snap-through truss
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cal coordinate from the base (dashed line) is given by
L sin φ. The coordinate x = 0 is taken at that point
where the oscillator is attached to the bar. The equa-
tions of motion are derived by using the Variational
principle from the Lagrangian of the system. The total
kinetic energy of the system is given by

T =
∫ 0

−L̃

1

2
ρA

(
∂u

∂t

)2

dx + 1

2
m

(
dv

dt

)2

(2)

The total potential energy is given by

U =
∫ 0

−L̃

1

2
AE

(
∂u

∂x

)2

dx

+1

2
k

(√
(L cosφ − u(0, t))2 + v2 − L

)2

+1

2
k

(√
L2 cos2 φ + v2 − L

)2
(3)

The Lagrangian is given by La = T − U and from
the Hamilton’s principle

∫ t2
t1

δLa dt = 0. Performing

the integration and keeping in mind that δu(−L̃) = 0
since the displacement is specified at the left end of
the bar, we get the equations of motion and boundary
conditions as

AE
∂2u

∂x2
− ρA

∂2u

∂t2
= 0 (4)

mv̈ + kv

(
2 − L√

(L cosφ − u(0, t))2 + v2

− L√
L2 cos2 φ + v2

)
= 0 (5)

AE
∂u

∂x
(0, t) = k

(
1 − L√

(L cosφ − u(0, t))2 + v2

)

(L cosφ − u(0, t)) (6)

The excitation pulse in dimensional form, which is also
the essential boundary condition at the left end of the
bar, is

Q(t) = Ā sin�t = u(−L̃, t) (7)

The characteristic length of non-dimensionalization is
chosen to be Lch = L̃/ l = L , which is also the nat-
ural length of the springs in the initial configuration.
We define l as our length ratio or the non-dimensional
length of the bar. The characteristic mass is taken as
Mch = M̃/ l = M = ρAL The non-dimensional
parameters are then obtained as

τ = ct

L
, ω = L�

c

l = L̃

L
, z = v

L
, w = u

L
, y = x

L
,

Am = Ā

L
, P(τ ) = Q(t)

L

α = kL

E A
, r = m

M

The parameters are, respectively, the non-dimensional
time, the non-dimensional excitation frequency, length
ratio or the non-dimensional length of the bar, the
non-dimensional displacement of the oscillator, the
non-dimensional displacement of the bar, the non-
dimensional longitudinal spatial coordinate, the non-
dimensional amplitude of the excitation pulse, the
excitation pulse in non-dimensional form, the non-
dimensional linear stiffness parameter and the mass
ratio. c = √

E/ρ is the longitudinal wave speed in
the bar and E and ρ are the modulus of elasticity and
the material density of the bar, respectively.
This gives the non-dimensional equations of motion
and boundary conditions as

∂2w

∂y2
− ∂2w

∂τ 2
= 0 (8)

r z′′ + αz

(
2 − 1√

(cosφ − w(0, τ ))2 + z2

− 1√
cos2 φ + z2

)
= 0 (9)

∂w

∂y
(0, τ ) = α

(
1 − 1√

(cosφ − w(0, τ ))2 + z2

)

(cosφ − w(0, τ ))) (10)

where prime denotes differentiation with respect to τ .
The non-dimensional excitation pulse, which is also
the essential non-dimensionalized boundary condition
at the left end of the bar, is given by

P(τ ) = Am sinωτ = w(−l, τ ) (11)

2.3 Phase-plane behaviour of the uncoupled oscillator

Aqualitative studyof the independent dynamicbehaviour
of the snap-through oscillator, uncoupled from the elas-
tic bar, can be performed by plotting the phase plane
trajectories from its governing equation of motion.
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Fig. 2 Phase plane plot (non-dimensional displacement z vs
non-dimensional velocity z′) of the uncoupled snap-through
oscillator showing the trajectories for different sets of initial con-
ditions. The arrows denote the vector field at a point that is the
direction of motion or velocity of the oscillator at that point in
the phase plane. The open circle marks the starting point and the
open square marks the endpoint of a trajectory

Uncoupling the oscillator from the bar reduces its gov-
erning equation of motion to

r z′′ + αz

(
2 − 2√

cos2 φ + z2

)
= 0 (12)

The essentially nonlinear system described in (12) has
two stable centres at z = ± sin φ and one unstable
saddle at z = 0. A phase plane diagram of the system
will show two sets of homoclinic orbits corresponding
to different initial values for z(τ ) and z′(τ ), separated
by the saddle in the middle. The values of the non-
dimensional parameters chosen for plotting the phase
portrait shown below are α = 0.5, r = 1, sin φ = 0.5.

As we can see from Fig. 2, the phase plane diagram
shows two sets of homoclinic orbits around two sta-
ble centres at z = ± sin φ = ±0.5 separated by an
unstable saddle in the middle at z = 0. For large initial
values of the displacement z, the motion of the oscil-
lator follows the larger periodic orbits around the sad-
dle at z = 0. This seemingly rich dynamic behaviour
observed from the qualitative analysis of the uncoupled
oscillator motion tempts us to investigate a more inter-
esting system comprising of the oscillator coupled to
an elastic bar, which is our chosen model.

3 Dynamic response analysis of the system

3.1 Assumptions and Taylor series approximation

Equations (9) and (10) have non-autonomous forcing
terms. So, we perform a Taylor series expansion of
these time-dependent functions about a stable fixed
point. The assumptions made are:

– The amplitude of the excitation pulse applied to
the free end of the bar is sufficiently small (O(ε)),
ε � 1 and since the bar is a linear, non-dispersive
medium, this implies that the displacement at a
point in the bar is sufficiently small. (w(y, τ ) =
O(ε))

– For sufficiently small amplitudes of the excita-
tion pulse, the displacement of the endpoint of
the bar connected to the snap-through oscillator is
very close to zero and the snap-through oscillator
remains very close to its initial stable equilibrium
position sin φ. (z = sin φ+η andw(0, τ ) = 0+ψ ,
where η and ψ are of O(ε)).

Here, ε is the small asymptotic parameter in terms of
which we will later perform the asymptotic expansion
of the displacements. It is important to note that the
second assumptionmade is not an independent one and
comes as a result of the first assumption. Equations (9)
and (10) have two time-dependent variables which are
z(τ ) and w(0, τ ) and can be re-written as

r z′′ + α f (z(τ ), w(0, τ )) = 0 (13)
∂w

∂y
(0, τ ) = αg(z(τ ), w(0, τ )) (14)

A function of two time-dependent variables x and y can
be expanded in Taylor series about a fixed point (x0, y0)
for small perturbations around the fixed point. Here, the
fixed points are taken as z = sin φ and w

0(0, τ ) = 0.
The new variables are formulated as

z(τ ) = z + η(τ), w(0, τ ) = w
0(0, τ ) + ψ(τ) (15)

Substituting equation (15) into equations (13) and (14)
gives

rη′′ + α f (z + η(τ), w
0 + ψ(τ)) = 0 (16)

∂w

∂y
(0, τ ) = αg(z + η(τ), w

0 + ψ(τ)) (17)

After performing the Taylor series expansion and
retaining up to quadratic terms, equations (16) and (17)
are obtained as

rη′′ + α

(
2 sin2 φη − sin φ cosφψ + 3 sin φ cos2 φη2
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+ cosφ(3 sin2 φ − 1)ηψ

+ 1

2
sin φ

(
1 − 3 cos2 φ

)
ψ2

)
= 0 (18)

∂w

∂y
(0, τ ) = α

(
sin φ cosφη − cos2 φψ

+ 1

2

(
cosφ

(
1 − 3 sin2 φ

)
η2

+ 2 sin φ
(
3 cos2 φ − 1

)
ηψ

+ 3 cosφ
(
1 + cos2 φ

)
ψ2

))
(19)

According to our previous assumptions, a re-scaling is
done which is η(τ) = εξ(τ ),w(y, τ ) = εd(y, τ ) and
Am = ε Âm , where ξ(τ ), d(y, τ ) and Âm are of O(1).
w(y, τ ) = εd(y, τ ) and after putting y = 0 in this
equation we get

w(0, τ ) = εd(0, τ ) (20)

In (15) it was assumed that w(0, τ ) = w
0 + ψ(τ) and

substituting this in (20) leads to

w
0 + ψ(τ) = εd(0, τ ) (21)

We took w
0 = 0 and substituting this in (21), we get

ψ(τ) = εd(0, τ ) (22)

After substituting (22) andη(τ) = εξ(τ ) andw(y, τ ) =
εd(y, τ ) in equations (8), (18) and (19), the re-scaled
equations are obtained as

∂2d

∂y2
− ∂2d

∂τ 2
= 0 (23)

rξ ′′ + α

(
2 sin2 φξ − sin φ cosφd(0, τ )

+3 sin φ cos2 φεξ2

+ cosφ
(
3 sin2 φ − 1

)
εξd(0, τ )

+1

2
sin φ

(
1 − 3 cos2 φ

)
εd2(0, τ )

)
= 0 (24)

∂d

∂y
(0, τ ) = α

(
sin φ cosφξ − cos2 φd(0, τ )

+1

2

(
cosφ(1 − 3 sin2 φ)εξ2

+2 sin φ
(
1 − 3 cos2 φ

)
εξd(0, τ )

+3 cosφ
(
1 + 3 cos2 φ

)
εd2(0, τ )

))
(25)

3.2 Asymptotic expansion

An asymptotic expansion is performed for d(y, τ ) and
ξ(τ ) in terms of the chosen small parameter ε (ε � 1):

d(y, τ ) = d0(y, τ ) + εd1(y, τ ) + O(ε2) (26)

ξ(τ ) = ξ0(τ ) + εξ1(τ ) + O(ε2) (27)

The method of multiple time scales is used for the
expansion to re-scale the time derivatives and two time
scales are considered as given below. The displace-
ments and their spatial and temporal derivatives are
obtained as

T0 = τ, T1 = ετ (28)

d(y, τ ) = d0(y, T0, T1)

+εd1(y, T0, T1) + O(ε2) (29)

ξ(τ ) = ξ0(T0, T1) + εξ1(T0, T1) + O(ε2) (30)
dξ

dτ
= ξ ′ = (D0 + εD1 + ε2D2)ξ (31)

d2ξ

dτ 2
= ξ ′′ = (D2

0

+2εD0D1 + 2ε2D0D2 + ε2D2
1)ξ (32)

∂2d

∂τ 2
=

(
D2
0 + 2εD0D1 + 2ε2D0D2 + ε2D2

1

)
d

(33)
∂d

∂y
(0, τ ) = d0,y (0, T0, T1)

+εd1,y (0, T0, T1) + O(ε2) (34)

where Dn = d/dTn (partial derivative)
The slow time scale T1 can be neglected in the anal-

ysis henceforth because the excitation pulse is not a
function of T1. Therefore, d0 and ξ0 would not be func-
tions of T1. This can be easily proved by assuming a
term containing the exponent eiω(T1+y) in the expres-
sion for d0 and then satisfying the equations at the first
level of approximation (O(1)) to see that the term even-
tually goes to zero. After substituting equations (28)–
(34) into equations (23), (24) and (25), the equations at
O(1) & O(ε) approximation are obtained as

O(1) : ∂2d0
∂y2

− D2
0d0 = 0

r D2
0ξ0+2α sin2 φξ0 = α sin φ cosφd0(0, T0)

∂d0
∂y

(0, T0) = α
(
ξ0 sin φ cosφ − cos2 φd0(0, T0)

)
(35)
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O(ε) : ∂2d1
∂y2

− D2
0d1 = 0

r D2
0ξ1+2α sin2 φξ1 = α sin φ cosφd1(0, T0)

− 3α sin φ cos2 φξ20

− α cosφ
(
3 sin2 φ − 1

)
ξ0d0(0, T0)

− 1

2
sin φ

(
1 − 3 cos2 φ

)
d20 (0, T0)

∂d1
∂y

(0, T0)

= α

(
ξ1 sin φ cosφ − cos2 φd1(0, T0)

+ 1

2

(
cosφ(1 − 3 sin2 φ)ξ20

+ 2 sin φ(3 cos2 φ − 1)ξ0d0(0, T0)

+ 3 cosφ(1 + cos2 φ)d20 (0, T0)

))

(36)

On observing the left-hand sides of the second equa-
tions of both (35) and (36), the linearized natural fre-
quency of the snap-through oscillator at different levels
of approximation is defined as ω0 =

√
2α sin2 φ/r .

3.3 Analytical closed-form solution

3.3.1 Non-resonant case, ω �= ω0 �= ω0/2

O(1) solution
Equations at the O(1) level of approximation (35) can
be easily solved for ξ0 and d0 following standard pro-
cedures of solving the governing differential equations
and satisfying the boundary conditions by using the
harmonic balance method. To express the solutions in
a compact form, we define few new variables, D, K ,
φR and cR .

D = − i

2
Âm

(
1 + eiωφR

)
, φR = 1

ω
arg(cR),

cR = a + ib

−a + ib
(37)

where a = α2 sin2 φ cos2 φ −αrω2 cos2 φ, b = rω3 −
2αω sin2 φ

K = α sin φ cosφD

r
(
ω2
0 − ω2

) (38)

We have performed a non-dimensional phase shift of
ωL̃/L on the incident wave propagated in the bar as
discussed in 2.1 while formulating the model for sim-
plicity in the algebraic calculations. Taking this into

account, the closed-form analytical solutions at O(1)
approximation are obtained as

d0(y, T0) = Âme
iω(T0−y) + cR Âme

iω(T0+y) (39)

ξ0(T0) = KeiωT0 + cc (40)

d0(0, T0) = DeiωT0 + cc (41)

cc denotes the complex conjugate of its preceding
expressions. We have already defined the linearized
non-dimensional natural frequency of the snap-through
oscillator from the second of the equations of (35) or
(36) as ω0 (ω0 =

√
2α sin2 φ/r ). The frequency of

the excitation pulse has already been taken as ω. We
define cR to be the coefficient of reflection and φR to
be the phase angle difference between the incident and
reflected wave at the O(1) level of approximation for
the non-resonant case.

The first expression in (39) can be defined as the
incident pulse dI (y, T0) and the second expression in
(39) can be defined as the reflected pulse dR(y, T0)
at O(1) approximation from the nonlinear interface
whose superposition gives the displacement in the bar.
The bar displacement d0(y, T0) in real time is obtained
by taking the imaginary part of the expression in (39).
Similarly, the incident pulse and the reflected pulse in
real time are obtained by taking the imaginary parts of
the first and second expressions in (39), respectively.
We take the imaginary part of the expression towrite the
bar displacement, i.e. the incident pulse and reflected
pulse in real time because our chosen excitation pulse
is a sinusoidal displacement function imposed on the
free end of the bar. Since the boundary condition we
choose at the left end of the bar is a sinusoidal displace-
ment function of time and the bar is a non-dispersive
medium, the incident wave propagated is known to
be a sinusoidal function of real time and space with
the same frequency and wavenumber as the excitation
pulse fromD’Alembart’s principle [1]. This also results
in the reflected wave in the bar from the nonlinear inter-
face to be a sinusoidal function of real time and space
with a coefficient of reflection which we have defined
as cR . For the ease of calculating the quadratic and cou-
pled terms like ξ20 (T0), d20 (0, T0) and ξ0(T0)d0(0, T0) in
the O(ε) equations (27) and for simplicity in perform-
ing the harmonic balance method, we prefer to express
the O(1) solutions in exponential form.

To solve the equations at O(ε) approximation, we
investigate the second equation of (36). The right-hand
side of this equation involves quadratic and coupled
terms which can be calculated by using the O(1) solu-
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tions. They are found to be of the form:

ξ20 =
(
K 2e2iωT0 + K K̄

)
+ cc (42)

d20 (0, T0) =
(
D2e2iωT0 + DD̄

)
+ cc (43)

ξ0d0(0, T0) =
(
K De2iωT0 + K̄ D

)
+ cc (44)

So, we can say that ξ1 will contain these combinations
of frequencies. Thus, it is reasonable to assume that
d1(y, T0) will also contain the second harmonic of ω

alongwith the zero-frequency component.Keeping this
in mind, we assume a form for d1(y, T0)

d1(y, T0) =
(
D1e

2iω(T0+y) + D2

)
+ cc (45)

D1 and D2 are the unknown coefficients to be found
later by using the harmonic balance method. The
wavenumber and frequency will be equal to each other
in the non-dimensional form in the expression for wave
displacement in the bar at O(ε) level of approximation
(d1(y, T0)) since it has to satisfy the non-dimensional
plane wave equation, the first equation of (36). So
the non-dimensional wave speed is unity. We are not
assuming any term containing the harmonicω0, i.e. our
previously defined non-dimensional linearized natural
frequency of the snap-through oscillator, in the expres-
sion for d1(y, T0). The reason is that from the analysis

and solution of O(1) equations (35) by employing the
harmonic balance method, we can conclude that the
coefficients of these harmonics eventually have to be
zero to avoid any secularity in the solution. We shall
show how the harmonic balance method has been used
in more detail in the following subsection.

The harmonic balance method and O(ε) solution
Solving for ξ1 from the second equation of (36) by
standard procedures of solving a second-order in-
homogeneous ordinary differential equationwith given
initial conditions gives

ξ1 = 1

r

((
α sin φ cosφD1 − 3α sin φ cos2 φK 2 − α cosφ(3 sin2 φ − 1)K D − 1

2 sin φ(1 − 3 cos2 φ)D2

ω2
0 − 4ω2

)
e2iωT0

+ 1

ω2
0

(
α sin φ cosφD2 − 3α sin φ cos2 φK K̄ − α cosφ(3 sin2 φ − 1)K̄ D

− 1

2
sin φ(1 − 3 cos2 φ)DD̄

))

+ E1e
iω0T0 + cc

(46)

where E1 is an unknown to be determined. From the
third equation of (36), we can write

ξ1 = 1

sin φ cosφ

(
1

α

∂d1
∂y

(0, T0) + cos2 φd1(0, T0)

− cosφ

2
(1 − 3 sin2 φ)ξ20

− sin φ(3 cos2 φ − 1)ξ0d0(0, T0)

− 3

2
cosφ(1 + cos2 φ)d20 (0, T0)

)

(47)

Substituting equations (46), (45) and equations (42),
(43), (44) in equation (47) gives
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(
α sin φ cosφD1 − 3α sin φ cos2 φK 2 − α cosφ(3 sin2 φ − 1)K D − 1

2 sin φ(1 − 3 cos2 φ)D2

r(ω2
0 − 4ω2)

)
e2iωT0

+ 1

ω2
0r

(
α sin φ cosφD2 − 3α sin φ cos2 φK K̄ − α cosφ(3 sin2 φ − 1)K̄ D − 1

2
sin φ(1 − 3 cos2 φ)DD̄

)

+ E1e
iω0T0 =

(
1

sin φ cosφ

(
2iω

α
+ cos2 φ

)
D1

− 1

2 sin φ
(1 − 3 sin2 φ)K 2 − 1

cosφ
(3 cos2 φ − 1)K D − 3

2 sin φ
(1 + cos2 φ)D2

)
e2iωT0

+
(
cot φD2 − 1

2 sin φ
(1 − 3 sin2 φ)K K̄ − 1

cosφ
(3 cos2 φ − 1)K̄ D − 3

2 sin φ
(1 + cos2 φ)DD̄

)

(48)

Equating the coefficients of e2iωT0 and e0 on both sides
of equation (48) gives the unknowns D1 and D2 as

D1 =
( α sin φ cosφ

r(ω2
0 − 4ω2)

−
2iω
α

+ cos2 φ

sin φ cosφ

)−1

(
1

r(ω2
0 − 4ω2)

(
3α sin φ cos2 φK 2

+ α cosφ(3 sin2 φ − 1)K D

+ sin φ

2
(1 − 3 cos2 φ)D2

)

− 1

2 sin φ
(1 − 3 sin2 φ)K 2

− 1

cosφ
(3 cos2 φ − 1)K D

− 3

2 sin φ
(1 + cos2 φ)D2

)
(49)

D2 =
(α sin φ cosφ

rω2
0

− cot φ
)−1

(
1

rω2
0

(
3α sin φ cos2 φK K̄

+ α cosφ(3 sin2 φ − 1)K̄ D

+ 1

2
sin φ(1 − 3 cos2 φ)DD̄

)

− 1

2 sin φ
(1 − 3 sin2 φ)K K̄

− 1

cosφ
(3 cos2 φ − 1)K̄ D

− 3

2 sin φ
(1 + cos2 φ)DD̄

)
(50)

Equating the coefficients of eiω0T0 on both sides of
equation (48) gives E1 = 0. Once we find out D1 and
D2 explicitly in terms of the known system and exci-
tation parameters, we can derive ξ1 by substituting in
equation (46) or (47).

Thus, we have used conventional perturbation tech-
niques like the multiple time scales analysis, and the
harmonic balance method to find the approximate ana-
lytical closed-form solutions to the system response for
cases of sufficiently small amplitudes of the excitation
pulse and for any chosen excitation frequency.

Numerical validation of analytical results A numer-
icalsimulation is performed to solve the essentially
nonlinear system described in (8), (9), (10) and the
non-dimensional essential boundary condition defined
at the left end of the bar (11) using a finite differ-
ence centred in time, centred in space (CTCS) explicit
scheme [36] for sufficiently small amplitudes of the
excitation pulse. The dynamic responses are obtained
for the incident and reflected pulse in the bar and
the snap-through oscillator. Both the time-domain and
frequency-domain responses are obtained for the inci-
dent and reflected waves in the bar and the oscilla-
tor motion. The incident pulse is already known to be
a sinusoidal function of real time and space with the
same amplitude and frequency as the excitation pulse
from the essential boundary condition at the left end
of the bar, even before starting the analysis. So, we
show the reflected wave in the bar from the nonlin-
ear interface and the oscillator motion as our obtained
propagation characteristics and dynamic response of
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the system. A suitable numerical value is chosen for
the non-dimensional excitation frequency ω = ωexc.

The analytical solutions obtained before have been
compared to the numerical results obtained computa-
tionally in Fig. 3. The non-dimensional parameters for
both the analytical and numerical calculation have been
taken as

α = 0.5, r = 1, Âm = 1, l = 300, sin φ = 0.5,

ω0 =
√
2α sin2 φ/r = 0.5,

ωexc = 0.6ω0 = 0.3, ε = 0.01

On the FFT plots, the frequencies are represented in
cycles per non-dimensional time along the x coordi-
nate, denoted by the non-dimensional quantity, ω/2π .
ω0/2π = 0.08 cycles per non-dimensional time,
ωexc/2π = 0.048 cycles per non-dimensional time.
The sufficiently small amplitude of the excitation pulse
considered for numerical simulation is Am = ε Âm =
0.01. The ratio l, i.e. the non-dimensional length of the
bar, has been taken to be 300 to make the total space
and time window larger. Since in the non-dimensional
form, the longitudinal wave speed in the bar is unity, the
time window becomes sufficiently large, i.e. 600, the
time required for one complete traverse of the reflected
wave along the bar from the nonlinear boundary to the
other end. This also helps to get a steady response free
from the very few transients that will initially arise due
to discretization issues.

Thedisplacement of the snap-throughoscillator z(τ )

is measured with respect to its initial position z = sin φ

while obtaining both the analytical and numerical solu-
tions and from the notation introduced in the second of
the assumptions in section 3.1, z(τ ) = sin φ + η(τ).
Hence, z(τ ) has been replaced by η(τ) while express-
ing the dynamic response of the snap-through oscilla-
tor in the time domain and z(ω) by η(ω) in the fre-
quency/spectral domain. In 2.1 while introducing the
model and applied excitation, a phase/spatial shift was
performed on the incident wave in the bar to simplify
the tedious algebra involved with the subsequent ana-
lytical calculations. It is notable to mention that while
showing the results graphically, that phase has been
added back into the solutions to represent the actual
physical model without any spatial/temporal approxi-
mation. The same operation will be performed while
showing the results graphically for the next two cases
discussed.

3.3.2 Primary resonance, ω = ω0

O(1) solution
For the case of primary resonance, ω = ω0 and hence
d0(y, T0) is assumed to be

d0(y, T0) = Âme
iω0(T0−y) + ÂRe

iω0(T0+y) (51)

where ÂR is unknown at this stage. The first term in
the right-hand side of equation (51) is the incident wave
and the second term is the reflectedwave. The displace-
ments in real time are obtained by taking the imagi-
nary parts of the corresponding expressions. Substitut-
ing (51) in the second equation of (35), we get

r D2
0ξ0 + 2α sin2 φξ0 = α sin φ cosφ( Âm + ÂR)eiω0T0

(52)

Solving ξ0 from (52) by standard methods of solving
an inhomogeneous ordinary differential equation with
given initial conditions gives

ξ0 = E0e
iω0T0 − iα sin φ cosφT0

2ω0r
( Âm + ÂR)eiω0T0

(53)

where E0 is an unknown to be determined. The oscil-
lator response in real time is obtained by taking the
imaginary part of the r.h.s of (53). From the third equa-
tion of (35), we have

ξ0 = 1

sin φ cosφ

(
1

α

∂d0
∂y

(0, T0) + cos2 φd0(0, T0)

)

(54)

Substituting equations (51) and (53) in equation
(54), we get

E0e
iω0T0 − iα sin φ cosφT0

2ω0r
( Âm + ÂR)eiω0T0

=
(
Âm

(
1 − iω0

α sin φ cosφ

)

+ ÂR

(
1 + iω0

α sin φ cosφ

))
eiω0T0 (55)

contains a secular term which increases linearly with
time T0. So for a stable solution, we need to have

Âm + ÂR = 0 (56)

�⇒ ÂR = − Âm (57)

Defining a newvariable cR = ÂR/ Âm as the coefficient
of reflection at the nonlinear interface at the O(1) level
of approximation, for the case of primary resonance,
cR = −1.

123



Propagation characteristics of an elastic 2973

0 100 200 300 400 500 600
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

w R(y
,)

 a
t y

 =
 0

numerical
asymptotic

(a) time series plot of reflected pulse

0 0.1 0.2 0.3 0.4 0.5

/2

0

0.5

1

1.5

2

2.5

w R(y
,

) a
t y

 =
 0

10 -3

numerical
asymptotic

(b) FFT plot of reflected pulse

0 100 200 300 400 500 600
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(
)

numerical
asymptotic

(c) time series plot of the oscillator

0 0.1 0.2 0.3 0.4 0.5

/2

0

1

2

3

4

5

6

7

(
)

10 -3

numerical
asymptotic

(d) FFT plot of the oscillator

Fig. 3 Time-domain response and frequency-domain response
of the reflectedwave in the bar and the snap-through oscillator for
the non-resonant case. wR(y, τ ) and wR(y, ω) denote the non-
dimensional reflectedwave in the bar from the nonlinear interface
in the time and frequency domains, respectively, whereas η(τ)

andη(ω)denote the non-dimensional displacement of the oscilla-

tor measured with respect to its initial configuration z = sin φ in
the time and frequency domains, respectively. y, τ and ω are the
non-dimensional longitudinal spatial coordinate along the bar,
the non-dimensional time and the non-dimensional frequency,
respectively

Substituting equation (56) in equation 55 and equat-
ing the coefficients of eiω0T0 on both sides gives

E0 = − 2iω0 Âm

α sin φ cosφ
(58)

After substituting equation (58)in equation (53) gives

ξ0 = − 2iω0 Âm

α sin φ cosφ
eiω0T0 (59)

The solution for d0(y, T0) is obtained from (51) as

d0(y, T0, T1) = Âme
iω0(T0−y) − Âme

iω0(T0+y) (60)

The responses in real time are obtained by taking the
imaginary parts of the corresponding expressions.

Note that after substituting y = 0 in (60), we get

d0(0, T0) = 0 (61)

In complex conjugate form, the responses can be writ-
ten in real time as

ξ0 = Keiω0T0 + cc (62)

where K = − ω0 Âm
α sin φ cosφ

and cc denotes the complex
conjugate of its preceding terms. This physicallymeans
that the nonlinear interface will act as a fixed end and
any excitation pulse incident upon this end will reflect
with a phase shift of π at O(1) approximation.

O(ε) solution
Substituting the result obtained in (61) in the equations
at the O(ε) level of approximation (36) reduces them
to
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O(ε) : ∂2d1
∂y2

− D2
0d1 = 0

r D2
0ξ1 + 2α sin2 φξ1 = α sin φ cosφd1(0, T0)

− 3α sin φ cos2 φξ20

∂d1
∂y

(0, T0) = α
(
ξ1 sin φ cosφ − cos2 φd1(0, T0)

+ 1

2
cosφ(1 − 3 sin2 φ)ξ20

)

(63)

On investigating the second equation of (63), it can be
seen that the right-hand side of this equation involves
a quadratic term ξ20 , which can be calculated by using
the O(1) solution and appears in the form:

ξ20 =
(
K 2e2iω0T0 + K K̄

)
+ cc (64)

So, we can say that ξ1 will contain the same frequency.
Thus, it is reasonable to assume that d1(y, T0) will
also contain the second harmonic of ω0 along with the
zero-frequency component. Keeping this in mind, we
assume a form for d1(y, T0)

d1(y, T0) =
(
R1e

2iω0(T0+y) + R2

)
+ cc (65)

R1 and R2 are the unknown coefficients to be found.
The wavenumber and frequency will be equal to each
other in the non-dimensional form in the expression for
wave displacement in the bar at O(ε) level of approx-
imation (d1(y, T0)) since it has to satisfy the non-
dimensional plane wave equation, the first equation of
(63). So the non-dimensional wave speed is unity. We
are not assuming any term containing the harmonicω0,
i.e. our previously defined non-dimensional linearized
natural frequency of the snap-through oscillator, in the
expression for d1(y, T0). The reason is that from the
analysis and solution of O(1) equations in the previ-
ous section, we can conclude that the coefficients of
these harmonics eventually have to be zero to avoid
any secularity in the solution. Solving for ξ1 from the
second equation of (63) gives by standard procedures of
solving a second-order in-homogeneous ordinary dif-
ferential equation with given initial conditions

ξ1 = 1

r(ω2
0 − 4ω2)

(
α sin φ cosφR1

−3α sin φ cos2 φK 2
)
e2iω0T0

+ 1

ω2
0r

(
α sin φ cosφR2 − 3α sin φ cos2 φK K̄

)

+E1e
iω0T0 + cc (66)

where E1 is an unknown to be determined. From the
third equation of (63), we can write

ξ1 = 1

sin φ cosφ

(
1

α

∂d1
∂y

(0, T0) + cos2 φd1(0, T0)

− cosφ

2
(1 − 3 sin2 φ)ξ20

)

(67)

Substituting equations (66), (65) and (64) in equation
(67) gives

1

r(ω2
0 − 4ω2)

(
α sin φ cosφR1

− 3α sin φ cos2 φK 2
)
e2iω0T0

+ 1

ω2
0r

(
α sin φ cosφR2 − 3α sin φ cos2 φK K̄

)

+ E1e
iω0T0 =

(
1

sin φ cosφ

(
2iω

α
+ cos2 φ

)
R1

− 1

2 sin φ
(1 − 3 sin2 φ)K 2

)
e2iω0T0

+
(
cot φR2 − 1

2sinφ
(1 − 3 sin2 φ)K K̄

)

(68)

Equating the coefficients of e2iω0T0 and e0 on both sides
of equation (68) gives the unknown coefficients R1 and
R2 as

R1 =
(α sin φ cosφ

−3rω2
0

− 2iω0 + α cos2 φ

α sin φ cosφ

)−1

(−α sin φ cos2 φ

rω2
0

− (1 − 3 sin2 φ)

2 sin φ

)
K 2 (69)

R2 =
(α sin φ cosφ

rω2
0

− cot φ
)−1

(
3α sin φ cos2 φ

rω2
0

− (1 − 3 sin2 φ)

2 sin φ

)
K K̄ (70)

Equating the coefficients of eiω0T0 on both sides of
equation (68) gives E1 = 0. Now that we have found
E1, R1 and R2 explicitly in terms of the known system
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and excitation parameters, we can derive ξ1 by substi-
tuting either in equation (66) or (67).

Numerical validation of analytical results
The analytical solutions obtained are compared to the
numerical results obtained computationally as done for
the non-resonant case. The non-dimensional parame-
ters are taken as:

α = 0.5, r = 1, Âm = 1, l = 300, sin φ = 0.5,

ω0 =
√
2α sin2 φ/r = 0.5,

ωexc = ω0 = 0.5, ε = 0.01

On the FFT plots, the frequencies will be repre-
sented in cycles per non-dimensional time along the
x coordinate, denoted by the non-dimensional quan-
tity ω/2π . ω0/2π = 0.08 cycles per non-dimensional
time, ωexc/2π = ω0/2π = 0.08 cycles per non-
dimensional time. The sufficiently small amplitude of
the excitation pulse considered for numerical simula-
tion is Am = ε Âm = 0.01. The ratio l, i.e. the non-
dimensional length of the bar, has been taken to be 300
tomake the total space and timewindow larger. Since in
the non-dimensional form, the longitudinal wave speed
in the bar is unity, the time window for one complete
traverse of the reflected wave along the bar becomes
sufficiently large, i.e. 600 and this helps to get a more
steady response free from the very few transients that
will initially arise due to discretization issues.

We have taken the point of reference for measuring
the displacement of the snap-through oscillator z(τ )

at z = sin φ which is its initial position, as done
previously for the non-resonant case while obtaining
both the analytical and numerical solutions. Hence,
z(τ ) has been replaced by η(τ) while expressing the
dynamic response of the snap-through oscillator in the
timedomain and z(ω)byη(ω) in the frequency/spectral
domain.

The displacement at the endpoint of the bar is plotted
specifically for the case of primary resonance to high-
light an interesting phenomenon. It has been shown
in the analytical results before that for this particular
excitation frequency (ω = ω0), the displacement at the
endpoint of the bar connected to the snap-through oscil-
lator (d0(0, T0)) that is the superposition of incident and
reflected waves at that point goes to 0 at the O(1) level
of approximation. At the next O(ε) level of approx-
imation, the displacement in the bar at the nonlinear
interface (d1(0, T0)) is composed of one component
with the frequency (2ω) and one zero-frequency com-

ponent. The calculated analytical solutions are com-
pared to numerical results as done so far for all dynamic
responses.

As we can see in Fig. 5, our derived approximated
analytical result is in quite good agreement with the
numerical solution of the actual system. The motion
when plotted shows a behaviour physically consis-
tent with the expectations from our analytical solu-
tion, that is a jump from its initial zero value and
then oscillations with very small amplitudes about a
new dropped/offsetted mean position. The small ver-
tical drop in the initial zero mean position is caused
due to the presence of the zero-frequency component
and the very small oscillations about the new mean
position is attributed to the component with the second
harmonic of the excitation frequency (2ω) present at
the O(ε) level of approximation. This is further vali-
dated by our numerical results obtained computation-
ally. The essential nonlinearity in our systemphysically
manifests itself in this unique behaviour of the nonlin-
ear interface for small amplitudes of excitation pulse
at primary resonance. This behaviour is qualitatively
quite similar to a soliton-like wave phenomenon.

3.3.3 Secondary resonance, ω = ω0/2

O(1) and O(ε) solutions
The solution and analysis for the O(1) equations
remain the same as for the non-resonant case with ω

replaced by ω0/2. The solutions are given as

d0(y, T0) = Âme
i

ω0
2 (T0−y) + cR Âme

i
ω0
2 (T0+y) (71)

ξ0(T0) = Kei
ω0
2 T0 + cc (72)

d0(0, T0) = Dei
ω0
2 T0 + cc (73)

The first term in (71) is defined as the incident wave,
dI (y, T0) and the second term the reflected wave,
dR(y, T0) from the nonlinear interface whose superpo-
sition gives the bar displacement at O(1) approxima-
tion. cc denotes the complex conjugate of its preced-
ing expressions. For the case of secondary resonance
(ω = ω0/2), the quadratic and coupled terms in the
r.h.s of the second equation of (36) are of the form

ξ20 =
(
K 2eiω0T0 + K K̄

)
+ cc (74)

d20 (0, T0) =
(
D2eiω0T0 + DD̄

)
+ cc (75)

ξ0d0(0, T0) =
(
K Deiω0T0 + K̄ D

)
+ cc (76)
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Recalling our analysis for the non-resonant andprimary
resonant case, d1(y, T0) is assumed to be of the form

d1(y, T0) =
(
S1e

iω0(T0+y) + S2
)

+ cc (77)

S1 and S2 are the unknown coefficients to be found.
The non-dimensional wave speed is unity. For the case
of secondary resonance, the second equation of (36)
becomes after substituting equations (74)–(77)

r D2
0ξ1 + 2α sin2 φξ1

=
(

α sin φ cosφS1 − 3α sin φ cos2 φK 2

− α cosφ(3 sin2 φ − 1)K D

− 1

2
sin φ(1 − 3 cos2 φD2)

)
eiω0T0

+
(

α sin φ cosφS2 − 3α sin φ cos2 φK K̄

− α cosφ(3 sin2 φ − 1)K̄ D

− 1

2
sin φ(1 − 3 cos2 φ)DD̄

)

(78)

Solving for ξ1 from (78) gives by standard procedures
of solving a second-order in-homogeneous ordinary
differential equation with given initial conditions

ξ1 = − iT0
2ω0r

(
α sin φ cosφS1 − 3α sin φ cos2 φK 2

−α cosφ(3 sin2 φ − 1)K D

−1

2
sin φ(1 − 3 cos2 φ)D2

)
eiω0T0

+ 1

ω2
0r

(
α sin φ cosφS2 − 3α sin φ cos2 φK K̄

−α cosφ(3 sin2 φ − 1)K̄ D

−1

2
sin φ(1 − 3 cos2 φ)DD̄

)
+ E1e

iω0T0 + cc

(79)

where E1 is an unknown to be determined. From the
third equation of (36), we can write

ξ1 = 1

sin φ cosφ

(
1

α

∂d1
∂y

(0, T0) + cos2 φd1(0, T0)

− cosφ

2
(1 − 3 sin2 φ)ξ20

− sin φ(3 cos2 φ − 1)ξ0d0(0, T0)

− 3

2
cosφ(1 + cos2 φ)d20 (0, T0)

)

(80)

Substituting equations (74)–(77) in equation (80)
gives

− iT0
2ω0r

(
α sin φ cosφS1 − 3α sin φ cos2 φK 2

− α cosφ(3 sin2 φ − 1)K D

− 1

2
sin φ(1 − 3 cos2 φ)D2

)
eiω0T0

+ 1

ω2
0r

(
α sin φ cosφS2 − 3α sin φ cos2 φK K̄

− α cosφ(3 sin2 φ − 1)K̄ D

− 1

2
sin φ(1 − 3 cos2 φ)DD̄

)

+ E1e
iω0T0 =

(
1

sin φ cosφ

(
2iω

α
+ cos2 φ

)
S1

− 1

2 sin φ
(1 − 3 sin2 φ)K 2

− 1

cosφ
(3 cos2 φ − 1)K D

− 3

2 sin φ
(1 + cos2 φ)D2

)
eiω0T0

+
(
cot φS2 − 1

2sinφ
(1 − 3 sin2 φ)K K̄

− 1

cosφ
(3 cos2 φ − 1)K̄ D

− 3

2 sin φ
(1 + cos2φ)DD̄

)

(81)

Equating the coefficients of eiω0T0 and e0 or 1 on both
sides of (81) gives

− iT0
2ω0r

(
α sin φ cosφS1 − 3α sin φ cos2 φK 2

− α cosφ(3 sin2 φ − 1)K D

− 1

2
sin φ(1 − 3 cos2 φ)D2

)

+ E1 = 1

sin φ cosφ

(
2iω

α
+ cos2 φ

)
S1

− 1

2 sin φ
(1 − 3 sin2 φ)K 2

− 1

cosφ
(3 cos2 φ − 1)K D
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− 3

2 sin φ
(1 + cos2 φ)D2 (82)

1

ω2
0r

(
α sin φ cosφS2 − 3α sin φ cos2 φK K̄

− α cosφ(3 sin2 φ − 1)K̄ D

− 1

2
sin φ(1 − 3 cos2 φ)DD̄

)

= cot φS2 − 1

2sinφ
(1 − 3 sin2 φ)K K̄

− 1

cosφ
(3 cos2 φ − 1)K̄ D

− 3

2 sin φ
(1 + cos2φ)DD̄ (83)

From (79), we can notice that the solution to ξ1 contains
a secular term which increases linearly with time T0.
So, for a stable solution of ξ1, we need to have

α sin φ cosφS1 − 3α sin φ cos2 φK 2

−α cosφ(3 sin2 φ − 1)K D

−1

2
sin φ(1 − 3 cos2 φ)D2 = 0 (84)

�⇒ S1 = 3 cosφK 2 +
(
3 sin2 φ − 1

sin φ

)
K D

+
(
1 − 3 cos2 φ

2α cosφ

)
D2 (85)

Solving for S2 from equation (83) gives

S2 =
(

α sin φ cosφ − rω2
0 cot φ

)−1

((
3α sin φ cos2 φ − rω2

0(1 − 3 sin2 φ)

2 sin φ

)
K K̄

+
(

α cosφ(3 sin2 φ − 1)

− rω2
0(3 cos

2 φ − 1)

cosφ

)
K̄ D

+
(
1

2
sin φ(1 − 3 cos2 φ)

− 3rω2
0

2 sin φ
(1 + cos2φ)

)
DD̄

)

(86)

Substituting equation (84) in (82) and replacing ω by
ω0/2 gives

E1 = 1

sin φ cosφ

(
iω0

α
+ cos2 φ

)
S1

− 1

2 sin φ
(1 − 3 sin2 φ)K 2

− 1

cosφ
(3 cos2 φ − 1)K D

− 3

2 sin φ
(1 + cos2 φ)D2

(87)

Substituting the expression for S1 as obtained in (85)
in (87), we can derive E1. Now that we have found
the unknown coefficients S1, S2 and E1, we can easily
derive ξ1 from either (79) or (80).

Numerical validation of analytical results
The analytical solutions obtained are compared to the
numerical results obtained computationally as done in
the previous two cases with the same non-dimensional
parameters, which are:

α = 0.5, r = 1, Âm = 1, l = 300, sin φ = 0.5, ω0

=
√
2α sin2 φ/r = 0.5, ωexc = ω0/2 = 0.25, ε = 0.01

On the FFT plots, the frequencies will be repre-
sented in cycles per non-dimensional time along the
x coordinate, denoted by the non-dimensional quan-
tity, ω/2π . ω0/2π = 0.08 cycles per non-dimensional
time, ωexc/2π = ω0/4π = 0.04 cycles per non-
dimensional time. The sufficiently small amplitude of
the excitation pulse considered for numerical simula-
tion is Am = ε Âm = 0.01. The ratio l, i.e. the non-
dimensional length of the bar, has been taken to be 300
tomake the total space and timewindow larger. Since in
the non-dimensional form, the longitudinal wave speed
in the bar is unity, the timewindowbecomes sufficiently
large, i.e. 600 and this helps to get a steadier response
free from the very few transients that will initially arise
due to discretization issues.

We have taken the point of reference for measuring
the displacement of the snap-through oscillator z(τ ) at
z = sin φ which is its initial position, as done for the
non-resonant case and primary resonancewhile obtain-
ing both the analytical and numerical solutions. Hence,
z(τ ) has been replaced by η(τ) while expressing the
dynamic response of the snap-through oscillator in the
time domain and z(ω) by η(ω) in the frequency/ spec-
tral domain.
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3.4 Discussion

We can see from the comparison of our analytical and
numerical results for the three cases studied, that the
analytical solution for the time-domain response of the
reflected pulse matches quite well with the numeri-
cal solution obtained from the finite difference scheme
for a long duration of time. The frequency-domain
response obtained analytically also matches closely
with the numerical frequency-domain response.

There are very few initial transients arising in the
numerical solution, at τ = 300 in the time series plots,
which might be due to discretization issues, but they
die out very soon and the numerical response evolves

in a steady manifold along with the analytical response
with the same amplitude and frequency. The dominant
harmonic in the dynamic response is the excitation fre-
quency ωexc and the nonlinearity in the system gen-
erates a second harmonic of ωexc, i.e. 2ωexc, but of
much lower intensity and a zero-frequency component
with a considerably large intensity for certain excita-
tion frequencies such as the case of primary resonance.
The numerical results also validate our second assump-
tion made in 3.1 while finding the solution analytically
that for sufficiently small amplitudes of the excitation
pulse, the bar displacement at the nonlinear interface
and the displacement of the oscillator from its stable

(a) time series plot of reflected pulse
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(b) FFT plot of reflected pulse

(c) time series plot of the oscillator
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(d) FFT plot of the oscillator

Fig. 4 Time-domain response and frequency-domain response
of the reflected wave in the bar and the snap-through oscillator
for primary resonance. wR(y, τ ) and wR(y, ω) denote the non-
dimensional reflectedwave in the bar from the nonlinear interface
in the time and frequency domains, respectively, whereas η(τ)

andη(ω)denote the non-dimensional displacement of the oscilla-

tor measured with respect to its initial configuration z = sin φ in
the time and frequency domains, respectively. y, τ and ω are the
non-dimensional longitudinal spatial coordinate along the bar,
the non-dimensional time and the non-dimensional frequency,
respectively
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Fig. 5 The displacement at the point in the bar connected to the
snap-through oscillator plotted in the time domain for primary
resonance. w(y, τ ) is the non-dimensional displacement at any
point in the bar. y and τ are the non-dimensional longitudinal
spatial coordinate along the bar and the non-dimensional time,
respectively

equilibrium position z = sin φ will also be sufficiently
small.

3.4.1 Non-resonant case, ω �= ω0 �= ω0/2:

For our chosen values of the system parameters α, r
and sin φ, the linearized natural frequency is ω0 = 0.5
and we have chosen the excitation frequency to be
ωexc = 0.6ω0 = 0.3. The analytical solution derived
for the reflected wave matches significantly with the
numerical solution in the time-series plot Fig. 3a. The
sharp peak at ωexc/2π = 0.048 in the FFT plot of
the reflected wave Fig. 3b represents the dominant fre-
quency present in the reflected pulse. This is the excita-
tion frequency itself and the same harmonic contained
in the incident pulse in the bar. There is a small peak
at (2ωexc)/2π = ω/π = 0.096 which is the second
harmonic ofω arising due to the nonlinearity in the sys-
tem. The oscillator response obtained analytically also
matches significantly with the same obtained numeri-
cally as can be seen from both the time-domain Fig. 3c
and frequency-domain plots Fig. 3d and is found to con-
tain the same frequency as in the reflected wave with
peaks occurring at ωexc/2π and (2ωexc)/2π = ω/π

in the FFT plot. As for the reflected pulse, the effect of
the excitation frequency (ωexc) is the most pronounced
in the oscillator response with the effect of the second
harmonic (2ωexc) being much weaker.

3.4.2 Primary resonance, ω = ω0:

The dynamic response of the system shows the same
characteristics as for the non-resonant case. We keep
our chosen system parameters the same as for the non-
resonant case and obtain the linearized natural fre-
quency as ω0 = 0.5 and the excitation frequency as
ωexc = ω0 = 0.5. The analytical solution derived for
the reflected wave and the oscillator matches signifi-
cantly with the numerical solutions in both the time-
domain Figs. 4a, and c and in the frequency-domain
Fig. 4(b), 4(d). The sharp peak at ω/2π = 0.08 in
the FFT plot of the reflected wave Fig. 4b represents
the dominant frequency present in the reflected pulse.
This is the excitation frequency itself and the same
harmonic contained in the incident pulse in the bar
and for primary resonance the same as the linearized
natural frequency ω0. There is a very small peak at
(2ωexc)/2π = ωexc/π = 0.16 which is the second
harmonic of ωexc arising due to the nonlinearity in the
system. The effect of the second harmonic (2ωexc) is
muchmuchweaker when compared to the fundamental
harmonic (ωexc). Along with these two harmonics, the
reflected wave also has a pronounced zero-frequency
or dc component as can be seen from both the ana-
lytical and numerical results. This is quite expected
from our analysis and assumed forms while deriving
the theoretical solutions which is further validated by
the numerical results. On investigating the oscillator
response, it can be seen from both the time-domain
Fig. 4c and frequency-domain plots Fig. 4d that it con-
tains the same frequencies as in the reflected wave with
peaks occurring at ωexc/2π and (2ωexc)/2π = ω/π

and 0 in the FFT plot. Similar to the reflected pulse, the
effects of the excitation frequency (ωexc) and the zero-
frequency components are the most pronounced in the
oscillator response with the effects of the second har-
monic (2ωexc) being much weaker. The displacement
at the nonlinear interface in the bar (w(y, τ ) at y = 0) 5
shows interesting behaviour. The motion at this point
in the bar shows a jump from its initial zero value and
then oscillates with very small amplitudes about a new
dropped/offsetted mean position.

3.4.3 Secondary resonance, ω = ω0/2:

Since we have kept the system parameters the same,
ω0 = 0.5. The system’s dynamic response charac-
teristics remain qualitatively the same as the for the
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(a) time series plot of reflected pulse
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(b) FFT plot of reflected pulse

(c) time series plot of the oscillator
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(d) FFT plot of the oscillator

Fig. 6 Time-domain response and frequency-domain response
of the reflected wave in the bar and the snap-through oscillator
for secondary resonance.wR(y, τ ) andwR(y, ω) denote the non-
dimensional reflectedwave in the bar from the nonlinear interface
in the time and frequency domains, respectively, whereas η(τ)

andη(ω)denote the non-dimensional displacement of the oscilla-

tor measured with respect to its initial configuration z = sin φ in
the time and frequency domains, respectively. y, τ and ω are the
non-dimensional longitudinal spatial coordinate along the bar,
the non-dimensional time and the non-dimensional frequency,
respectively

two cases studied previously, with the excitation fre-
quency (ωexc = ω0/2 = 0.25) as the fundamental
harmonic and the second harmonic (2ωexc = 2ω0/2 =
ω0 = 0.5) being present in the reflected wave and the
oscillator motion. The effect of the second harmonic
is much weaker when compared to the fundamental
harmonic. The essential nonlinearity in the system for
sufficiently small excitation amplitudesmanifests itself
as the weaker second harmonic of the excitation fre-
quency in the dynamic response. The numerical results
match quite well with the analytical solutions in both
the time domain and the frequency domain. The sharp
peak at ωexc/2π = 0.04 in the FFT plots Fig 6b, d

represents the dominant/fundamental harmonic in the
response and the small peak at 2ωexc/2π = 0.08 rep-
resents the effect of the essential nonlinearity with a
much weaker intensity for sufficiently small excitation
amplitudes. There is also the presence of a small zero-
frequency or dc component in both the reflected wave
and oscillator response.
Summing up the results obtained for the three differ-
ent cases studied both analytically and numerically, it
can be concluded that even though the attachment to
the elastic bar is essentially nonlinear, for sufficiently
small amplitudes of the excitation pulse and for any
chosen excitation frequency, the dominant harmonic in
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the dynamic response of the system will be the exci-
tation frequency (ωexc) itself and sometimes the zero-
frequency component depending upon the excitation
frequency. The effect of the nonlinearity will be man-
ifested as the presence of the much weaker compo-
nent containing the second harmonic of the excitation
frequency (2ωexc) and sometimes a dominant zero-
frequency component.

4 Stability Analysis of the snap-through oscillator

4.1 Floquet analysis

To implement the extended Floquet theory [37] for
stability analysis, we will investigate the exact non-
dimensional governing differential equation of the
snap-through oscillator (9) independently. If we con-
sider this equation, we have one unknown at this stage
which is the displacement of the endpoint of the bar
(w(0, τ )). The displacement at the endpoint is the
superposition of the reflected and incident wave at that
point. So far in our analysis, we have seen that if the
incident pulse is a sinusoidal one with frequency ω, the
reflected pulse will also be a sinusoidal one with ω as
the dominant harmonic. The displacement of the end-
point of the bar will also be a sinusoidal function of
time with the excitation frequency ω as the dominant
harmonic and there will be a phase difference between
the incident wave and the reflected wave at the nonlin-
ear interface depending upon the excitation frequency.
So, at this stage, we make an approximation for the bar
endpoint displacement. We consider it to be a simple
sinusoidal function of time with a certain amplitude
and composed of a single frequency which we call the
excitation frequency ω. So our assumed form for the
bar endpoint displacement is

w(0, τ ) = D sinωτ (88)

D is unknown and can be sufficiently large, i.e. ofO(1).
The excitation frequency ω can have any chosen value.
Equation (9), when written in functional form is

r z′′ + α f (z(τ ), w(0, τ ), τ ) = 0 (89)

In section 3.1 while finding the dynamic response anal-
ysis, we have taken w(0, τ ) to be very close to zero
(O(ε)) because the amplitude of the excitation pulse,
i.e. Am has been considered to be of O(ε). But, here
we do the analysis for a more generalized case, where

Am and hence w(0, τ ) and hence D can be of O(1).
Since we have taken an approximation for w(0, τ ) in
(88), equation (89) reduces to

r z′′ + α f (z(τ ), τ ) = 0 (90)

We shall linearize the function f about a time-periodic
reference motion of z(τ ) which is the point z = sin φ,
which is also one of the stable centres of the oscillator
in the absence of its interaction with the elastic bar as
discussed in 2.3. So we perform a power series expan-
sion by taking

z(τ ) = sin φ + η(τ) (91)

Retaining up to linear terms,we get the simplified equa-
tion as

rη′′ + α

((
sin φ − sin φ√

(cosφ − D sinωτ)2 + sin2 φ

)

+
(
1 + sin2 φ

− 1√
(cosφ − D sinωτ)2 + sin2 φ

+ sin2 φ

((cosφ − D sinωτ)2 + sin2 φ)
3
2

)
η

)
= 0

(92)

To bring (92) to a standard form, we do a re-scaling
which is τ1 = ωτ . With this re-scaling in (92), we get
the simplified equation as

η̈ +
(

α

rω2 (1 + sin2 φ)

+ α

rω2

(
sin2 φ

((cosφ − D sin τ1)2 + sin2 φ)
3
2

)

− 1√
(cosφ − D sin τ1)2 + sin2 φ

)
η

= α

rω2

(
sin φ√

(cosφ − D sin τ1)2 + sin2 φ
− sin φ

)

(93)

where double dot represents differentiationwith respect
to τ1. Equation (93) is in the standard form of a non-
autonomous, in-homogeneous Mathieu equation given
by

η̈ + (δ + ε f1(τ1)) η = εg1(τ1) (94)

where the new terms are defined as

δ = α

rω2

(
1 + sin2 φ

)
, ε = α

rω2 (95)

f1(τ1) =
(

sin2 φ

((cosφ − D sin τ1)2 + sin2 φ)
3
2
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− 1√
(cosφ − D sin τ1)2 + sin2 φ

)
(96)

g1(τ1) =
(

sin φ√
(cosφ − D sin τ1)2 + sin2 φ

− sin φ

)

(97)

The functions f1 and g1 are both periodic functions
of the re-scaled time τ1 with a period of 2π . Equa-
tion (94) is a standard in-homogeneous Mathieu equa-
tion. We vary D and ω and examine the stability of
this equation numerically by using the extended Flo-
quet theory [37] as in finding out the Floquet multi-
pliers in each case and imposing the conditions that
|max(λ1, λ2)| = 1 and λ1 �= λ2 �= ±1, where λ1
and λ2 are the Floquet multipliers of the homogeneous
system by taking the right-hand side of (94) to be zero.

4.2 Results and discussion of Floquet analysis

For the purpose of numerical simulation, a tolerance of
±0.001 is taken. The numerical parameters are taken
as

α = 0.5, r = 1, sin φ = 0.5 (98)

The time period for the Floquet analysis, as done con-
ventionally, has been taken as one complete period of
the functions f1(τ1) and g1(τ1), which is 2π . The fre-
quency ω has been taken to be starting at values greater
than zero (0.1) to ensure that the parameter ε does not
tend to infinity during the Floquet analysis.

The un-shaded portions in Fig. 7 represent the val-
ues of D andω for which the solution of the inhomoge-
neous equation (94) becomes unbounded or unstable.
The shaded regions represent the set of values of D
and ω for which the solution of (94) remains bounded
or stable. So, we can see that if the displacement of
the end-point of the bar is approximated by a simple
sinusoidal function of time with an amplitude, which
can be sufficiently large, and any chosen excitation fre-
quency, then we can perform stability analysis for the
essentially nonlinear governing differential equation of
the snap-through oscillator (90). The stability analysis
more commonly known as the Floquet analysis gen-
erates a Mathieu plot of the approximated excitation
amplitude D and excitation frequency ω showing the
stable and unstable regions for the linearized dynamic
response of the snap-through oscillator.

Fig. 7 Mathieu plot showing the stable and unstable regions for
the dynamic response of the snap-through oscillator for suffi-
ciently large amplitudes of the excitation pulse

To confirm the validity of our stability analysis, we
perform numerical integration of our approximated,
linearized equation of motion for the snap-through
oscillator (92) by using the ODE45 solver in MAT-
LAB for 200-time units. The system parameters are
taken the same, as were considered previously for the
Floquet analysis. We show two results corresponding
to two sets of values of the excitation parameters D and
ω. One set of values is chosen from the stable shaded
region of the Mathieu plot Fig. 7 and the other set of
values is chosen from the unstable un-shaded region.
The value of the parameter D is chosen to be suffi-
ciently large, i.e. of O(1) magnitude to focus on the
case of sufficiently large excitation amplitude.

The numerical results validate the stability analy-
sis performed for the equation of motion of the snap-
through oscillator (92) for sufficiently large bar end-
point displacements arising due to sufficiently large
amplitudes of the excitation pulse. The shaded regions
in the Mathieu plot correspond to the values of the
excitation parameters for which the oscillator motion
is periodic and bounded. Physically, this means that for
those values of the excitation amplitude and frequency,
the un-approximated oscillator (90) motion will fol-
low periodic orbits around one of its stable equilib-
rium points at z = sin φ or η = 0 which is one cen-
tre. The un-shaded regions in the Mathieu plot corre-
spond to those values of the excitation parameters for
which the oscillator motion in the linearized regime is
unbounded in time. Physically, this explosion of the
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Fig. 8 Unbounded and bounded dynamic response of the snap-
through oscillator in the linearized regime corresponding to one
unstable and one stable point in the Mathieu plot. η(τ) is the

non-dimensional displacement of the snap-through oscillator
measured from its initial position z = sin φ and τ is the non-
dimensional time

linearized response means that for these sets of values
of the excitation parameter, the un-approximated oscil-
lator response (90) undergoes a snap-through from one
of its stable equilibrium points to the other stable equi-
librium point which is the other centre at z = − sin φ

or η = −2 sin φ and in doing so it crosses the unstable
equilibrium point which is a saddle in the middle at
z = 0 or η = − sin φ.

Recalling thatwe have defined our natural frequency
for the oscillator motion for the linearized systems at
different levels of approximation described in (35) and
(36) to be ω0 =

√
2α sin2 φ/r , one more interest-

ing observation from the Mathieu plot is that the first
unstable region that is the first prominent white band
originates near ω = ω0 = 0.5 at sufficiently small
values of the excitation amplitude for our chosen val-
ues of the system parameters. This is the primary res-
onant frequency for the linearized systems described
in (35)–(36) at different levels of approximation of the
perturbation analysis of our actual nonlinear model.
So, we can conclude that the actual un-approximated
and essentially nonlinear oscillator (90) response will
start showing a snap-through or divergent motion for
the first time for excitation frequencies starting close
to the linearized primary resonant frequency obtained
from the asymptotic analysis of the actual system (35)–
(36) and gradually increasing in a nonlinear fashion
with the excitation amplitude along the first white band.
We shall show in the next section that this behaviour
eventually materializes into a harmonic motion which
becomes bounded after showing some initial diverging

transients when we attach the oscillator to the elastic
bar and increase the small nonlinear parameter ε to
sufficiently large values for the case of primary reso-
nance. We shall support this statement both by analyt-
ical results and numerical solutions. The next promi-
nent unstable/white band starts from ω = 2ω0 = 1
for our chosen system parameters and evolves non-
linearly with the excitation amplitude and excitation
frequency up to sufficiently large values of the exci-
tation amplitude. So, the Floquet analysis enables us
to predict important excitation parameters such as the
excitation amplitude, including the case of sufficiently
large excitation amplitude, and excitation frequency in
terms of the known system parameters for which the
linearized dynamic response of the oscillator starts to
become unstable that is the un-approximated oscillator
dynamics (90) starts exhibiting a snap-through motion.

4.3 A few observations upon increasing the nonlinear
parameter ε

4.3.1 Non-resonant case

All the other numerical parameters are kept the same
from the non-resonant case, except for the small non-
linear parameter ε, which is increased directly from
0.01 to 0.07 and then to a sufficiently large value of 0.2
in small steps. As done before, the point of reference
for measuring the displacement of the oscillator z(τ ) is
taken to be at z = sin φ which was its initial position
or configuration. The analytical solutions obtained are
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compared to the numerical results obtained computa-
tionally as done previously for the non-resonant case
with the same values of the non-dimensional parame-
ters (except for ε), which are:

α = 0.5, r = 1, Âm = 1, l = 300, sin φ = 0.5,

ω0 =
√
2α sin2 φ/r = 0.5, ωexc = 0.6ω0 = 0.3,

ε = 0.07, 0.08, 0.09, 0.1

The actual amplitude of the excitation pulse consid-
ered for numerical simulation is given by Am = ε Âm

for each of the three cases. The ratio l, i.e. the non-
dimensional length of the bar has been taken to be 300
tomake the total space and timewindow larger. Since in
the non-dimensional form, the longitudinal wave speed
in the bar is unity, the timewindowbecomes sufficiently
large, i.e. 600 and this helps to get a steadier response
free from the very few transients that will initially arise
due to discretization issues. We resort to only plotting
the oscillator response in the time domain to observe a
few interesting nonlinear phenomena such as stability
and bifurcation analysis.

Now, we increase ε beyond 0.1 and check the cases
for ε = 0.14, 0.15, 0.17, 0.2, keeping all the other
numerical parameters same as done just before in this
subsection. We again resort to plotting only the oscil-
lator response in the time domain to observe some rich
nonlinear effects. The non-dimensional length l of the
bar is taken to be same as before which is 300. The non-
dimensional parameters used for plotting the results are

α = 0.5, r = 1, Âm = 1, sin φ = 0.5,

ω0 =
√
2α sin2 φ/r = 0.5,

ωexc = 0.6ω0 = 0.3, Am = ε Âm

ε = 0.14, 0.15, 0.17, 0.2

As we can see that for increasing ε from 0.07 to a
larger value of 0.2, the numerical solution deviates from
the analytical solution in the time domain both in terms
of amplitude and phase shift. The observation is quite
valid from the perspective of our theoretical framework
which considers the nonlinear effects only after trun-
cating them to quadratic terms. But, the numerical solu-
tion is still bounded as in it does not become divergent
in time. For increasing ε from a very small value of
0.01 up to a value of around 0.07, the response for the
oscillator, obtained both analytically and numerically,
remains periodic around its initial stable configuration

η = 0, and the solutions are both qualitatively and
quantitatively similar. For ε = 0.08, we see an inter-
esting phenomenon of a snap-through in the numerical
solution, where the oscillator suddenly sees the other
stable centre at η = −2 sin φ = −1 for the first time,
performs one completemotion about the larger periodic
orbit centred at the saddle at η = − sin φ = −0.5 (see
2.3), and then again comes back to perform oscillations
around its initial stable centre at η = 0. Beyond this
value of ε corresponding to considerably higher exci-
tation amplitudes, where the analytical solution can-
not be trusted because of Taylor series approximations,
the numerical solution shows an interesting combined
motion comprising of steady vibrations around its ini-
tial centre at η = 0 and steady vibrations around the
other stable centre at η = −2 sin φ = −1. This incor-
poration of two fixed points in the picture can be use-
ful for studying bifurcation analysis. On continuously
increasing ε further, this complex combined motion of
the oscillator observed numerically slowly begins to
transform to sustained motions about the larger peri-
odic orbits centred around the saddle at η = −0.5,
which finally becomes a stable periodic motion around
the same saddle at around ε = 0.2. This shift of sta-
bility and birth of a new periodic solution about the
saddle can be useful for studying interesting nonlinear
effects such Hopf bifurcation and saddle-node bifur-
cation by varying the parameter ε at will and running
our proposed numerical scheme on a computer. Physi-
cally, this interesting phenomenon means that the dis-
placement of the bar at the nonlinear interface acts as
a type of forced excitation for the oscillator in addi-
tion to the initial condition we have already imposed
on the oscillator by keeping it initially at η = 0. So, the
oscillator due to the complex combined effects of self-
excitation and forced excitation, continuously under-
goes a switching between two periodic orbits, one cen-
tred around η = 0, which is its initial stable centre and
the other centred around η = −2 sin φ = −1, which is
its other stable centre until settling down to a larger peri-
odic orbit around the saddle at η = − sin φ = −0.5.
Had we kept the oscillator at its other stable centre at
η = −2 sin φ = −1 at the beginning of our analysis, it
would have undergone continuous switching of energy
between periodic orbits around this centre and periodic
orbits around the its other stable centre at η = 0 for
increasing values of ε before ultimately settling down
to a stable periodic motion around the saddle at around
the same value of ε = 0.2 because of the symmetric-
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(b) time series plot of oscillator( ε = 0.08)
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(c) time series plot of oscillator( ε = 0.09)
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(d) time series plot of oscillator( ε = 0.1)

Fig. 9 Time-domain response of the snap-through oscillator for
non-resonant case for ε = 0.07, 0.08, 0.09, 0.1. η(τ) denotes the
non-dimensional displacement of the oscillator measured with

respect to its initial configuration z = sin φ in the time domain.
τ is the non-dimensional time

ity in its phase portrait (see 2.3). Such sustained modal
energy exchange for the non-resonant case will find
very useful practical applications in circumnavigation
of ships, submarines, and for launching satellites to
their specific orbits. We also notice another important
thing from running our finite difference algorithm com-
putationally which is that by adjusting the mesh size
for both time and space, the analytical and numerical
solutions show a tendency of overlapping and converg-
ing towards a steady harmonic behaviour. This can be
further validated by conducting experiments in a lab-
oratory under restrained settings with a suitable proto-
type of our chosenmodel/systemwherewe can observe
what really can happen for such a system.

4.3.2 Primary resonance

All the other numerical parameters are kept the same
and the bar end point displacements are plotted for
ε = 0.06 and ε = 0.1. Since we are studying pri-
mary resonance, ω = ω0 = 0.5 or 0.08 cycles per
non-dimensional time.

For increasing ε in the case of primary resonance,
the behaviour of the oscillator response is more or
less qualitatively similar to that for the non-resonant
case, observed just before in the previous section (see
4.3.1). The oscillator for the smaller value of ε = 0.06
exhibits periodic motions corresponding to one of the
homoclinic orbits around its initial stable configuration
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(a) time series plot of oscillator( ε = 0.14)
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(b) time series plot of oscillator( ε = 0.15)
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(c) time series plot of oscillator( ε = 0.17)
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Fig. 10 Time-domain response of the snap-throughoscillator for
non-resonant case for ε = 0.14, 0.15, 0.17, 0.2. η(τ) denotes the
non-dimensional displacement of the oscillator measured with

respect to its initial configuration z = sin φ in the time domain.
τ is the non-dimensional time

z = sin φ or η = 0 (see 2.3), and for the larger value of
ε = 0.1, it exhibits periodic motions corresponding to
one of the orbits around the unstable saddle at z = 0 or
η = − sin φ = −0.5 (see 2.3). Since the information
about the reflected wave is contained in the bar dis-
placement at the nonlinear interface, we resort to only
plotting the bar end point displacement for the end con-
nected to our snap-through oscillator. For ε = 0.06, the
truncated analytical solution for the bar endpoint dis-
placement, which cannot be trusted wholly, shows a
snap from its initial stable equilibrium position at 0 to
another stable equilibrium position and then oscillates
with very small amplitudes around this newmean posi-

tion with a stable manifold. The exact numerical solu-
tion for this value of ε starts from 0, shows a vertical
jump and then oscillates about a new dropped/offsetted
mean positionwith considerably larger amplitudes cor-
responding to one of the homoclinic orbits of the dis-
crete snap-through oscillator around z = sin φ or
η = 0. For ε = 0.1, the truncated analytical solu-
tion of the bar displacement at the nonlinear interface
shows a similar snap-through behaviour and the exact
numerical solution shows oscillations about its initial
zero mean position corresponding to periodic motions
of the oscillator around the unstable saddle at z = 0 or
η = − sin φ. But, besides these, in the numerical solu-
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Fig. 11 The displacement at the point in the bar connected to the snap-through oscillator plotted in the time domain for primary
resonance for ε = 0.06 and ε = 0.1, respectively

tion for primary resonance for both the values of ε, we
observe a slowly modulated response or a seemingly
rich dynamic behaviour with a few initial transients
for the bar endpoint displacement as is desirous for
such a nonlinearmodel. This case of primary resonance
will find useful real-world applications like increasing
jet fuel efficiency by proper design of aircraft wings.
The advantage of using the method of multiple scales
(MMS) is quite conspicuous in this case of primary
resonance, because we can already get to see the tran-
sients or slowmodulations expected for such nonlinear
systems in the numerical solution presented by the dis-
placement response (plotted in red) against the steady
analytical solution (plotted in blue) inFig. 11.Anotable
thing is that MMS reduces to a very simple/classical
perturbation approach in our systembecause of the cho-
sen harmonic excitation/ displacement boundary con-
dition at the free end of the bar in real time T0 or t and
this reduces the tedious algebraic calculations to some
extent. In conclusion, from our observations, it can be
said that using MMS in this case suppresses the mixed
secular terms and leads to bounded analytical solutions,
and therefore, it is possible to study a steady harmonic
motion analytically for smaller values of the nonlin-
ear parameter ε, and also the transient/slow modulated
response numerically by running our explicit finite dif-
ference algorithm for larger values of ε.

5 Conclusion

The wave propagation characteristics, namely the
reflected pulse and the oscillator motion of an elastic
bar coupled to a single degree of freedom snap-through
oscillator, are considered. A key feature of this prob-
lem is the underlying geometric and essential nonlin-
earity leading to excitation amplitude and excitation
frequency-dependent dynamic response even for lin-
ear material properties of the constitutive elements. A
physics-based analytical approach leading to closed-
form expressions of the reflected wave in the elastic bar
and the dynamic response of the snap-through oscilla-
torwas presented. The route to this analytical derivation
has three key steps. Firstly, the non-dimensional bound-
ary conditions and equations of motion are derived
exactly from the Lagrangian of the system. Secondly,
a Taylor series approximation is done for the non-
autonomous terms in the equations and boundary con-
ditions for sufficiently small amplitudes of the excita-
tion pulse and themethodofmultiple time scales is used
to expand the time-dependent variables asymptotically.
Finally, the method of harmonic balance is used to find
the dynamic responses at different levels of approx-
imation. The analytical solutions obtained suggest a
nonlinear dependence of the response on the system
and excitation parameters.
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The stability/Floquet analysis performed for the
snap-through oscillator for sufficiently large ampli-
tudes of the excitation pulse comes helpful while pre-
dicting the excitation parameters which can cause the
oscillator to undergo a snap-through motion.
Key novel features of this paper include:

– A generalized asymptotic methodology based on
the classical perturbation theory and wave propa-
gation analysis, for deriving the wave propagation
characteristics of an elastic bar coupled to any dis-
crete nonlinear end attachment.

– The explicit employment of ordinary differential
equations governing themotion of the snap-through
element and the harmonic balance method for sat-
isfying the natural boundary condition of the bar
into the dynamic response analysis of the system.

– The expressions derived here give themost compre-
hensive and consistent description of the propaga-
tion characteristics of the bar and the motion of the
snap-through element which can be directly used in
the context of finite difference analysis over a wide
range of values of the excitation frequency, includ-
ing the different possible cases of resonance up to a
second order of asymptotic approximation, and suf-
ficiently small values of the excitation amplitude.

– The use of the extended Floquet theory after re-
scaling the governing equation of motion of the
snap-through oscillator to a standard inhomoge-
neous Mathieu equation and distinguishing the
excitation parameter values for stable and unstable
dynamic response of the snap-through oscillator in
the chosen linearized regime.

– The Floquet analysis performed here can be done
over a wide range of excitation and system param-
eters and so it is possible to explore the response
characteristics of the system by tuning both the
excitation and system parameters.

The analytical expressions have been validated with
the numerical results from a finite difference algo-
rithm. Results obtained from the analytical expressions
derived for the reflected wave and the oscillator motion
are graphically illustrated in both the time domain and
the frequency domain. The numerical resultsmatch sig-
nificantly with the analytical solution in both the time
and frequency domains for a sufficiently large length
of the bar and hence a sufficiently large time win-
dow. The closed-form expressions derived here provide
excellent opportunities to use them for optimization

of the excitation and system parameters for an elastic
bar coupled to a discrete nonlinear end attachment to
obtain desirable wave propagation characteristics and
dynamic response in a computationally efficient and
physically appealing manner. The explicit finite dif-
ference algorithm when run computationally enables
us to vary the nonlinear parameter ε at will and study
interesting nonlinear phenomena such as modal energy
exchange, response stability, sustained resonance cap-
ture, Hopf and saddle-node bifurcation.

Application domains of thisworkwill include indus-
trial sectors which exploit elastic waveguides with end
attachments for energy harvesting, vibration isolation
and vibration suppression. Specific examples include,
but are not limited to, energy absorbent machine parts,
nonlinear viscous damping models and nonlinear fil-
ters, aircraft wings, vehicle suspension systems, peri-
odicmolecular chains of bi-stable constituents, flexible
mechanical and acoustic meta-materials, satellites that
exhibit gyroscopic motion, heart monitoring devices,
circumnavigation of ships and submarines, and lastly to
study interesting wave phenomenon such as a solitary
wave packet or soliton. Although the system is geo-
metrically nonlinear arising due to its underlying con-
figuration, the material behaviours of the constituent
elements of the system have been assumed to be lin-
ear. The amplitude of the excitation pulse has been
assumed to be sufficiently small while deriving the
propagation characteristics and dynamic response ana-
lytically. Future works in this direction should focus
on nonlinear material behaviour to encompass a wide
range ofmaterials available tomanufacturewaveguides
with end attachments, and sufficiently large excitation
amplitudes to consider a wider range of external exci-
tation present in the surroundings.

Acknowledgements The authors sincerely acknowledge Doc-
tor K. R. Jayaprakash of the Mechanical Engineering Depart-
ment at Indian Institute of Technology, Gandhinagar, for valu-
able initial discussions on the analytical formulation of the prob-
lem studied in this paper. This research is a part of a project
that has received funding from the European Unions Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 896942 (METASINK).

Author contributions All authors contributed to the study con-
ception and design. Modelling, analysis and computations were
performed by Aneesh Bhattacharyya and Sondipon Adhikari.
The first draft of the manuscript was written by Aneesh Bhat-
tacharyya and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

123



Propagation characteristics of an elastic 2989

Funding The authors declare that no funds, grants or other sup-
port were received during the preparation of this manuscript.

Data availability The datasets generated during and/or analysed
during the current study will be available from the corresponding
authors on reasonable request.

Declarations

Conflict of interest The authors declare that they have no known
competing financial or non-financial interests or personal rela-
tionships that could have appeared to influence the work reported
in this paper.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

References

1. Hagedorn, P., Dasgupta, A.: Vibrations and Waves in Con-
tinuous Mechanical Systems. Wiley (2007)

2. James, F.: Doyle. Wave Propagation in Structures. Springer-
Verlag Inc, New York (1997)

3. Steven, H.: Strogatz. Perseus Books Publishing, Nonlinear
Dynamics and Chaos (1994)

4. Nayfeh, Ali H.: Perturbation Methods. John Wiley Sons,
New York (2008)

5. Nayfeh, A.H.: The response of single degree of freedom
systems with quadratic and cubic non-linearities to a sub-
harmonic excitation. J. Sound Vib. 89(4), 457–470 (1983)

6. Lee, Young Sup, Kerschen, Gaetan, Vakakis, Alexander
F.: Panagiotis panagopoulos, lawrence bergman, and D.
michael McFarland complicated dynamics of a linear oscil-
lator with a light, essentially nonlinear attachment. Phys. D.:
Nonlinear Phenomena 204(1), 41–69 (2005)

7. Vakakis, A.F.: Inducing passive nonlinear energy sinks in
vibrating systems.Trans.Am.Soc.MechEng. J.Vib.Acous-
tics 123(3), 324–332 (2001)

8. Vakakis, Alexander F., Manevitch, L.: Oleg gendelman, and
lawrence Bergman. Dynamics of linear discrete systems
connected to local, essentially non-linear attachments. J.
Sound Vib. 264(3), 559–577 (2003)

9. Manevitch, L.I., Gendelman, O., Musienko, A.I., Vakakis,
A.F., Bergman, L.: Dynamic interaction of a semi-infinite
linear chain of coupled oscillators with a strongly nonlinear
end attachment. Physica D 178(1), 1–18 (2003)

10. Carrella, A., Brennan, M.J., Waters, T.P., Lopes, V., Jr.:
Force and displacement transmissibility of a nonlinear iso-
lator with high-static-low-dynamic-stiffness. Int. J. Mech.
Sci. 55(1), 22–29 (2012)

11. Abolfathi, A., Brennan, M.J., Waters, T.P., Tang, B.: On
the effects of mistuning a force-excited system containing a
quasi-zero-stiffness vibration isolator. Journal of Vibration
and Acoustics, 137(4), (2015)

12. Karlicic, D., Cajic,M., Adhikari, S.: Dual-mass electromag-
netic energy harvesting from galloping oscillations. Part C:
J. Mech. Eng. Sci. 235(20), 4768–4783 (2021)

13. Karlicic, D., Cajic, M., Paunovic, S., Adhikari, S.: Periodic
response of a nonlinear axially moving beam with a nonlin-
ear energy sink and piezoelectric attachment. Int. J. Mech.
Sci. 195(4), 106230 (2021)

14. Karlicic, D., Chatterjee, T., Cajic, M., Adhikari, S.: Para-
metrically amplified mathieu-duffing nonlinear energy har-
vesters. J. Sound Vib. 488(12), 115677 (2020)

15. Karlicic, D., Cajic,M., Paunovic, S., Adhikari, S.: Nonlinear
energy harvesters with coupled Duffing’s oscillators. Com-
mun. Nonlinear Sci. Numer. Simul. 91(12), 105394 (2020)

16. Niu, M.Q., Chen, L.Q.: Optimization of a quasi-zero-
stiffness isolator via oblique beams. Int. Conf. Appl. Non-
linear D., Vib. Control, pages 394–408, (2021)

17. Avramov,K.V.,Mikhlin,Y.V.: Snap-through truss as a vibra-
tion absorber. Modal Anal. 10(2), 291–308 (2004)

18. Avramov, K.V., Mikhlin, Y.V.: Forced oscillations of a sys-
tem, containing a snap-through truss, close to its equilibrium
position. Nonlinear Dyn. 35(4), 361–379 (2004)

19. Avramov, K.V., Mikhlin, Y.V.: Snap-through truss as an
absorber of forced oscillations. J. Sound Vib. 290(3), 705–
722 (2006)

20. Breslavsky, I., Avramov, K.V., Mikhlin, Yu., Kochurov, R.:
Nonlinearmodes of snap-throughmotions of a shallow arch.
J. Sound Vib. 311(1), 297–313 (2008)

21. Liu, Y., Mojahed, A., Bergman, L.A., Vakakis, A.F.: A
new way to introduce geometrically nonlinear stiffness and
damping with an application to vibration suppression. Non-
linear Dyn. 96(3), 1819–1845 (2019)

22. Mojahed, A., Bergman, L.A., Vakakis, A.F.: Tunable-with-
energy intense modal interactions induced by geometric
nonlinearity. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
235(20), 4506–4525 (2021)

23. Mojahed, A., Liu, Y., Bergman, L.A., Vakakis, A.F.: Modal
energy exchanges in an impulsively loaded beamwith a geo-
metrically nonlinear boundary condition: computation and
experiment. Nonlinear Dyn. 103(4), 3443–3463 (2021)

24. Nayfeh, A.H., Asfar, K.R.: Response of a bar constrained by
a non-linear spring to a harmonic excitation. J. Sound Vib.
105(1), 1–15 (1986)

25. Lee, W.K., Yeo, M.H., Bae, S.S.: Validity of the multiple-
scale solution for a subharmonic resonance response of a bar
with a non-linear boundary condition. J. Sound Vib. 208(4),
567–574 (1997)

26. Özkaya, E., Pakdemirli, M., Öz, H.R.: Non-linear vibrations
of a beam-mass system under different boundary conditions.
J. Sound Vib. 212(2), 679–696 (1998)

27. Avramov, K.V., Gendelman, O.V.: On interaction of vibrat-
ing beam with essentially nonlinear absorber. Meccanica
45(3), 355–365 (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2990 A. Bhattacharyya, S. Adhikari

28. Mikhlin, Yuri V., Reshetnikova, S.N.: Dynamical interaction
of an elastic system and essentially nonlinear absorber. J.
Sound Vib. 283(1), 91–120 (2005)

29. Krack, M., Bergman, L.A., Vakakis, A.F.: On the efficacy of
friction damping in the presence of nonlinear modal inter-
actions. J. Sound Vib. 370, 209–220 (2016)

30. Gendelman, O.V., Manevitch, L.I.: Reflection of short rect-
angular pulses in the ideal string attached to strongly nonlin-
ear oscillator. Chaos, Solitons&Fractals 11(15), 2473–2477
(2000)

31. Ahsan, Z., Jayaprakash, K.R.: Evolution of a primary pulse
in the granular dimers mounted on a linear elastic founda-
tion: an analytical and numerical study. Phys. Rev. E 94(4),
1–15 (2016)

32. Jayaprakash, K.R., Shiffer, A., Starosvetsky, Y.: Traveling
waves in trimer granular lattice i: Bifurcation structure of
traveling waves in the unit-cell model. Commun. Nonlinear
Sci. Numer. Simul. 38, 8–22 (2016)

33. Shiffer, A., Jayaprakash, K.R., Starosvetsky, Y.: Traveling
waves in trimer granular lattice ii: Asymptotic prediction of
weakly attenuated pulses. Commun. Nonlinear Sci. Numer.
Simul. 43, 62–77 (2016)

34. Kislovsky, V., Kovaleva, M., Jayaprakash, K.R., Starosvet-
sky,Y.:Consecutive transitions from localized to delocalized
transport states in the anharmonic chain of three coupled
oscillators. Chaos: An Interdisciplinary Journal of Nonlin-
ear Science, 26(7):073102(1–12), (2016)

35. Fraternali, F., Carpentieri, G., Amendola, A., Skelton, R.E.,
Nesterenko, V.F.: Multiscale tunability of solitary wave
dynamics in tensegrity metamaterials. Appl. Phys. Lett.
105(20), 201903 (2014)

36. Bhattacharyya, Aneesh, Adhikari, Sondipon : Supplemen-
tary material; Propagation characteristics of an elastic bar
coupled with a discrete snap-through element. (2022)

37. Slane, J., Tragesser, S.: Analysis of periodic nonautonomous
inhomogeneous systems. Nonlinear Dynamics and Systems
Theory 11(2), 183–198 (2011)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Propagation characteristics of an elastic bar coupled with a discrete snap-through element
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 The model
	2.2 Equations of motion and boundary conditions
	2.3 Phase-plane behaviour of the uncoupled oscillator

	3 Dynamic response analysis of the system
	3.1 Assumptions and Taylor series approximation
	3.2 Asymptotic expansion
	3.3 Analytical closed-form solution
	3.3.1 Non-resonant case, ω=ω0=ω0/2
	3.3.2 Primary resonance, ω=ω0
	3.3.3 Secondary resonance, ω=ω0/2

	3.4 Discussion
	3.4.1 Non-resonant case
	3.4.2 Primary resonance
	3.4.3 Secondary resonance


	4 Stability Analysis of the snap-through oscillator
	4.1 Floquet analysis
	4.2 Results and discussion of Floquet analysis
	4.3 A few observations upon increasing the nonlinear parameter ε
	4.3.1 Non-resonant case
	4.3.2 Primary resonance


	5 Conclusion
	Acknowledgements
	References




