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Wireless Federated Langevin Monte Carlo: Repurposing

Channel Noise for Bayesian Sampling and Privacy

Dongzhu Liu and Osvaldo Simeone

Abstract—Most works on federated learning (FL) focus on
the most common frequentist formulation of learning whereby
the goal is minimizing the global empirical loss. Frequentist
learning, however, is known to be problematic in the regime
of limited data as it fails to quantify epistemic uncertainty in
prediction. Bayesian learning provides a principled solution to
this problem by shifting the optimization domain to the space
of distribution in the model parameters. This paper proposes
a novel mechanism for the efficient implementation of Bayesian
learning in wireless systems. Specifically, we focus on a standard
gradient-based Markov Chain Monte Carlo (MCMC) method,
namely Langevin Monte Carlo (LMC), and we introduce a novel
protocol, termed Wireless Federated LMC (WFLMC), that is able
to repurpose channel noise for the double role of seed randomness
for MCMC sampling and of privacy preservation. To this end,
based on the analysis of the Wasserstein distance between sample
distribution and global posterior distribution under privacy and
power constraints, we introduce a power allocation strategy as
the solution of a convex program. The analysis identifies distinct
operating regimes in which the performance of the system is
power-limited, privacy-limited, or limited by the requirement
of MCMC sampling. Both analytical and simulation results
demonstrate that, if the channel noise is properly accounted for
under suitable conditions, it can be fully repurposed for both
MCMC sampling and privacy preservation, obtaining the same
performance as in an ideal communication setting that is not
subject to privacy constraints.

I. INTRODUCTION

Federated learning (FL) protocols aim at coordinating mul-

tiple devices to collaboratively train a target model in a manner

that approximates centralized learning at the cloud, while

avoiding the direct exchange of data [1], [2]. Most prior works

on wireless FL consider a frequentist formulation whose goal

is minimizing the empirical loss over the vector of model

parameters [3]–[7]. Significant attention has been devoted to

uncoded transmission schemes coupled with non-orthogonal

multiple access (NOMA), which leverage the superposition

property of wireless channels to enable efficient over-the-

air aggregation at the server [5], [6]. Furthermore, FL pro-

tocols inevitably leak some information about local data via

communication. Formal privacy requirements can be met by

introducing randomness to the disclosed statistics [8]. When

implementing uncoded transmission, noise in wireless chan-

nels was accordingly shown to serve as a privacy-preserving

mechanism [6], [9].
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Frequentist learning is effective in the regime of large data

sets when accuracy is the main concern, but it fails to quantify

epistemic uncertainty due to the availability of limited data

[10], [11]. Bayesian learning provides an alternative learning

framework in which optimization is done over the distribution

of model parameters rather than over a single model parameter

vector as in frequentist learning. Practical Bayesian learning

methods include variational inference (VI), which constrains

the model distribution to a parameter family, and Monte

Carlo (MC) sampling, which draws samples approximately

generated from the optimal model distribution [12].

This paper represents the first work on Bayesian FL in

wireless networks. We specifically adopt Langevin Monte

Carlo (LMC), a gradient-based Markov Chain Monte Carlo

(MCMC) method that adds Gaussian noise to gradient descent

(GD) updates. LMC is a fundamental building block of compu-

tationally efficient Bayesian inference and learning strategies.

Unlike simpler random-walk MCMC methods, LMC leverages

first-order information about the probabilistic model, striking

a useful trade-off between complexity and performance [12],

[13]. LMC can be generalized and improved in various direc-

tions, such as by accounting also for second-order information

[14], [15].

The key contribution of this paper is not that of introducing

a new Bayesian learning algorithm. Rather, we introduce a

new mechanism for the efficient, and private, implementation

of LMC over wireless channels. The approach is based on the

idea that channel noise can be repurposed for the double role

of seed randomness for the implementation of MC sampling

and of privacy-preservation. Our analytical and experimental

results provide insights about operating regimes in which chan-

nel noise can effectively serve both functions. It is envisaged

that the proposed novel method of exploiting channel noise for

MC sampling could also be applied and optimized for more

sophisticated MCMC solutions such as Hamiltonian Monte

Carlo [15].

A. Related Work

1) Frequentist and Bayesian FL: FL protocols alternate

between local computing and communication steps. In fre-

quentist FL protocols, devices exchange model parameter

vectors, which may be first quantized and compressed [16].

Wireless channels can be treated as bit pipes that limit the

communication rates at each round [17], [18], or they can be

modelled at the level of baseband signals. In the former case,

resource allocation has been addressed to optimize the learning

performance [19]. In the latter case, over-the-air aggregation

can be leveraged via uncoded transmission – an approach
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known as AirComp [5], [6], [20]. AirComp can be combined

with sparsification and compression to reduce the commu-

nication overhead [21]. Bayesian post-processing estimation

methods have been proposed to improve the test accuracy of

federated learning, e.g., by exploiting the temporal structure of

the received signals [21], by incorporating information about

channel distribution and local prior [22], or by addressing data

heterogeneity via knowledge distillation [23], [24]. Note that

the schemes in [21], [22] do not implement Bayesian learning

in the sense explained above of optimizing over a distribution

in the model parameter space; while [23], [24] consider ideal

communication and require either unlabelled data at the server

[23] or additional communication overhead [24].

As discussed, Bayesian learning is, in practice, implemented

by approximate methods – either VI or MC sampling. Both

have been investigated only to a very limited extent for FL,

even in the presence of ideal communication. VI-based meth-

ods are proposed in [25], [26] for noiseless communications

based on parametric and particle-based representations of the

model parameter distribution. Gradient-based MC methods are

instead investigated in [27], [28], again under ideal communi-

cations.
2) Private FL: Differential privacy (DP) is a strong mea-

sure of information leakage that relates to the sensitivity of the

disclosed statistics on individual data points in the training data

set. In FL, a standard model is to assume the edge server to

be “honest-but-curious”, requiring the implementation of DP-

preserving mechanisms such as noise addition, subsampling

random mini-batches, and random quantization of the gradi-

ents [29], [30]. Wireless FL can repurpose channel noise so

as to ensure DP guarantees by controlling the signal-to-noise

(SNR) ratio via transmit power optimization [9]. Furthermore,

the superposition property of NOMA not only achieves effi-

cient aggregation, but also amplifies the role of the channel

noise as a privacy mechanism by protecting multiple devices’

transmissions simultaneously [31]. To enhance the conver-

gence rate under the DP constraints, reference [6] proposes an

optimized adaptive power control strategy that increases the

effective SNR over the iterations. We note that the presence

of channel noise can also benefit learning by accelerating the

convergence for non-convex models [3], [32], or improving

the generalization capability of convex models [4].
3) Private Bayesian learning: For Bayesian learning, the

inherent randomness induced MC sampling automatically sat-

isfies some level of DP requirements. Specifically, producing

a single sample from the exact (or approximate) posterior

distribution implements a differentially private strategy known

as the exponential mechanism [33]. This result can be extended

to multiple samples in gradient-based MCMC under proper

conditions, such as small learning rate [33] or large scale

model [34]. All prior work on private Bayesian learning is

limited to centralized settings, and no prior result appears to

have studied privacy in the context of Bayesian FL.

B. Contributions and Organization

In this paper, we introduce a federated implementation of

LMC in wireless systems whereby power allocation is opti-

mized to control the SNR level so as to meet the requirement

of both MC sampling and DP. The main contributions and

findings of the paper are summarized as follows.

• Introducing Wireless Federated Langevin Monte Carlo

(WFLMC): We first introduce Wireless Federated Langevin

Monte Carlo (WFLMC), a novel iterative Bayesian learning

protocol that relies on power control to repurpose channel

noise for the double role of MC sampling via LMC and privacy

preservation. WFLMC is based on uncoded transmission and

NOMA, and goes beyond existing frequentist AirComp strate-

gies by quantifying epistemic uncertainty through Bayesian

learning.

• Analyzing WFLMC: Unlike frequentist learning, the goal

of MC sampling in Bayesian learning is to ensure that the

distribution of the produced samples is close to the global

posterior distribution. Accordingly, we measure the learning

performance via the 2-Wasserstein distance between the two

distributions as in [35]. We provide analytical bounds on the

2-Wasserstein distance that comprise the contribution of the

discretization error incurred by LMC, as well as of the gradient

error due to channel noise and scheduling. We also present a

DP privacy analysis of WFLMC that provides insights into the

impact of the channel noise on the privacy loss.

• Optimized power allocation and scheduling: Building

the analytical results, we formulate the optimization of the

power allocation and scheduling policy as the minimization

of the 2-Wasserstein distance under DP and power constraints.

The resulting optimization is shown to be a convex program,

and a closed-form solution is provided under simplifying

assumptions. The analysis identifies distinct operating regimes

in which the performance is power-limited, DP-limited, or

LMC-limited. The three regimes are determined by the relative

values of transmitted power, privacy level, and learning rate.

The analytical results demonstrate that in the LMC-limited

regime channel noise can be fully repurposed for both MC

sampling and privacy preservation, obtaining the same perfor-

mance as in an ideal communication setting that is not subject

to DP constraints. For the general case, we formulate a min-

max problem that can be converted into a convex problem.

• Experiments: We provide extensive numerical results to

demonstrate the joint role of channel noise for MC sampling

and privacy.

In closing this section, we would like to emphasize the rela-

tionship of this work with our previous papers [6] and [36]. As

mentioned, in [6], we considered frequentist FL on a wireless

channel, and analyzed the problem of optimal power allocation

for an AirComp-based strategy that leverages channel noise

as a privacy mechanism. The problem formulation has a

minor overlap with the setting studied here, which focuses

on Bayesian learning. In fact, Bayesian learning requires the

analysis of performance metrics based on distributions in the

model parameter space [35], and it cannot rely on the standard

tools for the convergence of gradient-based schemes used in

[6]. In contrast, reference [36] introduces a one-shot Bayesian

protocol for a wireless data center setting in which the server

has access to the global data set. In this system, the global

data set is divided up among the workers to benefit from

computational parallelism, but the server uses its access to

the global data set during training. Specifically, paper [36]
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Figure 1. Differentially private federated Bayesian learning system based on
Langevin Monte Carlo (LMC).

proposes a novel VI-based strategy that builds on consensus

MC [37] by accounting for the presence of fading and channel

noise. The contribution of [36] is distinct from the current

manuscript for a number of reasons. First, in the current

work, we study for the first time iterative, rather than one-

shot, Bayesian learning protocols. Second, we concentrate on

a federated setting in which the server does not have access to

the global data set. Third, no privacy constraints are assumed

in [36]. And, fourth, unlike [36], this work provides an analysis

of the optimal power allocation strategy and draws theoretical

conclusions on the capacity of the channel noise to serve the

double role of seed randomness for MC sampling and privacy

protection.

Organization: The remainder of the paper is organized as

follows. Section II introduces the system model. Section III

proposes the design of WFLMC. Section IV presents con-

vergence and privacy analysis of WFLMC, while the optimal

power allocation and scheduling are provided in Section V,

followed by numerical results in Section VI and conclusions

in Section VII.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a wireless federated edge

learning system comprising a single-antenna edge server and

K edge devices connected through it via a shared wireless

channel. Each device k, equipped with a single antenna, has

its own local dataset Dk encompassing Nk data samples Dk =
{dk,n}Nk

n=1. For supervised learning applications, each data

sample dn = (un, vn) is in turn partitioned into a covariate

vector un and a label vn; while, for unsupervised learning

applications such as generative modeling, it consists of a single

vector dn. The global data set is denoted as D = {Dk}Kk=1.

The goal of the system is to carry out Bayesian learning

via gradient-based Monte Carlo (MC) sampling. Accordingly,

through communication with devices, the server wishes to

obtain a number of random samples of the model parameter

vector θ ∈ R
m that are approximately distributed according

to the global posterior distribution p(θ|D). Unlike [36], which

studied one-shot protocols, the gradient-based MC methods

studied in this paper are iterative, in a manner similar to

standard federated learning protocols such as FedAvg.

A. Langevin Monte Carlo

The machine learning model adopted by the system is

defined by a likelihood function p(d|θ) as well as by a prior

distribution p(θ). Accordingly, the likelihood of the data at

device k is

p(Dk|θ) =
Nk∏

n=1

p(dn,k|θ), (1)

where the likelihoods p(dn,k|θ) may be different across de-

vices. The goal of Bayesian learning is to compute the global

posterior

(Global Posterior) p(θ|D) ∝ p(θ)

K∏

k=1

p(Dk|θ). (2)

The global posterior can be expressed in terms of the local

posteriors at each device k, i.e.,

(Local Posterior) p(θ|Dk) ∝ p(θ)1/Kp(Dk|θ) (3)

since we have the equality

p(θ|D)∝
K∏

k=1

p(θ|Dk). (4)

In contrast, frequentist learning is concerned with the opti-

mization of the global cost function

f(θ) = − log p(θ|D) = −
K∑

k=1

log p(θ|Dk), (5)

which is the log-loss evaluated from the unnormalized pos-

terior (2). Minimizing the global cost function (5) yields the

maximum a posterior (MAP) solution of frequentist learning.

The global cost function (5) can be expressed in terms of the

local cost functions

fk(θ) = − log p(Dk|θ)−
1

K
log p(θ), (6)

since we have the equality f(θ) =
∑K

k=1 fk(θ).
Directly computing the global posterior distribution (2) is

generally of prohibitive complexity. To address this problem,

Monte Carlo (MC) methods represent the global posterior

distribution (2) in terms of samples approximately distributed

from it. Specifically, Markov Chain MC (MCMC) techniques

produce a sequence of samples θ[s] with s = 1, 2, ... with the

key property that as s grows large, the marginal distribution

of sample θ[s] tends to the desired posterior distribution.

As discussed in Sec. I, in this paper, we specifically adopt

Langevin MC (LMC), a fundamental MCMC technique that

has been widely studied as a means to strike a practical

balance between complexity and efficiency (see, e.g., [12],

[13]). LMC is a gradient-based MCMC sampling scheme

building on the global cost function (5). As we elaborate

on next, the LMC update is derived as an approximation

of a continuous-time differential process that has the desired

property of asymptotically producing samples drawn from the

global posterior (2).

To start, we first introduce the continuous-time Langevin

diffusion process (LDP) {θ̄(t) : t ∈ R
+} follows the stochastic

differential equation

(LDP) dθ̄(t) = −∇f(θ̄(t))dt+
√
2dB(t), (7)
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where B(t) represents Brownian motion. The Langevin diffu-

sion process (7) has the invariant stable distribution p∗(θ) =
p(θ|D)∝exp[−f(θ)], which corresponds to the desired global

posterior (2) [38].

The integral of the stochastic differential equation (7) in

the range of t ∈ [sη, (s + 1)η] for integers s = 1, 2, . . . and

duration η yields

θ̄((s+1)η) − θ̄(sη) = −
∫ (s+1)η

sη

∇f(θ̄(t))dt+
√
2ηξ[s+1],

(8)

where {ξ[s+1]} is a sequence of identical and indepen-

dent (i.i.d.) random vectors following the Gaussian distri-

bution N (0, Im). This is because we have the equality√
2
∫ sη+η

sη dB(t) =
√
2(B(sη+η) −B(sη)) ∼ N (0, 2η).

In the limit of a sufficiently small η such that the following

approximation holds

∫ (s+1)η

sη

∇f(θ̄(t))dt ≈ η∇f(θ[s]), (9)

the discretization (8) results in Langevin MC (LMC), a

gradient-based Markov chain MC (MCMC) sampling scheme

that proceeds according to the iterative update rule

(LMC) θ[s+1] = θ[s] − η∇f(θ[s]) +
√
2ηξ[s+1], (10)

where we have θ[s] = θ̄(sη) and η as step size. The error due

to approximation (9) was studied in [35], [39], and it will be

further discussed in Sec. IV-A.

In order to obtain samples θ[s] approximately drawn from

the global posterior distribution, LMC discards the samples

produced in the first Sb iterations (10), also known as burn-

in period. The remaining Su samples θ[s] with s = Sb +
1, Sb + 2, . . . , Sb + Su, are retained and used for downstream

applications such as ensemble prediction.

We consider LMC in this work due to its simplicity and

scalability, as LMC updates amount to adding Gaussian noise

to gradient descent updates. Other gradient-based MCMC

methods, such as kinetic MC [14] and Hamilton MC [15],

which modify higher-order updates may also be studied in a

manner similar to this paper and are left for future research.

B. Learning Protocol

The goal of the system under study is to implement LMC

(10) in the described federated setting with K devices, while

satisfying formal differential privacy (DP) guarantees to be

detailed in Sec. II-D. The protocols is organized in itera-

tions s = 1, 2, . . . , Sb + Su with Sb denoting the burn-in

period, across which the server maintains sample iterates θ[s].

The selection of burn-in period should avoid the regime in

which the samples are too dependent on the Markov chain’s

initialization. A formal test for this purpose is the Gelman-

Rubin diagnostic, which is based by using multiple Markov

chains. The diagnostic compares the estimated between-chains

and within-chain variances for each model parameter, and

chooses the burin-in period after which difference between

theses variances are sufficiently small.

At each s-th communication round, the edge server broad-

casts the current sample θ[s] to all edge devices via the

downlink channel. We assume that downlink communication

is ideal, so that each device receives the sample θ[s] without

distortion. This assumption is practically well justified when

the edge server communicates through a base station with less

stringent power constraint than the devices and the use of the

whole downlink bandwidth for broadcasting. It is commonly

made in many related papers, such as [5]–[7].

By using the received vector θ[s] and the local dataset

Dk, each device computes the gradient of the local cost

function (6) as

(Local gradient)

∇fk
(
θ[s]
)
=−

Nk∑

n=1

∇ log p(dn|θ[s])− 1

K
∇ log p(θ[s]), (11)

which is transmitted over the wireless shared channel to

the edge server. The goal is to enable the edge server to

approximate the update term in (10), namely

−η∇f(θ[s]) +
√
2ηξ[s+1] = −η

K∑

k=1

∇fk(θ
[s]) +

√
2ηξ[s+1].

(12)

As we will see, channel noise can be repurposed to contribute

to the additive random term ξ[s+1] in the LMC update (10).

The steps in (11) and (10) are iterated across multiple com-

munication rounds until a convergence condition is met. As a

result, the server obtains a sequence of global model parameter

vectors θ[s], with s = 1, 2, . . . , Sb + Su.

C. Communication Model

The devices communicate via the uplink to the edge server

on the shared wireless channel. The proposed approach lever-

ages analog transmission in order to: (i) benefit from over-

the-air computing as in many prior works [5], [6], [20]; and

(ii) to repurpose channel noise for MC sampling and as a

privacy mechanism. We assume a block flat-fading channel,

where the channel coefficients remain constant within a com-

munication block, and they vary in a potentially correlated

way over successive blocks. Each block contains m channel

uses, allowing the uncoded transmission of a gradient vector

via non-orthogonal multiple access (NOMA) as in [6], [20].

We assume symbol-level synchronization among the subset

of devices that are scheduled in each block, enabling over-

the-air computing. This can be achieved by using standard

protocols such as the timing advance procedure in LTE and 5G

NR [40]. In the s-th communication round, the corresponding

received signal is

y[s] =

K∑

k=1

h
[s]
k x

[s]
k + z[s], (13)

where h
[s]
k is the channel gain for device k in round s,

x
[s]
k ∈ R

m is an uncoded function of the local gradient
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∇fk
(
θ[s]
)
, and z[s] is channel noise i.i.d. according to distri-

bution N (0, N0Im). The transmit power constraint of a device

is given as

‖x[s]
k ‖2 ≤ P, (14)

accounting for per-block power constraints.

D. Performance Metrics

In this paper, we aim at designing a wireless federated

learning protocol to implement Bayesian learning via Langevin

MC under DP constraints. In this subsection, we formalize the

performance criteria of interest and elaborate on the role of

channel noise in achieving them.

1) Approximation Error: Denoting as p[s](θ) the distribu-

tion of the sample θ[s] at the s-th iteration, the quality of the

sample is measured by the 2-Wasserstein distance between

p[s](θ) and the target global posterior p(θ|D) in (2). This is

defined as [35], [39]

W2

(
p[s](θ), p(θ|D)

)

=

(
inf

p(θ,θ′)

∫

Rd×Rd

‖θ − θ′‖22 p(θ, θ′)dθdθ′

)1/2

, (15)

where joint distribution p(θ, θ′) is constrained to have

marginals p[s](θ) and p(θ′|D). The Wasserstein distance is

a standard measure of discrepancy between two distributions,

and it is routinely used for the analysis of MC algorithms (see,

e.g., [35], [39]). It has some useful properties with respect

to other measures such as the Kullback-Leibler divergence

and total variation distance. For instance, it is well defined

and informative even when the two distributions have disjoint

supports [41].

2) Differential Privacy: We consider a “honest-but-

curious” edge server that may attempt to infer information

about local data sets from the received signals y. We impose

the standard (ǫ, δ)-DP metric with some ǫ > 0 and δ∈ [0, 1),
for each device k. This amounts to the inequalities

P ({y[s]}Ss=1|{∪i6=kDi} ∪ D′
k)

≤ exp(ǫ)P ({y[s]}Ss=1|{∪i6=kDi} ∪ D′′
k ) + δ, (16)

for all k = 1, . . . ,K , where S is the number of commu-

nication rounds, and P (y[s]|D) represents the distribution of

the received signal (13) conditioned on the global data set D.

Condition (16) must hold for any two possible neighboring

data sets D′
k and D′′

k differing only by one sample, i.e.,

‖D′
k − D′′

k‖1 = 1, and for all data sets {Di}i6=k of other

devices.

3) On the Role of Channel Noise: Without the additive

random term in ξ[s+1] in (10), LMC coincides with standard

gradient descent (GD) for frequentist learning, which was

studied in [6] in a federated setting under the DP constraints

(16). For convex models, the additive channel noise on the

uplink channel (13) is harmful to the convergence rate of

GD with no privacy constraints [6], although it can improve

the generalization performance [4]. In [6], [9], [31], it was

shown that channel noise can be repurposed to ensure the DP

constraints (16) for values of (ǫ, δ) that depend on the SNR

level.

In this paper, we observe that, in Bayesian learning via MC,

by (10), noise can potentially contribute not only to privacy but

also to MC sampling, without necessarily compromising the

learning performance. This idea was first introduced in [36]

for one-shot MC sampling methods, and is studied here for the

first time for iterative schemes. Specifically, we investigate the

joint role of channel noise as a contributor to MC sampling and

as a privacy-inducing mechanism. This interplay between MC

sampling and DP was analyzed under ideal communication for

centralized learning in [33], and the impact of channel noise

in distributed settings is studied here for the first time.

E. Assumptions on the Log-Likelihood

Finally, we list several standard assumptions we make on

the global cost function f(θ) in (5) and on its gradient.

Assumption 1 (Smoothness). The global cost function f(θ)
is smooth with constant L > 0, that is, it is continuously

differentiable and the gradient ∇f(θ) is Lipschitz continuous

with constant L, i.e.,

‖∇f(θ)−∇f(θ′)‖ ≤ L‖θ − θ′‖, for all θ, θ′ ∈ R
m. (17)

Assumption 2 (Strong Convexity). The global cost function

f(θ) is strongly convex, i.e., the following inequality holds

for some constant µ > 0

[∇f(θ)−∇f(θ′)]
T
(θ−θ′) ≥ µ‖θ−θ′‖2, for all θ, θ′ ∈ R

m.
(18)

Assumptions 1 and 2 imply the following inequality [42,

Lemma 3.11]

[∇f(θ)−∇f(θ′)]
T
(θ − θ′) ≥ µL

µ+ L
‖θ − θ′‖2

+
1

µ+ L
‖∇f(θ)−∇f(θ′)‖2 , for all θ, θ′ ∈ R

m. (19)

Assumption 3 (Bounded Local Gradient). The local gradient

is bounded as
∥∥∥∇fk(θ

[s])
∥∥∥ ≤ ℓ, for all k, s, (20)

and some constant ℓ > 0.

This last assumption is essential to ensure DP requirements

[33], [43]. One can choose the parameter of ℓ as the maximum

value of ‖∇fk(θ
[s])‖, or, in practice, clipping the gradient

as ∇fk(θ
[s])=min{1, ℓ/‖∇fk(θ

[s])‖}∇fk(θ
[s]). We will not

account for the impact of clipping in the analysis.

III. WIRELESS FEDERATED LANGEVIN MONTE CARLO

(WFLMC)

In this section, we introduce wireless federated LMC

(WFLMC). Specifically, we first present signal design and

scheduling protocol, and then detail the rationale behind the

proposed approach. The following sections will focus on the

analysis of WFLMC.
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A. Signal Design and Scheduling Protocol

In each communication block, all devices transmit their

local gradients simultaneously by using uncoded transmission

of the form

(Transmitted Signal) x
[s]
k = α

[s]
k ∇fk

(
θ[s−1]

)
, (21)

for some power control parameter α
[s]
k . Specifically, we imple-

ment truncated channel inversion as in [5], [7], [32], whereby

the power control parameter is selected as

α
[s]
k =

{
α[s]/h

[s]
k , if |h[s]

k | ≥ g[s],

0, if |h[s]
k | < g[s],

(22)

where gain parameter α[s] > 0 and threshold g[s] > 0 are

parameters to be optimized. Accordingly, a device k transmits

only if its channel is large enough, i.e., |h[s]
k | ≥ g[s]. We note

that this channel-aware scheduling aims to avoid deep fading

channels. Other alternative scheduling policies may achieve

better performance by considering also the importance of local

data set, such as [44], [45]. We denote as K
[s]
a the number

of transmitting devices at round s, and K[s]
a the corresponding

set of transmitting devices.

To estimate the LMC update term (12) in (10), the received

signal (13) is scaled and a Gaussian random vector is added.

Specifically, wireless federated LMC (WFLMC) update is

proposed as

(WFLMC) θ[s] = θ[s−1] − η
K

α[s]K
[s]
a

y[s] +
√
β[s]q[s], (23)

where the added noise q[s] ∼ N (0, Im) is independent of all

other variables. The variance β[s] of the noise term q[s] is

chosen as a function of the learning rate η, channel noise N0,

number of active users K
[s]
a , and gain α[s] as

β[s] = max

{
0, 2η − η2N0K

2

(α[s]K
[s]
a )2

}
. (24)

B. Understanding WFLMC

To see the rationale behind the design (23)–(24), let us plug

(13) and (21)–(22) into (23) to rewrite the WLMC update as

θ[s] = θ[s−1] − η
K

K
[s]
a

∑

k∈K
[s]
a

∇fk
(
θ[s−1]

)

−η
K

α[s]K
[s]
a

z[s] +
√
β[s]q[s]

︸ ︷︷ ︸
effective noise z̃

[s]

(25)

= θ[s−1] − η

[
K

K
[s]
a

∑

k∈K
[s]
a

∇fk
(
θ[s−1]

)
+

√
β̃(s)∆[s]

︸ ︷︷ ︸
∇̂f(θ(s−1))

]

+
√
2ηξ̂[s], (26)

where ξ̂[s] ∼ N (0, Im) and ∆[s] ∼ N (0, Im) are the i.i.d.

sequences for s = 1, 2, . . . , and we define

β̃[s] = max

{
0,

N0K
2

(α[s]K
[s]
a )2

− 2

η

}
. (27)

By (25), the power scaling (22) ensures that the gradients

of the active devices sum at the receiver, and the scaling

by K/(α[s]K
[s]
a ) in (23) of the received signal compensates

for the resulting multiplier of the sum-gradient. The term

K/K
[s]
a
∑

k∈K
[s]
a

∇fk
(
θ[s−1]

)
is an empirical estimate of the

gradient
∑K

k=1 ∇fk
(
θ[s−1]

)
in (10) which is exact if K

[s]
a =

K .

Based on the discussion so far, in order for (25) to be an

estimate of the LMC update (10), we should ideally ensure

that the variance of the effective noise term z̃[s] be equal to

2η. However, the power of this term, namely,

σ̃2
z = η2K2/(α[s]K [s]

a )2 + β[s] (28)

can only be partially controlled through power gain α[s] and

added noise variance β[s]. In particular, we can always choose

the added noise variance β[s] such that the variance σ̃2
z is no

smaller than 2η. This condition is ensured by (24). In particular

with (24), the effective noise in (25) can be decomposed into

two parts as indicated in (26):

1) LMC noise: The term
√
2ηξ̂[s] with ξ̂[s] ∼ N (0, Im) serves

the role of LMC noise with variance 2η;

2) Gradient estimation noise: The remaining noise, denoted as

−η

√
β̃(s)∆[s] with ∆[s] ∼ N (0, Im), acts as a perturbation

on the gradient estimate with variance β̃[s] in (27). Note that

the variance β̃[s] of estimate noise is non-zero if the channel

noise power N0 is large.

IV. CONVERGENCE AND PRIVACY ANALYSIS OF WFLMC

In this section, we focus on the performance analysis of

WFLMC in terms of (i) convergence through the 2-Wasserstein

distance as defined in (15); and (ii) privacy under the DP

criterion (16). In this section, we assume that the sequence of

power gain and scheduling threshold parameters {α[s], g[s]} is

fixed, and the results are given for an arbitrary sequence {h[s]
k }

of channels.

A. Convergence Analysis

We now study the distribution p[s](θ) of the sample θ[s]

produced by WFLMC via the updates (23). We recall that the

goal of LMC is to produce samples distributed according to

the global posterior p(D|θ). As discussed in Sec. II-D, we

measure the approximation error via 2-Wasserstein distance

(15).

There are three main contributions to the discrepancy

between the distribution of p[s](θ) and the target posterior

p(θ|D):

1) the initial discrepancy, which is measured by the 2-

Wasserstein distance W2

(
p[0](θ), p(θ|D)

)
between the

initial distribution p[0](θ) and the posterior p(θ|D);
2) the gradient error in (26), namely

(Gradient error) N [s]
g = ∇f(θ[s−1])− ∇̂f(θ[s−1]),

(29)



7

which is caused by the excess noise

√
β̃(s)∆[s] and by

the fact that only a subset of K
[s]
a devices is active;

3) and the discretization error due to the approximation (9),

which is given as

(Discretization error)

N
[s]
d =

∫ sη

(s−1)η

∇f(θ̄(t))−∇f(θ̄((s−1)η))dt. (30)

We now bound the last two terms separately, and then use these

results to bound square of the desired 2-Wasserstein distance

W2

(
p[s](θ), p(θ|D)

)2
in (15).

Lemma 1 (Upper Bound on the Gradient Error). Under

Assumption 3, for any s-th communication round, the average

power of the gradient error is bounded as

E

[
‖N [s]

g ‖2
]
≤ 4ℓ2

(
K −K [s]

a

)2
+ β̃[s], (31)

where the expectation is taken with respect to the excess noise√
β̃[s]∆[s] and the variance β̃[s] is defined in (27).

Proof: See [46, Appendix A].

The error bound (31) is comprised of two parts. The first

term is the estimation error due to scheduling, which is zero

if all the devices transmit in communication rounds, i.e., if

K
[s]
a = K . The second term is the variance β̃[s] of the excess

noise

√
β̃[s]∆[s] in (27).

The discretization error is constant for for all communica-

tion round s = 1, 2, . . . , and can be bounded by following

[35, Lemma 3] as detailed in the next lemma.

Lemma 2 (Upper Bound on the Discretization Error). For any

communication round s, the discretization error is invariant,

and it is upper bounded as

E

[
‖N [s]

d ‖2
]
≤ η4L3m

3
+ η3L2m, (32)

where the average is computed with respect to the joint

distribution of the LDP (7) and the LMC (10).

Proof: The proof is detailed in Appendix A.

Lemma 2 shows that the discretization error grows with

model dimension m, with the learning rate η, and with the

smoothness constant L of the global cost function f(θ). Note

that a larger L implies a less smooth function f(θ).

We now leverage Lemma 1 and Lemma 2 to bound the

square of 2-Wasserstein distance.

Proposition 1 (Bound for 2-Wasserstein Distance). For a

learning rate 0 < η ≤ 2/L, define

γ =

{
1− ηµ, 0 < η ≤ 2/(µ+ L),
ηL− 1, 2/(µ+ L) ≤ η ≤ 2/L.

(33)

Under Assumptions 1, 2 and 3, after any number s′ of

iterations, the 2-Wasserstein distance between the sample

distribution produced by WFLMC and the global posterior is

upper bounded as

W2

(
p[s

′](θ), p(θ|D)
)2 ≤

(1 + γ

2

)2s′
W2

(
p[0](θ), p(θ|D)

)2

+

s′∑

s=1

(1 + γ

2

)2(s′−s) 2(1 + γ)

1− γ

[
η4L3m

3
+ η3L2m

+ 4η2ℓ2
(
K −K [s]

a

)2
+ η2β̃[s]

]
(34)

∆
= W̃2

(
p[s

′](θ), p(θ|D)
)2
. (35)

Proof: The proof follows from the upper bound (see, e.g.,

[35])

W2

(
p[s](θ), p(θ|D)

)2 ≤ E

[∥∥∥θ[s] − θ̄(sη)
∥∥∥
2
]
, (36)

where θ̄(sη) is obtained from the LDP (7), while θ[s] is

the sample produced by the LMC (10) with the LMC noise√
2ηξ̂[s] =

√
2
∫ sη+η

sη dB(t). Accordingly, the expectation is

taken with respect to the Brownian motion B(t) in (7) and

over the initial θ(0) ∼ p[0](θ). Since, assuming the stationary

of the LDP (7), the marginal of the LDP output θ̄(s) is the

target distribution p(θ|D) for all t > 0, the bound (36) follows

from the definition (15) by upper bounding the infimum with

the described choice of the joint distribution of θ[s] and θ̄(sη).

Using (26) and (8), the right hand side of (36) can be

computed as

E

[∥∥∥θ[s] − θ̄(sη)
∥∥∥
2
]

= E

[∥∥∥θ[s−1] − θ̄((s−1)η) − η
[
∇f(θ[s−1])−∇f(θ̄((s−1)η))

]

+ η
[
∇f(θ[s−1])− ∇̂f(θ[s−1])︸ ︷︷ ︸

N
[s]
g

]

+

∫ sη

(s−1)η

∇f(θ̄(t))−∇f(θ̄((s−1)η))dt

︸ ︷︷ ︸
N

[s]
d

∥∥∥
2
]
. (37)

The rest of the proof involves applying the geometric inequal-

ity 2ab ≤ τa2 + τ−1b2 for any τ > 0, and using Lemma 1

and Lemma 2 as detailed in Appendix B. �

Proposition 1 indicates that the 2-Wasserstein distance de-

pends on the initial discrepancy W2

(
p[0](θ), p(θ|D)

)
, whose

contribution decreases exponentially with s′; as well as the

sum of contributions across the iteration index s = 1, 2, . . . , s′,
with each s-th error term weighted down by a factor decreasing

exponentially with s′ − s, i.e., as one moves towards earlier

iterations. This shows that the disturbances at later communi-

cation rounds are more harmful to the approximation accuracy.

Furthermore, the contribution of each iteration s ≥ 1 is given

by the sum of the gradient error bounded in Lemma 1, and

the discretization error bounded in Lemma 2.

Another interesting aspect highlighted by the bound (34)

concerns the optimal choice of the learning rate η. The upper

bound (34) increases with γ in (33), and the minimum value

of γ is attained when η = 2/(µ + L). However, a large
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learning rate η causes the gradient error bound (31) and the

discretization error bound (32) to increase by Lemma 1 and

Lemma 2. Thus, the optimal learning rate is in the range of

η ∈ (0, 2/(µ+ L)].

B. Differential Privacy Analysis

The WFLMC scheme implicitly implements a Gaussian DP

mechanism [8], [33], since the channel noise z[s] in (25) is

added to the disclosed function
∑

k∈K
[s]
a

h
[s]
k α

[s]
k ∇fk

(
θ[s−1]

)
.

Note that the noise q[s] in (25) is added by the edge server,

and hence it does not contribute to privacy. Furthermore, while

only part of the channel noise z[s] is useful for LMC (see (26)),

the entire variance N0 contributes to DP.

For the Gaussian mechanism, the privacy level (ǫ, δ) de-

pends on the sensitivity of the disclosed information and on

the variance of the added noise [6], [8]. In a manner consistent

to the definition (16) of DP, the sensitivity quantifies the

maximum change of the disclosed function by replacing a

single data point. The sensitivity for device k is accordingly

defined as

(Sensitivity)

χ
[s]
k = max

D′

k
,D′′

k

∥∥∥∥h
[s]
k α

[s]
k

[
∇f ′

k

(
θ[s−1]

)
−∇f ′′

k

(
θ[s−1]

)] ∥∥∥∥, (38)

where ∇f ′
k

(
θ[s−1]

)
and ∇f ′′

k

(
θ[s−1]

)
are computed by using

data sets D′
k and D′′

k respectively, and we have ‖D′
k−D′′

k‖1 =
1. By the triangular inequality and Assumption 3, we plug in

the definition of α
[s]
k (22) and have the bound

χ
[s]
k ≤ 1

[
|h[s]

k | ≥ g[s]
]
· 2α[s]ℓ. (39)

Following [6, Lemma 1], one can interpret the ratio (χ
[s]
k )2/N0

as the privacy loss in each communication rounds. This is

formalized in the following proposition.

Proposition 2 (DP Guarantees). For any given sequence of

parameters {α[s], g[s]} and channels {h[s]
k }, after s communi-

cation rounds, WFLMC guarantees (ǫ, δ)-DP if the following

condition is satisfied

s′∑

s=1

1
[
|h[s]

k | ≥ g[s]
]
· 2(α[s]ℓ)2

N0

≤
(√

ǫ+ [C−1 (1/δ)]
2 − C−1 (1/δ)

)2

∆
= Rdp(ǫ, δ), for all k, (40)

where C−1(x) is the inverse function of C(x) = √
πxex

2

, and

1[·] is the indicator function.

Proof: The result follows from [6, Lemma 1], although refer-

ence [6] did not account for the threshold-based scheduling in

(22). The extension is direct by redefining the effective channel

gain as α[s] · 1
[
|h[s]

k | ≥ g[s]
]
. �

In accordance to the discussion above, the left-hand side

of (40) quantifies the overall privacy loss across s′ rounds.

Importantly, as anticipated, by (40) the channel noise power

N0 contributes in full to the DP performance. In contrast,

by (26), only a portion of the channel noise contributes, in

general, to the LMC update.

V. OPTIMAL POWER ALLOCATION AND SCHEDULING

In this section, we leverage Proposition 1 and Proposition

2 to address the problem of minimizing the convergence error

under the (ǫ, δ)-DP constraint (40) and the power constraints

(14) over power gain parameters and thresholds {α[s], g[s]}Ss=1

in (22). We recall that WFLMC carries out Sb communication

rounds for the burn-in period, which are followed by Su

additional rounds to obtain the samples for use in downstream

applications. The learning objective is to maximize the quality

of the last Su samples under the mentioned privacy and

power constraints, which apply for the total of S = Sb + Su

communication rounds.

Throughout this section, we assume that the sequence of

channels {{h[s]
k }Kk=1}Ss=1 is known in advance in order to

enable optimization. This assumption can be relaxed at the

cost of additional communication overhead. Extensions to an

online approach can be directly obtained by iterative one-

step-ahead optimization based on predicted values for the

future parameters {{h[s′]
k }Kk=1}Ss′=s+1 as detailed in [6]. The

optimization is conducted at the edge server. To control Air-

Comp transmission, the edge server broadcasts the optimized

{α[s], g[s]} at each communication round, which consumes a

negligible amount of communication resources as compared

with model broadcasting.

The joint power allocation and scheduling problem of

interest is formulated as the min-max optimization

min
{α[s],g[s]}S

s=1

max
s′∈[Sb+1,Sb+Su]

W̃2

(
p[s

′](θ), p(θ|D)
)2

(41a)

s.t.

S∑

s=1

1[|h[s]
k | ≥ g[s]] · 2(α[s]ℓ)2

N0
≤ Rdp(ǫ, δ) (41b)

1
[
|h[s]

k | ≥ g[s]
]
· (α

[s]ℓ)2

|h[s]
k |2

≤ P, ∀k, s = 1, · · · , S. (41c)

The maximization in (41a) aims at ensuring that the worst-case

2-Wasserstein distance is minimized across all Su samples

after the burn-in period, under the DP constraint (41b) and

the power constraint (41c). With its focus on the distribution

of model parameters, problem (41) is notably distinct from

the optimization problem for frequentist learning in [6], which

only considers the quality of a single vector of model param-

eters in terms of training loss.

The problem (41) is non-convex since the objective function

is non-differentiable in the thresholds {g[s]}Ss=1. In fact, by

(22), the threshold g[s] affects the objective function through

the number K
[s]
a of active users. To make progress, we fix

the scalar thresholds g[s] and optimize over the power gain

parameter α[s].

A. Zero Additive Noise is Optimal

We start by simplifying problem (41) through the following

observation.

Lemma 3 (Zero Additive Noise). Without compromising

optimality, the variance of additive noise
√
β[s]q[s] in (23)
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can be set as β[s] = 0, which is equivalent to imposing the

following constraint on the power gain parameters

(LMC noise requirement)

α[s] ≤ K

K
[s]
a

√
ηN0

2
, for s = 1, · · · , S. (42)

Proof: Assume by contradiction that we had β[s] > 0 at an op-

timal solution. By (24), this would imply that the optimal α[s]

satisfies the inequality η2N0K
2/(α[s]K

[s]
a )2−2η < 0. But one

can always choose the smaller value α[s] =
√
ηN0/2K/K

[s]
a ,

which achieves the same value of the objective function, while

reducing the left-hand sides of the privacy and power con-

straints (41b)-(41c). This yields a contradiction, completing

the proof. �

The inequality (42) distinguishes two distinct regimes of

operation of the system. If the equality (42) is active, the

gradient estimation noise power β̃[s] in (27) is zero, and hence

the channel noise contributes in full to the LMC updates. In

contrast, when the inequality is strict, only a fraction of the

channel noise is useful for LMC, and the rest contributes to

the gradient estimation noise power β̃[s].

B. Optimization of Power Gain Parameters: Single-Sample

and Constant Channels

We now tackle the optimization (41) over power gain

parameters {α[s]}Ss=1 for the special case Su = 1, and with

constant channels and scheduling thresholds

h
[s]
k = hk, for s = 1, . . . , S, (43)

g[s] = g, for s = 1, . . . , S. (44)

The solution in this special case will turn out to be especially

insightful, and the more general problem will be studied in the

next subsection. Under theses simplifying assumptions, and

using Lemma 3, the min-max optimization in (41) reduces to

the problem

min
{α[s]}

Sb+1

s=1

Sb+1∑

s=1

(1 + γ

2

)−2s

max

{
0,

η2N0K
2

(α[s]Ka)2
− 2η

}
(45a)

s.t.

Sb+1∑

s=1

2(α[s]ℓ)2

N0
≤ Rdp(ǫ, δ), (45b)

(α[s]ℓ)2

|hk|2
≤ P, ∀k ∈ Ka, s = 1, . . . , S (45c)

α[s] ≤ K

Ka

√
ηN0

2
, ∀k ∈ Ka, s = 1, . . . , S. (45d)

Theorem 1. Under Assumptions 1-3, and assuming static

channels and thresholds as in (43)–(44), the optimal solutions

of problem (45) depends on power P and learning rate η
according to the three regimes illustrated in Fig. 2, which are

detailed as follows.

1) LMC-limited Regime: If the condition

η ≤ K2
a

ℓ2K2
min

{Rdp(ǫ, δ)

S
, min
k∈Ka

2P |hk|2
N0

}
(46)

η

P

K2

a
Rdp(ǫ, δ)

ℓ2K2S

DP-limited

LMC-limited

Power-limited

η =
2K2

a
mink∈Ka

|hk|
2

ℓ2K2N0

· P

N0Rdp(ǫ, δ)

2mink∈Ka
|hk|2S

Figure 2. Illustration of the different regimes that describe the optimal power
control strategy in Theorem 1.

holds, the optimal power gain parameter is given as

α
[s]
opt =

K

Ka

√
ηN0

2
, s = 1, . . . , S. (47)

2) Power-limited Regime: If the condition

P ≤ N0

2mink∈Ka
|hk|2

min
{Rdp(ǫ, δ)

S
,
ℓ2K2η

K2
a

}
(48)

holds, the optimal power gain parameter is given as

α
[s]
opt = min

k∈Ka

√
P |hk|
ℓ

, s = 1, . . . , S. (49)

3) DP-limited Regime: Otherwise, we have optimal solu-

tion

α
[s]
opt = min

{(1 + γ

2

)−s/2

√
ηKN

1/2
0

Kaλ1/2
, min
k∈Ka

√
P |hk|
ℓ

,

K

Ka

√
ηN0

2

}
, (50)

where the value of λ can be obtained by bisection to

satisfy the condition
∑Sb+1

s=1 (α
[s]
opt)

2 =
N0Rdp(ǫ,δ)

2ℓ2 for the

active devices k ∈ Ka.

Proof: The problem is seen to be convex by changing variables

(α[s])2 = a[s] ≥ 0 and the solution approach involves applying

Lagrange multiplier method and Karush-Kuhn-Tucker (KKT)

conditions in a manner similar to [6, Theorem 1]. Details can

be found in [46, Appendix D].

The three regimes highlighted in Fig. 2 correspond to

settings where each of the corresponding constraints, i.e.,

(47), (49) or (50), are active. Accordingly, we have the

following observations:

• In the LMC-limited regime, the channel noise contributes in

full to LMC update, and hence the presence of channel noise

and DP does not affect the performance of LMC. In contrast,

in the other two regimes, the additional gradient noise causes

a loss as compared to a noiseless implementation of LMC.

• In the DP-limited regime, the privacy constraint affects

the performance of WFLMC, while in the other regimes,
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privacy is obtained “for free”, i.e., as a direct consequence

of the presence of channel noise. To optimize the learning

performance, the power control parameter should be adaptive

across the iterations.

C. Optimization of Power Gain Parameters: General Case

In this subsection, we consider the general optimization

problem (41) with any Su ≥ 1 and under time-varying

channels. To this end, we include LMC noise requirement

leveraging Lemma 3, and start by rewriting the min-max

optimization (41) in the epigraph form

(Multi-Sample Opt.)

min
{α(s)}S

s=1

ν (51a)

s.t.

S∑

s=1

1[|h[s]
k | ≥ g[s]] · 2(α[s]ℓ)2

N0
≤ Rdp(ǫ, δ), ∀k

(51b)

1
[
|h[s]

k | ≥ g[s]
]
α[s]ℓ

h
[s]
k

)2

≤ P, ∀k, s (51c)

α[s] ≤ K

K
[s]
a

√
ηN0

2
, ∀s (51d)

W̃2

(
p[s

′](θ), p(θ|D)
)2 ≤ ν, ∀s′ = Sb + 1, . . . , S.

(51e)

Having made the change of variables (α[s])2 = a[s] ≥ 0,

problem (51) can be easily seen to be convex. Therefore, it

can be solved using standard numerical tools.

D. Optimization of Truncated Thresholds

In this subsection, we turn to the problem of optimizing

(41a) over the thresholds {g[s]}Ss=1. As mentioned, this prob-

lem is characterized by a non-differentiable objective function,

and it should be addressed jointly with the optimization

of the power gain parameters {α[s]}Ss=1. To make progress,

we propose a sub-optimal approach that decouples the two

problems by setting the value of α[s] to ensure equality in the

constraint (41c) as

(Full Power Transmission)

α[s] = min
k∈K

[s]
a

√
Ph

[s]
k

ℓ
, s = 1, . . . , S. (52)

Note that the choice in (52) is only made for the purpose

of optimizing the thresholds. After the thresholds {g[s]}Ss=1

are optimized as explained next, the power gain parameters

{α[s]}Ss=1 are selected by following the previous subsections.

Using (52), the min-max problem (41a) over {g[s]}Ss=1 can

be expressed as the sum of gradient error over s′ communi-

cation rounds, for s′ = Sb + 1, . . . , S

min
{g[s]}S

s=1

s′∑

s=1

2(1 + γ)2(s−s′)+1

4(s′−s)(1 − γ)

[
4η2ℓ2

(
K −K [s]

a

)2
+β̃[s]

]
,

for s′ ∈ [Sb + 1, S] (53)

where we have dropped the constraints since they are assumed

to be dealt with by the subsequent optimization over {α[s]}Ss=1.

The minimization (53) can be addressed as s′ parallel opti-

mizations, and it is equivalent to focus on s′ = S as

min
g[s]

max

{
0,

N0K
2ℓ2

P (K
[s]
a )2 min

k∈K
[s]
a

|h[s]
k |2

− 2

η

}

+4ℓ2
(
K −K [s]

a

)2
, for s = 1, . . . , S, (54)

where the second term is obtained by the definition of β̃[s] in

(27). The first term is estimation error depends on the bound ℓ
of the norm of the local gradient as per Assumption 3. We note

that this result can be directly extended to device-dependent

bounds ℓk for each device k. With this extension, the threshold

g[s] in the scheduling rule (22) would depend on the properties

of the local data set via constants {ℓk}Kk=1.

The threshold g[s] affects the objective function (54) through

the number K
[s]
a of active users. Decreasing K

[s]
a aggravates

the estimation error (first term) due to partial scheduling,

while providing a chance to alleviate the excess noise (second

term) by silencing the devices with the worst channels. The

objective function (54) can take at most K different values

that are attained by setting g[s] as one of the channel gains

|h[s]
1 |, · · · , |h[s]

K |. Therefore, we can limit the search to these

values without loss of optimality. It follows that the optimal

solution for each threshold g[s] can be obtained by exhaustive

search over the K values {|h[s]
k |}Kk=1 by minimizing (54).

VI. NUMERICAL RESULTS

In this section, we investigate the effectiveness of the pro-

posed scheme, WFLMC, as a mechanism to implement LMC

on wireless channels using numerical experiments. We empha-

size that our goal is not that of comparing the performance of

Bayesian and frequentist techniques. This is a subject that has

been extensively explored in the literature (see Sec. I), and we

consider it to be beyond the scope of this contribution. Rather,

our focus is on evaluating the effectiveness of the specific

proposed implementation mechanism of LMC as compared

to more conventional solutions. To this end, we consider the

following benchmark schemes.

1) WFMLC with equal power allocation: This reference

scheme follows the approach in [31] of dividing up the

DP constraint equally across all communication rounds.

By Lemma 2, this corresponds to imposing the constraint

2(α[s]ℓ)2

N0
<

Rdp(ǫ, δ)∑S
s=1 1[|h

[s]
k | ≥ g[s]]

(55)

for each communication round. Condition (55), along

with the power constraint (41c) and LMC noise require-

ment (42) yield the power scaling gains

α[s] = min

{
1

ℓ

√
N0Rdp(ǫ, δ)

2
∑S

s=1 1[|h
[s]
k | ≥ g[s]]

, min
k∈K

[s]
a

√
P |h[s]

k |
ℓ

,

K

K
[s]
a

√
ηN0

2

}
, ∀s. (56)
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2) WFLMC without DP constraint: In this scheme, the

power gain parameter α[s] is set as

α[s] = min

{
min

k∈K
[s]
a

√
P |h[s]

k |
ℓ

,
K

K
[s]
a

√
ηN0

2

}
, ∀s, (57)

which corresponds to the optimal solution without the DP

constraint.

We also consider for reference a scenario characterized by

ideal communication without fading (i.e., hk = 1), and

channel noise (i.e., N0 = 0). To guarantee privacy and

implement LMC update, noise is added at each devices before

transmission as

x
[s]
k = ∇fk

(
θ[s−1]

)
+
√
σ[s]n

[s]
k , (58)

and n
[s]
k ∼ N (0, Im). The variance

√
σ[s] depends on the DP

constraint. Specifically, following the analysis in WFLMC, we

can define the following two additional benchmark schemes.

3) Noiseless federated LMC with DP constraint: By

solving problem (41) without power constraint (41c), the

optimal value (α[s])opt′ is used to set the variance of

additive noise as σ[s] = N0/[K(α[s])2opt′ ] in order to

satisfy the DP constraint.

4) Noiseless federated LMC without DP constraint: Re-

moving the DP constraints, the implementation of the

LMC update (10) requires the variance of update noise

in (12) to equal 2η, and by (25) we have σ[s] = 2/(Kη).

As for the learning model, we consider a Gaussian linear

regression with likelihood

p(vn|θ,un) =
1√
2π

e−
1
2 (vn−θ

T
un)

2

, (59)

and the prior p(θ) is assumed to follow Gaussian dis-

tribution N (0, Im). Therefore, the posterior p(θ|D) is the

Gaussian N
(
(UUT + I)−1Uv, (UUT + I)−1

)
, where U =

[u1, · · · ,uN ] is the data matrix and v=[v1, · · · , vN ]T is the

label vector. The strong convexity parameter µ and smooth-

ness parameter L are computed as the smallest and largest

eigenvalues of the data Gramian matrix UUT + I. We will

also consider experiments with the MNIST data set at the end

of this section.

We consider a synthetic data set {dn = (un, vn)}Nn=1

with N = 1200 following the model (59) with covari-

ates un ∈ R
m drawn i.i.d. from Gaussian distribution

N (0, Im) where m = 5, and ground-truth model pa-

rameter θ∗ = [0.071,−0.518, 0.9342, 0.7198, 0.4676]T. The

Wasserstein distance between two Gaussian distribution p1=
N (m1,C1) and p2=N (m2,C2) is computed as [47]

W2(p1, p2)
2 = Tr

(
C1 +C2 − 2(C

1/2
2 C1C

1/2
2 )1/2

)

+‖m1 −m2‖2. (60)

Unless stated otherwise, we consider homogeneous local

data distributions by dividing the data set equally among the

K = 30 devices. In this regard, we observe that frequentist

federated learning is well known to be significantly affected

by the availability of non-i.i.d. data at the devices. This

is because the different training objectives at the devices,

which are entailed by the non-i.i.d. assumption, may cause

the local optimization updates to favor different parts of

the optimization space [48], [49]. Fundamentally, frequentist

federated learning is limited by the fact that there may not be

a single model parameter vector that generalizes well for all

the non-i.i.d. local distributions. In contrast, Bayesian learning

can retain information about all local non-i.i.d. distributions in

distinct modes of the global posterior distribution. Therefore,

the non-i.i.d. property of the local distributions can be in

principled detected and accounted for. We leave a full study

of this aspect to future work, and point to [23], [26] for

some related observations. That said, in the presence of

privacy constraint, the need for clipping causes centralized

and federated implementations of LMC to be different, and

the performance loss of federated against centralized LMC

becomes more pronounced for a smaller clipping threshold in

the presence of heterogeneous distribution. Here we set the

clipping threshold to ℓ = 30, and leave an investigation of the

interplay between data heterogeneity and clipping to future

work. Furthermore, the initial sample θ[0] is drawn from prior

with discrepancy W2

(
p[0](θ), p(θ|D)

)2
= 6.64.

A. Single-Sample Case

We now focus on single-sample case (Su = 1) by applying

the optimal power allocation detailed in Theorem 1 while

scheduling all devices (K
[s]
a = K). As in Theorem 1, the

channels h
[s]
k are constant and set to 0.01 for all devices k; the

number of communication burn-in periods is set to Sb = 50;

DP parameters are given as δ = 0.01 and ǫ = 8.

• Impact of the SNR: In Fig. 3, we plot the bound (34) on

the 2-Wasserstein distance versus SNR, defined as P/(mN0),
by varying transmitted power P . The learning rate is set as

η = 0.4/(µ + L) and 0.13/(µ + L) in order to illustrate

the different regimes defined in Fig. 2. In Fig. 3(a), under

the larger learning rate, the performance is limited by the

power constraint until SNR = 16.6 dB, after which it becomes

limited by DP. In the DP-limited regime, optimized power

allocation attains better performance than static power allo-

cation. For SNR > 22 dB, the performance under optimized

power allocation becomes equivalent to that of the system with

ideal noiseless communication with the DP, showing that all

channel noise is repurposed for DP mechanism while only

partial is for MC sampling. That is, imposing the DP constraint

causes some performance loss due to the need of scaling down

the transmission power to decrease the effective SNR. In line

with the results in Fig. 2, Fig. 3(b) shows the transition from

power-limited regime to LMC-limited regime for the smaller

learning rate. In the LMC-limited regime, all the schemes have

same performance since the channel noise variance is only

determined by the LMC constraint.

• Impact of the learning rate: We now further elaborate on

the impact of the learning rate η in Fig. 4 by setting SNR = 18
dB and SNR = 30 dB. First, with η ≤ 0.5× 10−4, by Fig. 2,

we are in the LMC-limited regime where all the schemes have

same performance. When η > 0.5×10−4, the performance of

optimized power allocation is shown to be power-limited for

SNR = 18 dB in Fig. 4(a), as it is identical to that without
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(a) η = 0.4/(µ + L).
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(b) η = 0.13/(µ + L).

Figure 3. Bound (34) on the 2-Wasserstein distance versus learning rate η for
WFLMC and noiseless LMC schemes (ǫ = 8, δ = 0.01, Sb = 50, Su = 1).

the DP constraint. In contrast, when SNR = 30 dB, as seen

in Fig. 4(b), the performance of optimized power allocation

is limited by DP for η > 0.5× 10−4. As for the static power

allocation, the performance is always limited by DP for η >
0.5× 10−4, and increasing the SNR is not helpful in reducing

the approximation error.

• Impact of the privacy level: Fig. 5 plots the bound (34) on

the 2-Wasserstein distance as a function of the privacy level ǫ.
The performance of WFLMC is limited by DP until ǫ = 13.5,

after which it becomes limited by the transmitted power and

the DP constraint does not cause a performance loss. In the

DP-limited regime, the proposed optimized power allocation

outperforms static power allocation. Furthermore, under a

stricter DP requirement, i.e., with ǫ ≤ 6, the performance of

optimized power allocation is equivalent to that under ideal

communication, and the existence of channel noise does not

impair performance.

B. Multi-Sample Case

We obtain the power control strategy in the multi-sample

case by solving the convex problem (51) under the suboptimal

scheduling policy in (54). The optimized parameters are then

used to implement WLMC. To evaluate the 2-Wasserstein

distance, we numerically estimate the mean and covariance
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(a) SNR = 18 dB.
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(b) SNR = 30 dB.

Figure 4. Bound (34) on the 2-Wasserstein distance versus learning rate η for
WFLMC and noiseless LMC schemes (ǫ = 8, δ = 0.01, Sb = 50, Su = 1).

matrices of the samples over 100 experiments, and compare

with the true posterior via (60). The results present as the worst

performance after the burn-in period, as given in the objective

(41a). Unless stated otherwise, the channels h
[s]
k are randomly

generated following CN (0, 0.01) for all k; the number of

communication round is set to S = 100; DP parameters are

set to δ = 0.01 and ǫ = 15.

• Impact of the SNR: We first study the impact of the

SNR = P/(mN0) with number of samples Su = 50. The

Wasserstein distances of all the wirelesses LMC schemes

are seen to decrease with the SNR until approaching the

DP-limited regime for optimized power allocation, and the

LMC-limited regime for the scheme without DP constraint.

The results emphasize the importance of optimizing power

allocation in high SNR regime where the static power allo-

cation is seen to have a significant performance degradation

in DP-limited regime. Furthermore, they validate the insights

obtained for the analysis under the simplified assumptions

considered in Theorem 1.

• Impact of the Burn-in Period: In Fig. 7, we investigate the

impact of the number of communication periods, Sb, allocated

for the burn-in period where we fix as S = 100 the total

number of communication rounds. In this experiment, the SNR

is set to 30 dB. Fig. 7 shows that increasing the communication
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Figure 5. Bound (34) on the 2-Wasserstein distance versus DP level ǫ for
WFLMC and noiseless LMC schemes (η = 0.4/(µ+L), δ = 0.01, SNR =
20 dB, Sb = 50, Su = 1).
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Figure 6. Evaluation of the 2-Wasserstein distance (60) versus SNR for
WFLMC and noiseless LMC schemes (ǫ = 15, δ = 0.01, S = 100,
Su = 50).

rounds in the burn-in period helps improve the quality of the

samples produced after the burn-in period, as the Wasserstein

distances of all the schemes are seen to decrease with the burn-

in period. We also note that the enhanced sample quality costs

at the cost of sample quantity. The performance of LMC is

limited by the bias in discretization error that is determined by

the learning rate and can not be diminished by increasing the

duration of the burn-in period. Overall, the results emphasize

that sample quality can be enhanced by optimizing the power

allocation strategy.

C. MNIST Data Set

We now consider the problem of multinomial logistic

regression on the MNIST data set, which is comprised of

C = 10 classes representing handwritten digits. We use

N = 12, 000 data points, and N/C data points for each class

are randomly selected from the MINST training set. The orig-

inal data, with dimension 784, is pre-processed by projecting

the input images into a subspace of lower dimension 30 via

principal component analysis (PCA). This is motivated by the

fact that the MNIST images are known to be approximately

supported on a manifold with intrinsic dimension lower than

30 [50].
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Figure 7. Evaluation of the 2-Wasserstein distance (60) versus the number
of communication rounds in burn-in period Sb for WFLMC and noiseless
LMC schemes (ǫ = 15, δ = 0.01, S = 100, SNR = 30 dB).
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Figure 8. Evaluation of expected calibration error versus SNR for WFLMC,
noiseless LMC schemes, and SBFL in [22] (ǫ = 50, δ = 0.1, S = 500,
Su = 50).

For the learning model, the likelihood is considered as

p(vn|{θc}Cc=1,un) =

C∏

c=1

[
exp(θT

c un)∑C
c′=1 exp(θ

T
c′un)

]In,c

, (60)

where we have In,c = 1[vn = c]. The prior of the model

parameters θ = {θc}Cc=1 is a produced Gaussian distribution

N (0, Im) for m = 300. To set the parameters µ and L,

we leverage the inequality for the Hessian matrix Im �
∇2f(θ) � 1

2

(
Ic − 1

C1c×c

)
⊗ UUT + Im, where 1c×c is a

c× c matrix with all elements 1, and ⊗ represents Kronecker

product. Specifically, we compute the minimum and maximum

eigenvalues of the lower bound and upper bound respectively

to set µ and L. The channels h
[s]
k are randomly generated

following the distribution CN (0, 10−4) for all k; the number

of communication round is set to S = 600; the number of

communication burn-in periods is set to Sb = 550; the clipping

threshold in (20) is set to ℓ = 300; and DP parameters are set

to δ = 0.1 and ǫ = 50. The results are averaged over 50

experiments.

For tractability, the optimization problem aims at minimiz-

ing the averaged Wasserstein distances across the samples after

the burn-in period. The problem is convex and can be solved

by the method in Sec V-B. We use the test set of MNIST to

evaluate the expected calibration error [10]. Furthermore, we
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implemented scalable Bayesian federated learning (SBFL) in

[22] as another benchmark. We recall that SBFL is a frequen-

tist learning protocol that aggregates the local gradients at the

server via a point estimate that incorporates prior knowledge

on the gradients. Under the assumption of orthogonal multiple

access in [22], the iteration time is set as S/K for a fair

comparison.

Fig. 8 plots the expected calibration error versus SNR with

the number of samples Su = 50. First, the figure verifies

the advantage of Bayesian learning, as all WFLMC schemes

are seen to significantly outperform SBFL. Furthermore, by

increasing the number of communication rounds, optimized

power allocation can outperform the equal power allocation

scheme.

VII. CONCLUSIONS

In this paper, we have proposed a novel Bayesian federated

learning (FL) protocol that implements Langevin Monte Carlo

(LMC) via uncoded wireless transmission from devices to

edge server. The key novel idea is that of repurposing channel

noise for both MC sampling in Bayesian FL and privacy

preservation. Under simplified assumptions, the analysis has

revealed that system operated in different regimes limited by

LMC, DP, or power constraints, depending on the values of

learning rate, privacy parameters, and transmitted power.

As an extension of the current work, it would be interesting

to optimize the learning rate schedule; to study digital imple-

mentations of wireless federated LMC as in [7]; to consider

multi-hop device-to-device (D2D) network topologies; and to

account for non-ideal downlink communication as in [51],

[52].

APPENDIX

A. Proof of Lemma 2

The vector θ̄(t) is the continuous-time Langevin diffusion

process in (7) and its distribution is assumed to be invariant,

so that we have N
[s]
d = N

[1]
d for all s. The proof then

follows from [35, Lemma 3] with the caveat that we bound of

E[‖N [1]
d ‖2] in lieu of

√
E[‖N [1]

d ‖2].

B. Proof of Proposition 1

For any τ > 0, the error (37) is bounded as

E

[∥∥∥θ[s] − θ̄(sη)
∥∥∥
2
]
≤ (1 + τ)E

[∥∥∥θ[s−1] − θ̄((s−1)η)

− η
[
∇f(θ[s−1])−∇f(θ̄((s−1)η))

]∥∥∥
2
]

+ (1 + τ−1)
(
2η2E[‖N [s]

g ‖2] + 2E[‖N [s]
d ‖2]

)
, (61)

where the value of τ controls the convergence rate as detailed

later. Furthermore, the first term is bounded by

E

[∥∥∥θ[s−1] − θ̄((s−1)η) − η
[
∇f(θ[s−1])−∇f(θ̄((s−1)η))

]∥∥∥
2
]

≤ γ2
E

[∥∥∥θ[s−1] − θ̄((s−1)η)
∥∥∥
2
]
, (62)

where γ = 1 − ηµ if 0 < η ≤ 2/(µ + L); and γ = ηL − 1
if 2/(µ+ L) ≤ η ≤ 2/L. The proof starts with (19) through

[35, Lemma 1]. Specifically, plugging Lemmas 1 and 2 and

(62) into (61), and setting τ = (1+γ
2γ )2 − 1 yield

E

[∥∥∥θ[s] − θ̄(sη)
∥∥∥
2
]
≤
(1 + γ

2

)2
E

[∥∥∥θ[s−1] − θ̄((s−1)η))
∥∥∥
2
]

+
2(1 + γ)2

(1− γ)(1 + 3γ)

[
η4L3m

3
+ 4η2ℓ2

(
K −K [s]

a

)2

+ η3L2m+max

{
0,

η2N0K
2

(α[s]K
[s]
a )2

− 2η

}]
. (63)

The desired result in Proposition 1 is obtained by using

the inequality 1+γ
1+3γ < 1, applying (63) recursively, and the

initial point θ[0] is set to satisfy W2

(
p[0](θ), p(θ|D)

)2
=

E[‖θ[0] − θ̄(0)‖2].
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