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Abstract: Agricultural land abandonment is a globally significant threat to the sustenance of economic,
ecological, and social balance. Although the driving forces behind it can be multifold and versatile,
rural depopulation and urbanization are significant contributors to agricultural land abandonment.
In our chosen case study, focusing on two locations, Ruen and Stamboliyski, within the Plovdiv
region of Bulgaria, we use aerial photographs and satellite imagery dating from the 1950s until
1980, in connection with official population census data, to assess the magnitude of agricultural
abandonment for the first time from a remote sensing perspective. We use multi-modal data obtained
from historical aerial and satellite images to accurately identify Land Use Land Cover changes. We
suggest using the rubber sheeting method for the geometric correction of multi-modal data obtained
from aerial photos and Key Hole missions. Our approach helps with precise sub-pixel alignment
of related datasets. We implemented an iterative object-based classification approach to accurately
map LULC distribution and quantify spatio-temporal changes from historical panchromatic images,
which could be applied to similar images of different geographical regions.

Keywords: land use and land cover change; agricultural land abandonment; rural depopulation;
Plovdiv; Bulgaria; remote sensing; object-based segmentation; aerial photography; satellite imagery;
Corona and Hexagon reconnaissance missions

1. Introduction

Agricultural land abandonment has been a significant land use change, attracting
increased global attention since the 2010s [1]. It has been a concern for the European
Union, as it has been forecasted that 11% of agricultural land in the EU is at a high risk of
abandonment by 2030 [2]. The Common Agricultural Policy (CAP) has further accelerated
the dual process of intensification of agriculture and agricultural land abandonment in
the EU [3]. This political context and ecological momentum have facilitated large-scale
EU-wide agricultural land abandonment examinations [4–6], including predictions and
modelings for the near future [5,7,8]. Earth observation (EO) data, collected from various
satellite platforms (starting in the 1970s with the Landsat program) and processed with
remote sensing methods, has been a crucial and ever-developing aspect of these research
efforts. In the last decades, for several local scale case studies, earlier monochromatic visual
material (starting from the 1940s aerial photographs and the 1960s satellite imagery) has
also been incorporated into Land Use Land Cover Changes (LULCC) examinations for
more extended periods [9–12]. There have also been attempts to include historical cadastral
maps as even earlier datasets, and in combination with aerial photographs [13–17].

We aim to quantitively analyze the land abandonment problem using very high-
resolution (VHR) historical aerial and satellite images with image processing techniques.
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Our study examines the agricultural land abandonment problem following remote sensing
methodologies using panchromatic visual material consisting of aerial photographs and
satellite imagery from the Key Hole (KH) program between the 1950s and the 1980s.
Our methodological strength is making joint use of historical population censuses in
combination with the concepts of rural depopulation and urbanization in addition to
our relatively older remote sensing data. For the specific dynamics of agricultural land
abandonment in Bulgaria and the selected two locations, covering around 30 years with
five cross-sections before the 1990s is advantageous. The 1950s preceded radical rural
depopulation and urbanization, which we observe in Bulgaria in the later years of our
research period. Rural depopulation and urbanization are significant pull and push factors
for populated places, resulting in agricultural land abandonment on both population
gaining and losing ends. Rural depopulation poses a substantial threat to demographic
and economic stability and is an emerging research field [18]. It has also been studied in
connection to agricultural land abandonment from a remote sensing perspective using
aerial photographs and satellite imagery for other countries in the EU [12,19–21].

To our knowledge, agricultural land abandonment or rural depopulation in Bulgaria
has not been studied from a remote sensing perspective, if we leave aside our preliminary
work [22,23] and a follow-up study inspired and shaped by our work to a more considerable
extent than it has been mentioned in acknowledgement [24]. These studies were also limited
to their early satellite imagery. They do not go back to the 1940s or the 1950s, and they
do not conduct an examination of LULCC in correlation with demographic change, as we
intend here. Bulgaria is an interesting case study to examine LULCC in the long run. Not
only because of the drastic impact of the collapse of the Soviet Union in east and southeast
Europe in general [25], but specifically, first due to a relatively late establishment of the
communist rule and following drastic political changes in land regime, such as radical
collectivization starting in the 1940s and peaking in the 1950s, [26] and secondly to a relative
late accession to the EU in 2007 and with an ongoing heavy reliance on the agricultural
sector. Nevertheless, few existing remote sensing studies on LULC for Bulgaria [27–30]
have hardly a long-term perspective and do not address rural depopulation.

Rural depopulation is a massive threat to Bulgarian demography, and even to cultural
heritage [31], especially in the transitional period after 1989 [32], which badly hit rural
areas starting from the 1970s [33,34]. The rural depopulation of Bulgaria has been recently
mapped for the period after the fall of communism [35], but has not been examined from a
remote sensing perspective until now.

This study proposes an iterative geographic object-based image analysis (GeOBIA)
approach to accurately determine historical LULCC using panchromatic aerial photographs
and satellite images. A detailed examination of the dynamics behind the detected LULCC
is beyond the goal setting of this preliminary study. With our devised object-based image
analysis methods, we share a detailed workflow to segment historical panchromatic aerial
photographs and early panchromatic satellite imagery. As end products, we create historical
LULC maps using a land cover classification scheme derived from the European Space
Agency (ESA) WorldCover project. In this regard, our historical land use classes are
commensurable with the current, detailed, and high-resolution data created from Sentinel-1
and 2 images, and lend themselves to longitudinal dataset construction and analysis.
However, within the limited scope of this article, we did not pursue these latter goals.

2. Materials and Methods
2.1. Satellite Imagery and Aerial Photographs to Examine Long-Run Land Use and Land
Cover Changes

The satellite image dataset prepared for the Stamboliyski and Ruen study regions
includes three images from the collections of declassified U.S. military intelligence missions
from the KH optical reconnaissance satellites. We used images from Corona and Hexagon
satellites operated between 1960 and 1972, and between 1971 and 1986, respectively. The
archive of Corona’s declassified satellite images was released and offered for public use in
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February 1995 [36]. The historical data obtained from the declassified archive of US satellite
imageries have been useful in several remote sensing applications, including historical
LULCC [37–47]; however, not for Southeast Europe and not in combination with aerial
photographs, except for a recent example of combining 1945 aerial photographs with 1975
Hexagon imagery for deltaic areas in Greece [48]. The follow-up Hexagon reconnaissance
mission’s imagery was declassified in 2002 and 2011. Hexagon was the most sophisticated
and the last film-based orbiting photo-reconnaissance satellite [49]. Although Hexagon
imagery has high spatial resolution and advanced photogrammetric qualities, such as offer-
ing larger footprints without complex panoramic distortions [50], it has not been as widely
used as its predecessors, such as Corona. Almost all the Hexagon project imagery taken by
KH-9 system cameras with close to global coverage was declassified in 2011 (Declass-3).
However, the imagery was only available at the National Archives and Records Adminis-
tration (NARA) for personal inquiry until 2019, when the third phase of 14,000 declassified
rolls was transferred to the USGS, EROS Center. Since then, they are gradually becoming
available online for scanning and downloading (https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-3 accessed on
1 October 2022). Previously declassified and online available Hexagon imagery covered
mainly parts of North America and polar regions [51].

The possible use of Hexagon data for archaeology and historical research has already
been highlighted [51–53]. Due to its higher spatial resolution compared to early Landsat
missions, despite being panchromatic, Hexagon imagery lends itself well to long-term
glaciology research [50,54–59] and, to a lesser extent, historical digital elevation model
constructions [60–62]. Most of the research used manual vectorization techniques to extract
geographic information.

Historical aerial photographs have been used for LULCC in several studies [63,64],
focusing on relatively small areas due to the coverage limitations of aerial photographs [65].
For over ten years, there have also been attempts to create long-term datasets by using
aerial photographs and satellite imagery to examine historical LULCC [66], including
our recent work, which combined historical maps with aerial photographs and modern
satellite imagery [17,67]. Recently, there have also been attempts to automatize object-based
image analysis of aerial photographs to conduct LULCC studies [68]. Nevertheless, as we
already mentioned, using historical aerial photographs starting as early as the 1940s and
the 1950s in combination with early satellite imagery to examine long-term LULCC is a
rare undertaking. Furthermore, adding matching demographic data from the censuses is a
novel approach to focus on rural depopulation and urban sprawl.

2.2. Study Areas and Datasets

We wanted to select two populated regions emphasizing two drivers of LULCC: rural
depopulation and rapid population growth. Bulgaria has one of the fastest shrinking
populations worldwide, and this trend is expected to continue at least until 2050 [69].
Bulgaria is in the middle of a demographic crisis on the national level. Furthermore, due
to the hundreds of partially depopulated villages, it is possible to use the term demo-
graphic catastrophe at the rural level [70]. Moreover, the Plovdiv district has the country’s
highest share of the rural population [71]. Therefore, we decided to focus on the Plovdiv
district. Thanks to the online availability of the National Register of Populated Places of
the National Statistical Institute of Bulgaria, it is possible to detect populated places with
drastic demographic changes from 1934 to 2020 [72]. Every populated place is given a
unique Unified Classification of Administrative-Territorial and Territorial Units (UCATTU,
EKATTE in Bulgarian) number; 63238 and 51980 for Ruen and Stamboliyski, respectively.
After studying the long-term demographic dynamics of populated places in the Plovdiv dis-
trict, we opted for Stamboliyski and Ruen as illustrative examples of drastic demographic
changes in Table 1, possibly triggering dramatic LULLC. Stamboliyski experienced rapid
urbanization between 1934 and 1965, had a stagnant population between 1975 and 1992,
and then the population decreased. On the other hand, Ruen is an excellent example of

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-3
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-declassified-data-declassified-satellite-imagery-3
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rural depopulation, with a constant decrease in population from 1946 to 2011. These are
the demographic reasons for choosing our study areas based on our research design.

Table 1. Total populations of Ruen and Stamboliyski. All the dates and figures are from national
population censuses, except for 2020, which is based on national population estimates.

Date Total Population of Ruen Total Population of Stamboliyski

1934 691 1479
1946 716 3224
1956 606 7866
1965 409 12,804
1975 324 13,313
1985 211 13,449
1992 176 13,015
2001 175 12,580
2011 156 11,601
2020 268 10,738

We looked for and found more candidates within the Plovdiv district with suitable
demographic profiles, which could be examined for urban sprawl or rural depopulation as
forms of historical LULCC. The availability of high-quality aerial and satellite imagery was
our second constraint in choosing our populated regions. After successfully locating an
adequate number of images of sufficient quality and at suitable intervals for Stamboliyski
and Ruen, we finalized our case studies.

Our study areas are shown in Figure 1. The industrialized town of Stamboliyski,
located 15 km west of Plovdiv city in South-Central Bulgaria, with an estimated population
of 10,738 inhabitants at the end of 2020, represents a highly dynamic landscape over the last
70 years. The village of Ruen, located 17 km south of the city of Plovdiv, with an estimated
population of 268 inhabitants in 2020, represents a relatively stable area with slow and low
historical land use and land cover (LULC) change. The sizes of the Stamboliyski and Ruen
study areas are about 14 km2 and 6 km2, respectively.
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We acquired two panchromatic Corona images from the Key Hole 4B (KH-4B) mission
from 1968, and two panchromatic Hexagon images from the Key Hole 9 (KH-9) mission
from 1975 and 1980. We selected images extending over study areas (e.g., Stamboliyski
and Ruen) with minimal cloud, fog, and snow cover. We purchased filmstrips of chosen
Corona and Hexagon images covering our study sites through the EarthExplorer graphical
user interface of the U.S. Geological Survey portal. Each Corona image file consisted of
four image frames (Figure 1a–d), with 7 to 10 subsets of each Hexagon image file. We list
the exact dates, file names, and satellite missions of used Corona and Hexagon images,
and the total number of frames and frames of each image we used covering the Ruen and
Stamboliyski study areas, in Table 2.

Table 2. Information about the satellite imageries used in the study, the number of Corona and
Hexagon image subsets, and the used frame for covering the Ruen and Stamboliyski study sites.

Project Mission Date Entity ID Total Frame Count Used Frame for Ruen Used Frame for
Stamboliyski

Corona KH-4B 5 May 1968 DS1103-1058DA049 4 - d
DS1103-1058DA050 4 d -

Hexagon KH-9 12 July 1975 D3C1210-200256A037 7 c d

Hexagon KH-9 16 July 1980 D3C1216-100235F054 10 e d

We present the footprints of the chosen images and the boundaries of Stamboliyski
city and Ruen village in Figure 2. The Corona imageries have ground coverages of 240
by 14 km, and the Hexagon imageries have ground footprints of approximately 212 by
24 km and 262 by 26 km, from 1975 and 1980, respectively. The Stamboliyski city and Ruen
village boundaries, illustrated with cyan and pink borders, are covered by the 1975 and
1980 Hexagon image shots (green and red footprints). Nevertheless, we needed two Corona
images from 1968 (yellow and blue footprints) to cover Ruen and Stamboliyski (Figure 2).
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Other than satellite images from declassified reconnaissance archives, we obtained
monochromatic aerial photographs covering our study regions, which were acquired in
1945, 1952, 1965, and 1975. Except for the photograph covering Ruen in 1945, these aerial
photographs can be obtained from the Geoportal of the Ministry of Defense of the Republic
of Bulgaria (https://gis.armf.bg/ accessed on 1 October 2022). We acquired the 1945 Ruen

https://gis.armf.bg/
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aerial photo from the Luftbilddatenbank (https://www.luftbilddatenbank.de/ accessed on
1 October 2022), a company specializing in locating unexploded ordnance. We prepared
aerial photo mosaics for two study sites for four dates 1945, 1952, 1965, and 1975, utilizing
a total number of 21 aerial photographs. Detailed information about the number of aerial
photographs combined to cover the study areas for the chosen years is shown in Table 3.

Table 3. The information about the aerial photographs used in the study.

Date Number of Aerial
Photographs of Ruen

Number of Aerial Photographs
of Stamboliyski

1945 1 0
1952 5 5
1965 3 3
1975 2 2

2.3. Data Pre-Processing
2.3.1. Geometric Correction of Aerial Photographs

To establish the correct map coordinate information for each cell in the aerial pho-
tographs, we used the spline (triangulation) transformation, a rubber sheeting method, to
achieve high local accuracy [73]. Compared to polynomial functions, the spline transfor-
mation offers a very high goodness of fit to the reference data, but requires a far higher
number of ground control points (GCPs) [17,74,75].

The rubber sheeting technique uses a fifth-order polynomial transformation to estimate
optimal values using a mathematical function that minimizes overall surface curvature. The
rubber sheeting method avoids sharp bending and provides a smooth surface that passes
through the GCPs [76]. Spline-based transformations’ more comprehensive image-warping
options offer better accuracy for the geometric correction of historical topographic data
with positional inaccuracies and geometric distortions [77,78].

We used the georeferencing tool in ArcGIS to conduct geometric correction of multi-
temporal and multi-source images. Georeferencing guarantees that satellite images and
aerial photographs are correctly positioned in space, and that geometric distortion is
avoided to the possible extent. Among the available datasets, we chose the one with the
highest spatial resolution and widest coverage extent to be used as a reference for the
further stages after conducting geometric correction using ground control points (GCPs)
on the images and the Google Earth images. We chose the aerial photograph from 1975 as
the reference data for the Ruen study location, since it encompasses the entire village in
one frame and has a high spatial resolution. Then, we implemented a spline (triangulation)
transformation to georeference the image, which provides higher accuracy for the geometric
rectification of historical aerial photographs. Due to the 47 years of terrain changes between
the aerial photograph from 1975 and the Google Earth image from 2021, we tried to select
invariant GCPs during the period. We ensured the homogenous distribution of GCPs
across the aerial photograph. Figure 3 shows the GCPs of the “1975 Ruen aerial photo”.
The zoomed views of three random GCPs are also exemplified in Figure 3.

For the geometric correction of the remaining aerial photographs encompassing the
Ruen village, we used the georeferenced 1975 Ruen aerial photograph defined in WGS
84 Datum and UTM Zone 35N projection as the reference. Figure 4 shows GCP samples
collected from aerial photographs in 1952 and 1965, and their counterparts on a 1975 Ruen
aerial photograph georeferenced at the first stage.

We created the 1952 Ruen complete aerial photograph by mosaicking the two aerial
photographs covering the Ruen village. Similarly, we made the mosaicked 1965 Ruen aerial
photograph. We utilized Erdas Imagine image processing program for mosaicking. Figure 5
shows aerial photographs captured in 1952 and 1965, two for each year, and the result of
mosaicking these photographs into the final mosaicked images, one for each year (1952 and
1965) covering most of Ruen village boundaries.

https://www.luftbilddatenbank.de/
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For the Stamboliyski study region, we geometrically corrected two aerial photographs
of Stamboliyski from 1975 using the GCPs collected from the Google Earth image at the
first stage. Each of the aerial photographs covers an area of approximately 27 km2. Figure 6
shows the distribution of GCPs utilized for geometric correction. It presents detailed
views of some random GCPs on aerial photographs from the Stamboliyski region and their
counterparts on Google Earth images.

We mosaicked the geometrically-corrected aerial photographs of Stamboliyski from
1975 and used them as a reference for rectifying other aerial photographs from 1952 and
1965. Figure 7 shows the two aerial photographs of Stamboliyski from 1975 and the
mosaicked aerial photograph. The red color illustrates the boundaries of the Stamboliyski
town.

We then georeferenced the aerial photographs encompassing Stamboliyski from 1952
and 1965, according to the geometrically corrected and mosaicked 1975 Stamboliyski aerial
photograph. We produced the 1952 Stamboliyski aerial photograph by joining five aerial
photographs, each covering an area of approximately 3 km2, while three aerial photographs
from 1965, each covering an area of about 12 km2, were used to mosaic the 1965 Stamboliyski
aerial photograph. Figures 8 and 9 show the individual aerial photographs from 1965 and
1952, respectively. Additionally, the mosaicked 1952 and 1965 aerial photographs are
represented in Figures 8 and 9, respectively.
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2.3.2. Geometric Correction of Satellite Images

After rectifying and mosaicking aerial photographs, we clipped the region covering
Ruen and Stamboliyski from Corona and Hexagon satellite image frames, and georefer-
enced the clipped images according to the geometrically corrected and mosaicked 1975
Ruen and Stamboliyski aerial photograph as reference images. Figures 10 and 11 present
the rectified declassified images of 1968, 1975, and 1980 that encompass the Ruen and
Stamboliyski borders, respectively.



Land 2022, 11, 1855 11 of 24

Land 2022, 11, x FOR PEER REVIEW 12 of 26 
 

 

Figure 9. (a–e) Aerial photographs from 1952 covering parts of Stamboliyski and (f) mosaicked 1952 

Stamboliyski aerial photograph. Red vector illustrates the boundaries of the Stamboliyski town. 

2.3.2. Geometric Correction of Satellite Images 

After rectifying and mosaicking aerial photographs, we clipped the region covering 

Ruen and Stamboliyski from Corona and Hexagon satellite image frames, and georefer-

enced the clipped images according to the geometrically corrected and mosaicked 1975 

Ruen and Stamboliyski aerial photograph as reference images. Figures 10 and 11 present 

the rectified declassified images of 1968, 1975, and 1980 that encompass the Ruen and 

Stamboliyski borders, respectively. 

 

Figure 10. Ruen village captured by (a) Corona image from 1968, (b,c) Hexagon images 

from 1975 and 1980, respectively (finer details of the region from Ruen village center are 

Figure 10. Ruen village captured by (a) Corona image from 1968, (b,c) Hexagon images from 1975
and 1980, respectively (finer details of the region from Ruen village center are shown in the inset
images highlighted by green boxes). Red vector illustrates the boundaries of the Stamboliyski town.
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We list the spatial resolutions of the rectified aerial photographs and declassified
satellite images of Ruen and Stamboliyski in Table 4.

Figure 12 shows spatial resolution comparisons between aerial and satellite images of
Ruen on different dates. The aerial photograph from 1945 has the highest spatial resolution,
whereas the Corona image from 1968 has the lowest spatial resolution. As shown in
Figure 11, buildings, roads, and even trees are detectable in satellite images and aerial
photos of higher spatial resolution. At the same time, it is hard to detect buildings and
borders of roads in low spatial resolution images.
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Table 4. Spatial resolutions of the Ruen and Stamboliyski geospatial dataset.

Date
Spatial Resolution (m)

of the Aerial
Photographs of Ruen

Spatial Resolution (m) of
the Aerial Photographs of

Stamboliyski
Date

Spatial Resolution (m)
of the Declassified

Satellite Images of Ruen

Spatial Resolution (m) of
the Declassified Satellite
Images of Stamboliyski

1945 0.31 - 1968 2.71 2.93

1952 0.45 0.2 1975 1.06 0.93

1965 0.41 0.43 1980 0.96 1.01

1975 0.55 0.57
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2.4. Classification of Aerial and Satellite Images

We classified the geometrically-corrected aerial photographs and satellite imageries to
generate the LULC maps of the two study areas. We produced eleven LULC maps, six for
Ruen and five for Stamboliyski. We used aerial photos to generate the LULC maps of 1945,
1952, 1965, and 1975, and the Corona and Hexagon satellite imageries were used to form
the LULC maps of 1968 and 1980.

The object-based classification approach produced better results than pixel-based
approaches, and multiple studies showed that object-based classifications have significantly
superior accuracy [79,80]. The OBIA technique’s segmentation step divides an image into
useful image objects and meaningful entities composed of many nearby pixels. The most
widely-used segmentation technique is multi-resolution segmentation (MRS) [81]. In the
MRS method, a scale parameter determines the size of the resulting objects. It depends
on the study area’s characteristics and the image’s spatial resolution. When a higher scale
parameter value is selected, more merging is allowed, and the object is produced at a
larger size.

In contrast, fine-scale values enable the formation of smaller objects. The ideal volume
of a user-defined scale parameter for a study area should be set by testing the overall effect
of segmentation results on object-based classification at various scales [82]. In the MRS
algorithm, each pixel is considered an individual object, and pairs of image objects are
combined throughout the pairwise clustering process in numerous subsequent steps in an
interactive region-growing approach to generate more significant segments [83]. Merging
the adjacent pixels is achieved by measuring the nearby object heterogeneity and the
internal homogeneity of an object. The objects are merged until the assumption for internal
homogeneity, and the threshold for surrounding object heterogeneity, are maintained.
A combination of color (spectral values) and shape features make up the homogeneity
criterion [84].

The objects are labeled in the second stage of the OBIA technique, known as the
classification phase. The objects can be classified through the object-oriented supervised
classification method, or the knowledge-based classification approach [85,86].
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In the knowledge-based classification technique, the classification rules—also referred
to as rule bases or knowledge models—are established and refined to identify the objects.
Object identification is performed by utilizing a set of features, including texture (homo-
geneity, dissimilarity, entropy, contrast), shape (compactness, rectangular fit), position
(distance, coordinates), extent (length/width), layer values (mean, standard deviation,
mode), etc. An analyst’s knowledge of an object’s coverage, shape, texture, location,
and size is utilized to determine the best threshold for the feature properties offered by
e-cognition tools.

2.4.1. Classification Schema

The LULC map in this study provides eight classes and is defined using the land cover
classification system adopted in European Space Agency (ESA) WorldCover project. Dur-
ing the ESA WorldCover project, detailed and high-resolution information on worldwide
LULC cover was provided by the classification of Sentinel-1 and 2 images (ESA-WorldCover,
2020). The land cover classes in our work are derived from the ESA land cover classifica-
tion scheme including cropland, built-up, bare/sparse vegetation, grassland, shrubland,
water bodies, and tree cover. The explanation of each land cover class can be found in
“WorldCover_PUM_v1.0” (https://worldcover2020.esa.int/, accessed on 1 October 2022),
and we also provide examples from aerial photographs and satellite images for each land
cover class in Figure 13.
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In addition to these land cover classes, we added a land cover class to our classification
scheme to classify permanent cropland. In the ESA classification schema, perennial woody
plants and plantations (e.g., fruit trees, nut trees, oil palm, olive trees) are classified as “tree
cover”. In this study, we separated permanent cropland from forest tree cover to examine
changes in the agricultural region of the study sites.

2.4.2. Methodology

We first chose one photograph for each study region with high spatial resolution,
encompassing the large extent of the study areas. Then, we implemented a geographic
object-based image analysis (GeOBIA) using the eCognition® program (Trimble Germany
GmbH, Munich, Germany). The segmentation and classification phases of the OBIA
technique are used to locate objects in an image and categorize the objects, respectively.
For Ruen, the 1965 aerial photograph was the preferred image. Although the Ruen aerial
photograph from 1945 has the highest resolution, the Ruen village is covered in >99% of
the 1965 photograph, as opposed to only 93% in the 1945 photograph. The 1965 aerial
photograph is the recommended image for Stamboliyski. Although the 1952 Stamboliyski

https://worldcover2020.esa.int/
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aerial photograph has the highest resolution, the city of Stamboliyski is covered by more
than 98% of the 1965 photograph, compared to only 74% in the 1952 photograph. It was also
advantageous to pick the same year for both cases as the base year. Furthermore, between
1956 and 1965, Stamboliyski experiences the steepest rise and Ruen the most significant fall
in their populations, according to census data (Table 1).

We segmented the 1965 aerial photographs into several objects using the multi-
resolution segmentation algorithm. In this segmentation method, a parameter called
scale determines the size of resulting objects, and the shape and compactness parameters
determine the boundaries of objects. The segmentation process of the aerial photographs
was implemented with 0.2 shape, and 0.8 compactness parameter values. To minimize
the number of objects facilitating the manual classification of the aerial photograph, the
optimal values for scale parameters were applied according to each land cover class. The
photograph was subdivided into the largest possible meaningful objects of a land cover
class, with the scale appropriately defined. We applied different values for scale parameters,
including 800, 600, 400, 200, 100, and 50, at different stages. At each step of the multi-scale
segmentation approach, objects assigned to one of the land cover classes were classified
and labeled with the related class name. However, others not applicable to classification
due to encompassing more than one land cover type were segmented further using the
smaller scale. The scale parameter of 800 was suitable for segmenting objects for most of
the “tree cover” and “cropland” land covers. As seen in Figure 14, there was no need to use
smaller scales to segment lands covered by trees (i.e., tree cover), since the objects resulting
from the scale of 800 meaningfully encompass tree cover and separate it from neighboring
objects of other land cover classes. We then manually assigned the category of “tree cover”
to these objects.
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Figure 14. Segmented 1965 Ruen aerial photograph. Segments highlighted by red borders show the
objects suitable for the “tree cover” class.

Subsequently, the 600, 400, and 200 scale parameters were utilized to segment and clas-
sify image objects. Most of the shrubland, grassland, water bodies, bare/sparse vegetation,
and permanent crops were classified at these stages. We used the smaller objects resulting
from scales of 100 and 50 in the multi-resolution segmentation configuration to classify the
remaining regions. Mainly, the objects relating to the built-up land cover category were
classified at this stage. While land covers with simple outlines, such as croplands, water
bodies, and forests, are better suited to being segmented and classified at larger scales,
smaller objects associated with built-up structures with complex boundaries necessitate
the creation of smaller image segments to distinguish built-up structures from neighboring
regions. Figure 15 shows the objects resulting from the last step of the multi-scale seg-
mentation procedure, which is suitable for segmenting and classifying parts such as roads,
buildings, grasslands within the forest area, and shrubland within agricultural land.
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Figure 15. Segmented 1965 Ruen aerial photograph. Segments highlighted by red borders show the
objects resulting from small-scale segmentations.

At the end of the first phase of image classification, we had the land cover map of the
Ruen and Stamboliyski from the 1965 aerial photographs. The additional aerial photographs
and satellite images were then segmented and classified using the land cover map of the
1965 aerial photographs. We implemented the segmentation and classification of the images
in multiple stages. First, an image was segmented using the scale parameter set to 80,
and the shape parameter and the compactness were set as 0.7 and 0.3, respectively. The
classes given to objects in the 1965 land cover map were then assigned to the segmented
objects in stages, one class at a time. We later checked the classified objects manually,
and we edited the segments which were misclassified. Misclassified objects can include
segments that have altered over time, or items that appear different in a current image due
to differences in quality or spatial resolution. Figure 16 shows an example of a land cover
class assignment based on the 1965 map, and subsequent revisions based on the 1952 aerial
photograph from Ruen. It depicts the tree cover class allocated to the 1952 aerial shot based
on the 1965 land cover map, and the altered pieces of this land cover class that were later
assigned to different land cover classes.

At each phase, we assigned one land cover class to the unclassified objects based on
the 1965 land cover map of Ruen and Stamboliyski, and modified images in the process
until all the objects were classified. As shown in the legend of Figure 16, we had a class
called “segment again” that we utilized for objects requiring further segmentation due to
spanning regions with various land covers. We set scales of 50 and 25 to segment objects in
the “segment again” class. While applying a region’s prepared land cover map to other
photographs from other dates saves time and effort, assigning a class at a time narrates the
number of misclassified objects to edit and reduces human errors.
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2.4.3. Accuracy Assessments—OA and Kappa

Satisfactory overall accuracies (>85%) for the classification results are prerequisites for
accurate land cover mapping [75]. We assessed the accuracy of our classification results with
a set of 20 reference point samples for each LULC class. We targeted well and homogenously
distributed sample points within the entire mapping area. We used the original aerial
photographs and satellite images as the reference data. Tables 5 and 6 present the overall
accuracy and Kappa metrics of land cover maps of Ruen and Stamboliyski. Tables 7 and 8
show the per-class accuracy results for the aerial photographs and satellite images of Ruen
and Stamboliyski. Of the nine LULC classes, other than tree cover, shrubland, and grassland
land classes in which marginal mapping confusion occurred, other LULC classes had high
per-class accuracy values (>85%).

Table 5. The overall accuracy and Kappa statistics of land cover maps of Ruen.

Data Type Date Overall Accuracy (%) Kappa (%)

Aerial
photographs

1945 95.17 94.21
1952 94.57 93.63
1965 93.57 92.59

Satellite images
1975 93.84 92.77
1968 91.42 90.12
1980 93.07 91.87
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Table 6. The overall accuracy and Kappa statistics of land cover maps of Stamboliyski.

Data Type Date Overall Accuracy (%) Kappa (%)

Aerial
photographs

1952 92.59 91.35
1965 91.11 89.81
1975 93.60 92.59

Satellite images 1968 94.11 93.17
1980 91.11 89.76

Table 7. Producer’s and user’s classification accuracies for the Ruen region.

Aerial Photographs Satellite Images

1945 1952 1965 1975 1968 1980

Land Cover Classes PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Built-up 95.00 100 89.47 100 95.00 100 100 100 95.00 100 95.00 100
Cropland 100 100 100 100 95.00 86.36 90.00 94.74 95.00 86.36 100 86.96
Grassland 85.00 100 85.00 94.44 95.00 90.48 90.00 85.71 85.00 77.27 95.00 90.48

Permanent Crop 95.00 95 100 100 85.00 94.44 95.00 100 80.00 94.12 90 100
Shrubland 90.00 94.74 90.00 85.71 85.00 94.44 85.00 85.00 85.00 100 80.00 84.21
Tree Cover 100 85.71 100 86.96 100 90.91 100 95.24 100 90.91 95.00 95.00

Water Bodies 100 100 100 100 100 100 100 100 100 100 100 100
Bare/Sparse vegetation - - - - 100 100 - - 100 90.91 - -

Table 8. Producer’s and user’s classification accuracies for the Stamboliyski region.

Aerial Photographs Satellite Images

1952 1965 1975 1968 1980

Land Cover Classes PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Built-up 95.00 90.48 96.00 100 92.00 92.00 96.00 100 100 92.59
Cropland 95.00 86.36 96.00 75.00 100 86.21 100 83.33 100 96.15
Grassland 90.00 100 84.00 91.30 81.82 94.74 88.00 100 92.00 79.31

Permanent Crop 90.00 94.74 88.00 100 96 100 84.00 91.30 96.00 100
Shrubland - - 86.67 86.67 80.00 100 90.00 100 60.00 75.00
Tree Cover 95.00 90.48 90.00 90.00 100 96.15 100 96.15 84.00 95.45

Water Bodies 90.00 100 96.00 100 96.00 100 100 92.59 88.00 100
Bare/Sparse vegetation 93.33 87.50 90.00 90.00 90.00 85.71 90.00 100 90.00 81.82

3. Results for Each Date—Visual Interpretation and Statistical Analysis

Figure 17 presents the LULC map of the Ruen site in 1945, 1952, 1965, 1968, 1975, and
1980, the classification results of the aerial photographs (1945–1952–1965–1975), Corona
satellite image (1968), and Hexagon imagery (1980). Table 9 presents the statistical analysis
of the land cover classes in each of the land cover maps.

Table 9. Temporal evolution of the LULC classes in Ruen from 1945 to 1980 (in absolute numbers and
percentages).

LC Class
1945 1952 1965 1968 1975 1980

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Bare/Sparse
vegetation - 0% - 0% 3.71 1% 2.56 0% - 0% - 0%

Built-up 8.39 2% 10.32 2% 18.46 3% 21.63 4% 22.44 4% 34.01 6%
Cropland 198.13 36% 208.39 36% 181.84 31% 189.99 32% 188.58 32% 148.76 25%
Grassland 36.93 7% 39.53 7% 44.04 8% 51.36 9% 82.03 14% 94.52 16%

Permanent crop 63.13 11% 63.82 11% 47.47 8% 38.47 7% 39.22 7% 67.53 12%
Shrubland 61.64 11% 51.99 9% 52.77 9% 58.48 10% 58.71 10% 65 11%
Tree cover 184.52 33% 201.61 35% 232.64 40% 221.53 38% 190.91 33% 172.89 30%

Water bodies 0.79 0% 0.62 0% 0.15 0% 1.54 0% 3.47 1% 3.26 1%

Drastic rural depopulation (from 716 in 1946, to 211 in 1985; see Table 1) resulted
in a decrease of 1/3 in cropland for Ruen in the last decade under investigation. This
development is in accordance with expectations of rural depopulation’s retarded impact
on agricultural land abandonment. Figure 18 presents the LULC map of the Stamboliyski
site in 1952, 1965, 1968, 1975, and 1980, the classification results of the aerial photographs
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(1952–1965–1975), Corona satellite image (1968), and Hexagon imagery (1980). Table 10
presents the statistical analysis of the land cover classes in each of the land cover maps.
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Fast early urbanization of Stamboliyski (from 3,224 in 1946, to 7,866 in 1956, and 12,804
in 1965; see Table 1) and then leveling of population growth (from 13,313 in 1975, to 13,449
in 1985; see Table 1) can be seen reflected in a rapid and then gradual increase in the built-up
area. The mirror image of this dynamic can be observed in the fast fall but then leveling
of cropland.
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Table 10. Temporal evolution of the LULC classes in Stamboliyski from 1952 to 1980 (in absolute
numbers and percentages).

LC Class
1952 1965 1968 1975 1980

Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha) %

Bare/Sparse vegetation 11.19 1% 43.64 3% 21.78 2% 59.79 4% 76.19 5%
Built-up 114.09 11% 362.71 26% 344.41 25% 423.28 30% 433.25 31%

Cropland 809.43 77% 655.74 48% 692.17 50% 614.49 44% 639.65 45%
Grassland 21.94 2% 47.18 3% 61.59 4% 51.92 4% 52.35 4%

Permanent crop 49.8 5% 157.93 11% 146.21 11% 133.59 10% 107.85 8%
Shrubland - 0% 19.08 1% 8.37 1% 2.38 0% 14.04 1%
Tree cover 28.76 3% 39.16 3% 48.35 4% 48.64 3% 36.54 3%

Water bodies 13.9 1% 48.05 3% 50.86 4% 71.94 5% 46.18 3%

4. Discussion

Accurate identification of the spatio-temporal distribution of LULC classes is essen-
tial to understanding past human activities and their impact on the environment, such
as agricultural land abandonment, urbanization, and deforestation. Although there are
complicated algorithms to process recent high-resolution aerial photographs and satellite
images, this is a challenging task for historical photographs and satellite platforms, such as
Corona and Hexagon. The problem is mainly due to their limited spectral and radiometric
resolutions and the availability of various geometric distortions. With the recent public
availability of Hexagon images, reliable methodologies for the geometric correction and
classification of these images and integrated usage of these images with another historical
geospatial dataset became important. Although there are several studies with Corona KH-4
images, studies with Hexagon images are fairly limited [43,48,87,88]. First studies with
Hexagon KH-9 images were generally conducted for glacier monitoring, archaeology, and
digital surface model generation, similar to Corona images [48,50–52,54,57,89–91]. The
number of LULC mapping studies with Key Hole satellites is minimal, and a few stud-
ies were conducted with Corona images [41,43]. Utilizing visual interpretation methods,
Fekete [45] used all Key Hole satellite series, including KH-9 Hexagon, to determine natu-
ral hazard risk and urban growth. Rashid and Aneaus used high-resolution declassified
satellite data from 1965 (from Corona mission) and 1980 (Hexagon mission) to quantify
land system changes. They employed on-screen digitization, with cognitive inputs from an-
alysts [92]. Prokop utilized a Corona image from October 1965 to detect long-term land-use
changes and they applied a visual interpretation technique for the LULC mapping [93].
Our study is unique in terms of the proposed methodology and the usage of Hexagon data
in conjuction with other historical geospatial data for the LULC mapping perspective. We
applied a feasible geometric correction approach by implementing rubber sheeting and
collecting reference points from the Google Earth system that can be transferred to any other
geographic region if similar datasets are available. Most of the studies in the literature use
manual vectorization techniques, which are time-consuming and subjective. We propose
an iterative GeOBIA approach to accurately generate multi-temporal LULC maps from
multi-modal data, which researchers can use for various purposes in the case of similar
remotely sensed data. Specifically, scale parameters specific to different land categories
could be applied to various geographical areas in the case of using similar geospatial data
sources. Historical census data is also an essential information source to understand and
interpret historical LULC changes.

Implementing the ESA WoldCover project’s LULC classes with a modification in tree
classes to determine permanent agriculture classes is also unique to our study, which is
essential to monitor agricultural changes apart from forests. After revising current ESA
WorldCover data for tree cover classes and quality controlling its accuracy, a comparison
could also be made to detect LULC changes from the 1940s to today, which will be con-
sidered in our future work. However, it is important to emphasize that ESA WorldCover
product resolution is 10 m, which is lower than our very-high resolution historical geospa-
tial data; therefore, generalization might be needed, resulting in the loss of some spatial
details. Another alternative is to use VHR satellite or UAV images to find the long-term
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changes from the past to today, something that we will consider in our future work to find
up-to-date VHR data.

5. Conclusions

Agricultural land abandonment is a massive threat to the population geography of
Bulgaria, which has one of the fastest shrinking populations on a national scale world-
wide. Combined with an ongoing rural depopulation, agricultural land abandonment will
probably cause a rural population collapse in Bulgaria in the coming decades. Therefore,
it is crucial to understand the timing and magnitude of these decisive demographic and
economic changes. Our study roughly examines the first three decades of communist rule
in Bulgaria, during which drastic social engineering practices, including radical collectiviza-
tions in the agricultural sector, have occurred. In both of our chosen locations, we can see a
decrease in cropland in the period. This finding is striking at first glance, since we opted for
Ruen as a representative example of stark rural depopulation and Stamboliyski for urban
development. The fact that we observe a fall in Ruen and stagnancy in Stamboliyski, in
the areas used for agricultural production in the period, hints at a systematic issue, most
probably politically caused, and long in the making of agricultural land abandonment.
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