
RESEARCH ARTICLE

The gut microbial metabolic capacity of

microbiome-humanized vs. wild type rodents

reveals a likely dual role of intestinal bacteria

in hepato-intestinal schistosomiasis

Alba Cortés1,2, John Martin3, Bruce A. Rosa3, Klara A. Stark1, Simon Clare4,5,

Catherine McCarthy5, Katherine Harcourt5, Cordelia Brandt5, Charlotte Tolley5,6, Trevor

D. Lawley5, Makedonka Mitreva3, Matthew Berriman5¤a*, Gabriel Rinaldi5☯¤b*,

Cinzia CantacessiID
1☯*

1 Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom, 2 Departament

de Farmàcia, Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València,

Burjassot, València, Spain, 3 Division of Infectious Diseases, Department of Medicine, Washington

University School of Medicine, St. Louis, Missouri, United States of America, 4 Department of Medicine,

University of Cambridge, Cambridge, United Kingdom, 5 Wellcome Trust Sanger Institute, Wellcome

Genome Campus, Hinxton, United Kingdom, 6 Cambridge Institute of Therapeutic Immunology and

Infectious Disease, University of Cambridge, Cambridge, United Kingdom

☯ These authors contributed equally to this work.

¤a Current address: Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow,

United Kingdom

¤b Current address: Department of Life Sciences, Aberystwyth University, Aberystwyth, United Kingdom

* matt.berriman@glasgow.ac.uk (MB); gabriel.rinaldi@aber.ac.uk (GR); cc779@cam.ac.uk (CC)

Abstract

Increasing evidence shows that the host gut microbiota might be involved in the immunologi-

cal cascade that culminates with the formation of tissue granulomas underlying the patho-

physiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of

Schistosoma mansoni infection on the gut microbial composition and functional potential of

both wild type and microbiome-humanized mice. In spite of substantial differences in micro-

biome composition at baseline, selected pathways were consistently affected by parasite

infection. The gut microbiomes of infected mice of both lines displayed, amongst other fea-

tures, enhanced capacity for tryptophan and butyrate production, which might be linked to

the activation of mechanisms aimed to prevent excessive injuries caused by migrating para-

site eggs. Complementing data from previous studies, our findings suggest that the host gut

microbiome might play a dual role in the pathophysiology of schistosomiasis, where intesti-

nal bacteria may contribute to egg-associated pathology while, in turn, protect the host from

uncontrolled tissue damage.

Author summary

Schistosomiasis is a neglected tropical disease affecting >250 million people worldwide.

Causative agents are parasitic worms of the genus Schistosoma, that inhabit the small
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blood vessels irrigating the gut and urinary bladder. Adult schistosomes lay their eggs that

make their way to the environment by piercing the intestinal or urinary bladder wall to

reach the host feces and urine, respectively. Schistosoma infections are associated with

substantial alterations of gut bacterial communities of both naturally infected humans and

experimentally infected mice. Intestinal bacteria are also hypothesized to contribute to the

intestinal pathology caused by migrating parasite eggs. Here, we investigated the impact

of schistosome infection on the composition and function of gut bacteria inhabiting wild

type and microbiome-humanized laboratory rodents. Schistosome colonization was con-

sistently associated with an increased (predicted) ability of gut bacteria to synthetize tryp-

tophan and butyrate, both of which are known to promote intestinal barrier function by

preventing translocation of potentially harmful bacteria into the circulation. Our findings

suggest that intestinal bacteria may exert both harmful and protective roles during schisto-

somiasis, and provide a basis for the development of much needed novel and sustainable

strategies for management and control of this neglected disease.

Introduction

Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a neglected tropical disease

affecting the world’s poorest communities [1]. Globally, >250 million people are infected with

at least one of the three major species that infect humans—S.mansoni, S. japonicum and S.

haematobium—mostly in regions of sub-Saharan Africa and focal areas of America, the Mid-

dle East and Asia [1]. Adult male and female worms dwell in copula, first in the portal system,

and then, in the mesenteric or pelvic veins of their hosts. Fertilized females lay eggs that, fol-

lowing a migration through the lining of small venules, pierce the wall of the intestine (S.man-
soni and S. japonicum) or the bladder (S. haematobium) to be released with the host feces or

urine, respectively [1]. Subsequently, when eggs reach the freshwater environment, they hatch

ciliated miracidia that seek out and infect snail intermediate hosts [1]. Inside the snail, the par-

asites undergo a phase of asexual reproduction, i.e., from mother and daughter sporocysts to

free-living infectious cercariae that leave the snail to swim and seek the definitive mammalian

host. The cercariae penetrate the host skin, shed their tails and become schistosomula that

enter the circulation and migrate through the lungs, heart and liver, where they further

develop into male and female worm pairs. Between 3 and 4 weeks post-infection, paired adult

worms migrate to the mesenteric venules (S.mansoni and S. japonicum) or the venous plexus

of the urinary bladder (S. haematobium) and begin to release hundreds of eggs per day [1].

The pathophysiology of acute schistosomiasis is mainly associated with parasite eggs becoming

trapped in various organs and tissues (i.e., the intestine and liver, or the urinary bladder) and

subsequent formation of inflammatory granulomas containing immune cells (alternatively

activated macrophages, granulocytes, Th2 and B cells) and extracellular matrix [2]. During the

chronic phase of infection, granulomas shrink and are replaced by fibrous tissue, that often

compromises the function of affected organs [1].

The genesis of Schistosoma egg-induced granulomas is the result of a finely regulated cross-

talk between egg-secreted antigens and host immunity [2,3]. However, over the last few years,

evidence has emerged of the likely contribution of a third player–the host gut microbiota–in

the cascade of immunological events that culminate with the formation of tissue granulomas

[4–8]. First, in a seminal study conducted in murine schistosomiasis [4], administration of

broad-spectrum antibiotics and antimycotics resulted in substantially decreased intestinal

inflammation and granuloma development. In the same study, lymphocyte preparations from
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mesenteric lymph nodes retrieved from microbiota-depleted mice showed reduced production

of IFN-γ and IL-10 when exposed to S.mansoni secreted egg antigen, thus indicating that gut

resident bacteria may influence schistosome-specific immunity [4]. Supporting the hypothesis

of a key role of the host gut microbiota in the pathophysiology of schistosomiasis, we previ-

ously detected dramatic alterations in the gut microbial profiles of mice during acute patent

infection by S.mansoni compared with uninfected controls [5]; these alterations included sub-

stantially decreased and increased gut bacterial alpha- and beta diversity, respectively, as well

as changes in the relative abundances of populations of microbes with putative roles in host

immune-regulatory and/or inflammatory responses [5]. We therefore speculated that such

changes, indicative of dysbiosis and accompanying egg migration across the gut wall and con-

sequent immunopathology, might contribute to the pathophysiology of hepato-intestinal

schistosomiasis [5]. In a subsequent study, we attempted to investigate the translational signifi-

cance of these findings by characterizing the gut microbial profiles of microbiota-humanized

[human-microbiota-associated (HMA)] and wild type (WT) mice prior to and following infec-

tion with S.mansoni [8]. High-throughput sequencing of the bacterial 16S rRNA gene revealed

profound differences between the microbial profiles of these cohorts at baseline, with the gut

microbiota of HMA being characterized by low microbial alpha diversity, expanded popula-

tions of Proteobacteria and absence of lactobacilli compared to WT rodents [8]. Of note, whilst

S.mansoni infection was associated with a significant decrease in gut microbial alpha diversity

in both rodent lines, analysis of bacterial taxa whose relative abundances were altered follow-

ing worm colonization revealed substantial dissimilarities between HMA and WT mice [8].

Interestingly, significantly higher worm and egg burdens were recovered from HMA vs. WT at

the end of the experiment [8]. Based on this observation, we hypothesized that the structure

and function of the host baseline gut microbiome (i.e., prior to infection) might play a key role

in the complex network of interactions between schistosome parasites, the host and its

immune system. Whilst data from these studies represent a step forward in our current under-

standing of these relationships, the microbiota profiling techniques applied thus far (i.e., bacte-

rial culturing followed by colony counting and bacterial 16S rRNA gene amplicon sequencing)

[4,5,8] do not permit explorations of schistosomiasis-associated changes in gut bacterial popu-

lations beyond genus-level taxonomic mapping. Determining differences in gut microbial

communities between schistosome-infected and -uninfected HMA and WT mice at species

level, and evaluating the relative contribution of each community member to the overall pool

of functional genes, are nonetheless pivotal. This knowledge is likely to unveil mechanisms

underlying crosstalk between host, parasite and microbiome during schistosome infection.

In this study, we undertake high-throughput shotgun metagenomics sequencing of the gut

microbiome of HMA and WT mice to provide a high-resolution map of the functional poten-

tial of gut bacterial communities established in these mouse lines. Furthermore, we investigate

changes in the composition and functional potential of these communities following experi-

mental infection with S.mansoni. We show that, despite profound differences in composi-

tional and functional profiles between the two murine lines, parasite colonization induced

partially overlapping alterations in bacterial metabolic capacity, including up-regulation of

pathways linked to L-tryptophan biosynthesis and fermentation to short chain fatty acids

(SCFAs).

Results and discussion

Gut bacterial profiles differ between WT and HMA mice

Whole genome sequencing (WGS) of fecal DNA extracts from both S.mansoni-infected (here-

after referred to as ‘Sm+’) and uninfected (‘Sm-’) WT and HMA mice yielded 228.03�106 ±
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31.13�106 (mean ± standard deviation) reads per sample, while no-DNA template negative

controls generated 10.56�103 ± 13.27�103 reads (S1 Fig). Mean base count per sample prior to

and following quality filtering and removal of host sequences did not yield significant differ-

ences between mouse lines, nor between infection groups within each line (S1 Fig).

Taxonomic profiling of filtered metagenomic data identified a total of 449 bacterial species

across samples encompassing both WT (418 species) and HMA mice (363 species); these

belonged to 187 genera, of which 38 and 18 were unique to WT and HMA, respectively (S1

Table and S2 Fig). Substantial differences in both bacterial species composition and corre-

sponding relative abundances were observed between the gut microbiomes of WT and HMA

mice (Figs 1, S2 and S3), with HMA gut bacterial communities clustering separately from

those of WT by Principal Coordinates Analysis (PCoA) (Fig 2A), as previously reported [8].

Moreover, microbial beta diversity in WT was significantly higher than that in HMA (cf. Fig

2A; ANOSIM: R = 1, p<0.001), likely due to differences in breeding and housing conditions

between these rodent lines (i.e., specific-pathogen-free environment for WT vs. isolation for

HMA).

Species richness and alpha diversity (Shannon index) in the gut microbiome of WT were

significantly higher than those in HMA (t-test p = 0.002, t = 3.362, df = 26; and p<0.0001,

t = 6.450, df = 26, respectively) (Fig 2B). This observation is in accordance with our previous

marker-gene-based work, where significantly higher bacterial alpha diversity was observed in

the gut microbiota of WT compared to HMA mice [8], a finding tentatively attributed to a

likely failure of selected human gut microbes to colonize the mouse gastrointestinal (GI) tract

[8]. Moreover, according to previous observations [8], substantial differences were detected in

the relative abundances of predominant taxa in the GI tracts of WT and HMA (S2 Fig). For

instance, several Bacteroides species, including B. cellulosilyticus, B. vulgatus, B. dorei and B.

thetaiotaomicron, amongst others, predominated in HMA, whereas B. acidifaciens was signifi-

cantly more abundant in WT mice. These differences, along with the absence of individual

bacterial species (and/or genera) in the gut of WT or HMA mice, might impact the overall

functional potential of the microbiomes of these mice, as well as of the microbiota-mediated

immune modulation [9]. A striking example is represented by the genus Lactobacillus, whose

members were only detected in the gut of WT animals (S1 Table). These bacteria are common

inhabitants of mouse and human GI tracts, and their relative abundance frequently increases

following microbial transfers between mice [10,11]; however, previous studies have reported a

failure of members of Lactobacillaceae to engraft the colons of HMA mice following fecal

material transplant of human feces containing lactobacilli [12]. Most lactobacilli produce lac-

tate, that may be further fermented by other gut bacteria into butyrate, a SCFA with anti-

inflammatory properties [13,14]. In addition, selected species and strains of Lactobacillus are

responsible for activation of mechanisms of innate immunity in the host GI tract via toll-like

receptor (TLR)-dependent and -independent pathways [15,16]. Interestingly, our previous

data revealed higher S.mansoni infection burdens in HMA vs. WT mice, which led us to

hypothesize the occurrence of a link between host baseline microbiota composition and sus-

ceptibility to infection [8]. Whilst attributing these observations to the absence of lactobacilli

in the HMA gut is currently unwarranted, our data point toward this bacterial group as a

potential target for future mechanistic studies aimed to elucidate these interactions.

The gut bacterial metagenomes of WT and HMA mice feature distinct

functional profiles

We then performed functional annotations of gut metagenome data of both Sm+ and Sm- WT

and HMA mice using established bioinformatics pipelines (see Materials and Methods).
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Principal Component Analysis (PCA) applied to pathway abundance data separated the gut

microbiomes of WT and HMA mice into two distinct clusters along PC1 (Fig 2C) [supported

by Canonical Correspondence Analysis (CCA; p = 0.001, F = 64.9)], thus revealing profound

differences in the overall functional profiles of bacterial communities colonizing the gut of

each murine line.

A total of 289 metabolic pathways were identified by HUMAnN3 (https://huttenhower.sph.

harvard.edu/humann/) in at least five samples of WT and/or HMA mice; of these, 244 and 276

were detected in the metagenomes of WT and HMA, respectively, and analyzed further (S4

Fig and S2 Table). Thirteen pathways were solely detected in the microbiomes of WT; these

included, amongst others, ‘Bifidobacterium shunt’ (P124-PWY; a fermentation pathway for

production of lactate and the SCFA acetate), ‘L-glutamate degradation IV’ (PWY-4321) and

‘spermine and spermidine degradation I’ (PWY-6117) (S2 Table). Notably, bacterial species

contributing to pathways solely identified in WT remained mostly unclassified, except for Lac-
tobacillus reuteri, which was associated with ‘L-glutamate degradation IV’ (PWY-4321),

‘superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate)’ (PWY-5910) and

‘mevalonate pathway I (eukaryotes and bacteria)’ (PWY-922) (S2 Table). HUMAnN relies on

the MetaPhlAn tool (https://huttenhower.sph.harvard.edu/metaphlan/) to identify bacterial

organisms present in a given metagenome [17]. The MetaPhlAn algorithm estimates microbial

taxa abundance based on the coverage of clade-specific marker genes that are present in all

strains of a given species, thus representing a powerful strategy to generate unambiguous

markers for genetic characterization of metagenomic species [17]. Such an approach, however,

favors the identification of species with several strains for which complete genomes are avail-

able; thus, taxonomic annotation using this approach is likely to lead to the identification of a

smaller number of species compared with WGS read-mapping against reference genomes in

the GenBank database, as the latter contains sequences from several species with incomplete

genome assemblies.

The 45 pathways uniquely identified in the microbiomes of HMA included eight superpath-

ways for the biosynthesis of menaquinones [e.g., ‘superpathway of menaquinol-8 biosynthesis

I’ (PWY-5838) and ‘superpathway of menaquinol-11 biosynthesis’ (PWY-5897)], several path-

ways involved in the synthesis of cell wall and outer membrane components [‘peptidoglycan

biosynthesis IV (Enterococcus faecium)’ (PWY-6471), ‘peptidoglycan biosynthesis V (β-lactam

resistance)’ (PWY-6470), ‘peptidoglycan biosynthesis II (staphylococci)’ (PWY-5265), ‘super-

pathway of UDP-glucose-derived O-antigen building blocks biosynthesis’ (PWY-7328) and

‘superpathway of dTDP-glucose-derived O-antigen building blocks biosynthesis’ (PWY-

7317)], and pathways for the degradation/utilization of carbohydrates, including ‘trehalose

degradation V’ (PWY-2723), ‘glycogen degradation I’ (GLYCOCAT-PWY), ‘starch degrada-

tion III’ (PWY-6731) and ‘glucose and glucose-1-phosphate degradation’ (GLUCOSE1PME-

TAB-PWY). Similar to WT mice, bacterial species contributing to HMA-unique pathways

remained largely unclassified (S2 Table).

Differences between the gut bacterial profiles of WT vs. HMA are likely to underpin pro-

found functional dissimilarities between these communities. Other external factors that had

shaped the composition of the donor microbiome inoculum prior to administration to HMA

recipients (e.g., diet, feeding patterns and metabolic requirements, among others) might also

contribute to these functional differences [18]. However, it is important to point out that such

Fig 1. Gut bacterial community composition. Hierarchical clustering of gut bacterial communities of wild type (WT) and human-microbiota-associated

(HMA) mice (columns) grouped according to Pearson correlation between species relative abundances (rows) and explanatory variables indicated at the top of

the figure [i.e., experiment, mouse line, infection status and infection burden (EPG = eggs per gram)]. Dark lines on the heatmap separate major clusters in

both axes.

https://doi.org/10.1371/journal.pntd.0010878.g001
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https://doi.org/10.1371/journal.pntd.0010878.g002
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discrepancies may not be conclusively associated to the differences in S.mansoni infection

burdens observed in WT vs. HMA mice [cf. 8], as similar end-products of microbiome metab-

olism could be generated via distinct biological pathways. For instance, the ‘Bifidobacterium

shunt’ pathway detected in WT mice might be associated with enhanced ability to produce lac-

tate/acetate (and thus, butyrate) [13,14]; however, several HMA-unique pathways for carbohy-

drates degradation (see above) might result in higher rates of pyruvate biosynthesis and, in

turn, of SCFA production [19].

Schistosoma mansoni infection is associated with altered gut bacterial

community structure and species composition in both WT and HMA mice

We subsequently focused on characterizing the effect(s) of S.mansoni infection on the gut bac-

terial community structure of each WT and HMA. Using PCoA, gut bacterial communities of

both WT and HMA clustered by infection status, although only HMA Sm+ and Sm- samples

grouped separately along the PCoA1 axis (Fig 3A and 3B). Microbial beta diversity was signifi-

cantly higher across Sm+ samples of both WT (ANOSIM: R = 0.361, p<0.004) and HMA

(ANOSIM: R = 0.651, p<0.002) compared to their uninfected counterparts. In contrast, Shan-

non index was unaltered following infection of either line, although a significant decrease in

gut bacterial richness was observed in HMA at 50 days post S.mansoni colonization (t-test

p = 0.014, t = 2.864, df = 12) (S5 Fig). Infections by Schistosoma spp. had been associated with

significantly decreased gut bacterial richness and alpha diversity, and linked to local inflamma-

tion and tissue damage caused by migrating parasite eggs [5,7]. Differences in infection bur-

dens [cf. 5] or Schistosoma species [cf. 7] used in these previous studies might hold partially

accountable for this discrepancy. Nonetheless, our published 16S rRNA gene amplicon

sequencing data had also revealed significant reductions in alpha diversity in WT and HMA

mice infected with S.mansoni [8]. Hence, our current observations might be indicative of the

fact that marker gene data may lead to an overestimation of the impact of the infection on gut

bacterial alpha diversity.

Hierarchical clustering of WT and HMA gut microbiomes grouped HMA samples accord-

ing to infection status, while WT Sm+ and Sm- samples remained partially intermingled;

moreover, ordination of infected samples according to infection burdens [i.e., worm counts

and/or eggs per gram (EPG) of liver] was not observed in either mouse line (Fig 1). In order to

gain insights into species whose abundances were altered following S.mansoni infection, the

relative abundances of identified bacteria were compared between Sm+ and Sm- mice of each

line. Significant differences in bacterial species abundance associated with infection status

were detected in both WT and HMA mice by Linear Discriminant Analysis Effect Size (LEfSe)

and confirmed by Mann-Whitney U test; these alterations encompassed members of the gen-

era Bacteroides, Parabacteroides, Alistipes and Barnesiella (Fig 3C and S3 Table), which had

been previously reported to change in response to S.mansoni infection in WT and/or HMA

mice in targeted metagenomics studies [5,6,8]. Furthermore, strong significant correlations

(i.e., Pearson’s r� |0.8|, p<0.001) were observed between selected bacterial species signifi-

cantly impacted by infection (cf. Fig 3C) and parasite burdens (i.e., worm counts and/or EPG

of liver; cf. [8]) in the two mouse lines (S4 Table).

Both Bacteroides and Alistipes harbor species with known anti-inflammatory properties,

whilst expansions of selected members of each genus have been also linked to selected inflam-

matory conditions. For instance, B. acidifaciens, a species expanded in the gut of WT Sm+

mice, has been reported to overgrow following IL-22 blockage in a mouse model of chronic

Salmonella gastroenteritis, ultimately leading to exacerbated intestinal inflammation [20].

Additional studies, however, have demonstrated protective effects of this bacterial species
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against liver inflammation and allergic asthma that may be mediated by the production of

SCFAs [21,22]. Remarkably, expansion of B. acidifaciens and increased butyrate production

were linked to enhanced gut barrier integrity and function. Similarly, while several Alistipes
species have been linked to the gut of healthy and diseased individuals [23], oral gavage with

A. finegoldii (significantly expanded in WT Sm+) was associated with protection against colitis

in mice [24].

Some Bacteroides species, whose abundances were reduced upon S.mansoni infection in

HMA, have been reported to exert anti-inflammatory effects in rodent models of intestinal

inflammation, and/or when administered as probiotics; e.g., B. uniformis [25,26], and B. cellu-
losilyticus [27]. However, intriguingly, these changes were accompanied by a significant expan-

sion of P. goldsteinii (Fig 3C), whose relative abundance had been negatively correlated with

fecal levels of lipocalin-2 (a marker of intestinal inflammation) in mice genetically susceptible

to colitis [28]. This association suggested a protective effect of P. goldsteinii against colitis,

which was tentatively attributed to the ability of this bacteria to produce SCFAs [29], as well as

to promote regulatory IL-10 and reduce proinflammatory IL-1β and intestinal permeability

[30,31]. Expansions of the genus Parabacteroides were previously linked to S.mansoni infec-

tion in both HMA and WT mice [8]. However, our current data show that, unlike in HMA,

expansion of this genus in the gut of WT Sm+ mice was mainly linked to P. distasonis (Fig 3C),

whose roles in health and disease may vary depending on bacterial strain- and host-related fac-

tors [32].

Additionally, previously unreported expansions of the Lactobacillus species L. reuteri and L.

johnsonii were observed in the gut microbiomes of WT Sm+ mice compared with uninfected

counterparts (Fig 3C). Alterations of GI populations of lactobacilli have been described in sev-

eral rodent models of helminth colonization, including mice infected with S.mansoni
[reviewed in 33]. In particular, a transient expansion of Lactobacillus spp. was reported in

mice prior to the onset of egg laying by S.mansoni, that was however not maintained post-egg

laying [5]. Likewise, our previously published targeted metagenomics data did not reveal sig-

nificant alterations in the abundance of Lactobacillus post egg-laying [8]. Hence, current data

pointing towards expanded populations of selected lactobacilli following S.mansoni infection

might be indicative of a role of these bacteria in the pathophysiology of schistosomiasis, and

are thus worth exploring. Indeed, the roles of lactobacilli in mediating protection against GI

inflammation have been extensively described [34,35]. For instance, L. reuteri exerts protective

effects against chemically-induced experimental colitis via reduced leukocyte recruitment,

platelet-mediated inflammation and bacterial translocation [36,37]; similarly, L. johnsonii has

been demonstrated to exert protective anti-inflammatory activity against bacterial colitis in

mice [38]. Moreover, the occurrence of a mutualistic relationship between gut lactobacilli and

the GI nematodeHeligmosomoides polygyrus was proposed in a seminal study showing that

supplementation of L. taiwanensis promoted chronic helminth establishment via Treg expan-

sion in rodent mesenteric lymph nodes [39]. Whether L. reuteri and/or L. johnsonii play a role

in regulating host immunity and/or local inflammation in hepato-intestinal schistosomiasis is

yet to be determined. However, remarkably, loss of lactobacilli in antibiotic-treated mice recol-

onized by co-housing with S.mansoni-infected rodents resulted in increased susceptibility to

DSS-induced colitis, when compared to microbiota-depleted mice co-housed with uninfected

controls [6].

Fig 3. Alterations in gut microbial community composition of wild type (WT) and human-microbiota-associated (HMA) mice associated

with Schistosoma mansoni infection. Principal Coordinates Analyses (PCoA) of microbial community profiles of WT (A) and HMA (B) mice

infected with S.mansoni (Sm+) and uninfected controls (Sm-). (C) Bacterial species displaying significant differences in abundance between

infected and uninfected samples of each WT and HMA mice, based on Linear Discriminant Analysis Effect Size (LEfSe).

https://doi.org/10.1371/journal.pntd.0010878.g003
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Altogether, observed changes in the composition of the gut microbiota at species-level reso-

lution suggest that several bacteria might be selectively expanded in the gut of WT and HMA

mice following S.mansoni infection, and assist with protection against egg-mediated tissue

damage and inflammation. However, given that the impact of S.mansoni-induced intestinal

pathology and immune environment on the protective effects of some of these bacteria is diffi-

cult to assess [20], and that such protective effects might be associated with specific strains of

these bacterial species [32], this hypothesis remains to be thoroughly tested. Indeed, not only

determining individual species whose abundances are affected by S.mansoni infection, but

also their contribution to intestinal protection/damage is essential to gain new insights onto

the role(s) of gut bacteria in the pathophysiology of schistosomiasis.

Schistosomiasis is associated with alterations of the gut microbial

functional profiles of WT and HMA mice

The gut bacterial metagenomes of HMA and WT mice were clustered according to their pre-

dicted metabolic profiles by pathway abundance data, stratified by known and unclassified

organisms. PCA revealed marked differences between the gut bacterial functional profiles of

HMA Sm- and HMA Sm+, that were supported by CCA (F = 5.29, p = 0.001; Fig 4A). In con-

trast, WT samples clustered by experiment (S6 Fig), rather than by infection status (Fig 4A),

with minimal overlap. Accordingly, CCA yielded significant differences in WT gut microbial

metabolic profiles according to experiment (F = 3.05, p = 0.002), but not to infection (F = 1.49,

p = 0.128).

Metabolic pathways detected in at least 5 metagenomes of either HMA or WT were ana-

lyzed for correlation with S.mansoni infection by MaAsLin2 and LEfSe on unstratified data.

The complete lists of metabolic pathways associated with the gut metagenomes of Sm+ and

Sm- of each WT and HMA, by MaAsLin2 and/or LEfSe, are available from S5 and S6 Tables,

respectively. A total of 31 metabolic pathways were consistently associated with S.mansoni
infection in WT mice by both MaAsLin2 (p<0.05; FDR q-value>0.05 for all features) and

LEfSe [Linear Discriminant Analysis (LDA) score (log)>2]. In particular, 21 pathways were

overrepresented in the gut microbiomes of WT Sm+, and 10 in the microbiomes of WT Sm-
(S5 Table). In HMA, 50 metabolic pathways were consistently associated with S.mansoni
infection by both MaAsLin2 and LEfSe (S6 Table). Of these, 19 were overrepresented in the

gut microbiomes of HMA Sm+ mice, and 31 in the microbiomes of HMA Sm-. In both mouse

lines, most of the metabolic pathways altered by S.mansoni infection could be grouped into

three functional categories: (i) biosynthesis, (ii) degradation/utilization/assimilation and/or

(iii) generation of precursor metabolites and energy (S5 and S6 Tables). Eleven metabolic path-

ways displayed significant changes with S.mansoni infection in both WT and HMA (S7

Table); of these, 3 were consistently altered by infection in both WT and HMA, including a

pathway for the biosynthesis of L-tryptophan (i.e., TRPSYN-PWY) (Fig 4B). Moreover, the gut

microbiomes of both WT Sm+ and HMA Sm+ displayed an enhanced (predicted) ability to

produce selected SCFAs, albeit via different metabolic pathways (Fig 4C). Together, these find-

ings point towards a likely functional link between Schistosoma infection and the production

of selected microbial metabolites as result of the dynamic cross-kingdom interaction in the

gut.

Enhanced potential for L-tryptophan biosynthesis and butyrate production

in both schistosome-infected WT and HMA mice

S.mansoni infection was shown to significantly impact gut microbial amino acid metabolism

in both WT and HMA hosts (S5 and S6 Tables), although several pathways changed in
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opposite directions following parasite colonization in each mouse line (S7 Fig). In particular,

‘superpathway of L-serine and glycine biosynthesis I’ (SER-GLYSYN-PWY), ‘L-ornithine bio-

synthesis II’ (ARGININE-SYN4-PWY), and ‘GABA shunt’ (GLUDEG-I-PWY; a pathway for

L-glutamate degradation) were enriched in the microbiome of WT Sm+ compared with WT

Sm-, and in HMA Sm- compared with HMA Sm+. In addition, ‘L-methionine biosynthesis III’

(HSERMETANA-PWY) and ‘L-arginine biosynthesis II (acetyl cycle)’ (ARGSYNBSUB-PWY)

were significantly enriched in HMA Sm+ (S7 Fig). In contrast, ‘L-tryptophan biosynthesis’

(TRPSYN-PWY) was consistently linked to S.mansoni infection in both WT and HMA mice

(Fig 4B). Expansion of this pathway in WT Sm+ mice was linked to two Lachnospiraceae bacte-

ria (i.e., A4 and 10 1) as well as to Bacteroides vulgatus; nonetheless, the individual contribu-

tion of these bacteria to the overrepresentation of the pathway was not statistically significant

(Fig 4B). In HMA, in contrast, expansion of TRPSYN-PWY following infection was signifi-

cantly linked to B. vulgatus, together with other low abundant bacteria (Fig 4B).

The microbial metabolism of amino acids plays key roles in the maintenance of gut barrier

integrity and immune homeostasis [40]. For instance, polyamines derived from arginine and

ornithine metabolism enhance gut barrier function by inducing overexpression of tight junc-

tion proteins and reducing inflammation [41–43]. For these reasons, an enhanced metabolism

of these amino acids by the gut microbiome has been linked to a ‘healthy’ gut [44,45]. Given

the differences detected between WT vs. HMA hosts in infection-associated alterations in argi-

nine/ornithine/polyamine metabolism (S7 Fig and S5 and S6 Tables), caution is warranted

when discussing any role(s) of these amino acids and corresponding metabolites in the context

of schistosomiasis. However, the enhanced capacity for bacterial tryptophan biosynthesis

detected in both rodent lines following S.mansoni infection may suggest a likely link between

parasite infection and luminal production of this essential amino acid that, under physiological

conditions, is mainly of dietary acquisition [46]. Both host- and microbiota-derived trypto-

phan metabolites are involved in the regulation of several host functions, including immune

regulation by RORγt(+) IL-22(+) type 3 innate lymphoid cells (ILC3s) and maintenance of gut

barrier function [46,47]. Hence, the enrichment of the ‘L-tryptophan biosynthesis’ pathway in

the gut microbiomes of both WT and HMA mice following S.mansoni infection raises the

question of whether this might serve as a compensatory mechanism to counteract local tissue

damage caused by the migration of schistosome eggs through the intestinal wall. Future stud-

ies, including targeted perturbation of the ‘L-tryptophan biosynthesis’ pathway [e.g., 48] in the

context of schistosome infection are needed to address this question.

Only a few gut resident bacteria, including selected species of the phyla Firmicutes and Bac-

teroidetes, are currently known to metabolize luminal tryptophan into indole and its deriva-

tives [49]; these molecules may promote intestinal epithelial cell (IEC) renewal, barrier

integrity, and maintenance of immune homeostasis via the activation of aryl hydrocarbon

receptor (AhR) signaling in intestinal epithelial and mucosal immune cells [46,47]. Our analy-

sis did not detect any pathway for tryptophan degradation; nevertheless, significant expansions

of the tryptophan metabolizing species P. distasonis, L. reuteri and L. johnsonii [49] were

Fig 4. Impact of Schistosoma mansoni infection on the fecal metabolic profiles of wild type (WT) and human-microbiota-associated

(HMA) mice. Principal Component Analysis (PCA) according to infection status (A) and infection-associated changes in gut metagenome

capacity for tryptophan biosynthesis (B) and short-chain fatty acids production (C). Asterisks indicate significant differences in pathway

abundance between S.mansoni-infected (Sm+) and uninfected controls (Sm-) of each mouse line by both MaAsLin2 (p<0.05) and LEfSe [LDA

score (log)> 2]. Hashtags indicate significant differences in the contribution of selected bacterial species to the overrepresentation of

corresponding pathway(s) (MaAsLin2, p<0.05). Full pathway denominations: TRPSYN-PWY = L-tryptophan biosynthesis;

ANAEROFRUCAT-PWY = homolactic fermentation; PWY-5022 = 4-aminobutanoate degradation V; P461-PWY = hexitol fermentation to

lactate, formate, ethanol and acetate; PWY-5676 = acetyl-CoA fermentation to butanoate II; PWY-5100 = pyruvate fermentation to acetate and

lactate II; PWY-5677 = succinate fermentation to butanoate.

https://doi.org/10.1371/journal.pntd.0010878.g004
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observed in the gut of WT mice following infection by S.mansoni (Fig 3C). Interestingly, pop-

ulations of L. reuteri, but not of L. johnsonii, are known to expand in response to increased

luminal tryptophan availability, and catabolize tryptophan into indole derivatives via aromatic

amino acid aminotransferase [50]. In turn, L. reuterimediates reprograming of intraepithelial

CD4+ T cells into immunoregulatory CD4+CD8αα+ T cells via production of indole deriva-

tives and activation of AhR signaling [51], and induces innate IL-22 production in the mouse

gut by ILC3s, thus promoting gut barrier function [50]. IL-22 regulates production of antimi-

crobial peptides (AMPs) in the gut [52]. Strikingly, antibody-mediated neutralization of this

cytokine was associated with the expansion of gut populations of B. acidifaciens in a murine

model of Salmonella infection, an effect that was linked to an altered production of IL-22-regu-

lated AMPs (i.e., Reg3β) [20]. In a different study, however, IL-22-mediated AMP responses

led to a significant reduction of Bacteroides and the expansion of Lactobacillus [53]. Our find-

ing of a concomitant expansion of B. acidifaciens along with several tryptophan metabolizing

bacteria (i.e., P. distasonis, L. reuteri and L. johnsonii) in the gut of WT Sm+ reveals a complex

scenario, where both parasite-specific- and microbiota-modulated-immunity are likely to

influence populations of selected microbial species. Future studies addressing the contribution

of selected members of the gut microbiome to the local immune response during intestinal

schistosomiasis will assist to disentangle the intricate interplay between parasite infection,

these bacteria, and host immunity.

In addition to tryptophan metabolites, microbiota-derived SCFAs, and butyrate in particu-

lar, are involved in the regulation of AhR and its target genes in both liver and intestine

[54,55]. In addition, butyrate promotes gut barrier integrity by modulating transcription fac-

tors in IECs (i.e., activating HIF1, STAT3 and SP1, and inhibiting NF-kB) and mediates anti-

inflammatory functions by signaling on innate and adaptive immune cells [19]. Metabolic

pathways involved in the production of butyrate were overrepresented in the gut microbiome

of both WT and HMA mice following infection with S.mansoni. In particular, the pathways

‘acetyl-CoA fermentation to butanoate II’ (PWY-5676) and ‘4-aminobutanoate degradation V’

(PWY-5022) were enriched in the gut microbiomes of HMA Sm+ and WT Sm+ mice, respec-

tively, compared to their uninfected counterparts (Fig 4C and S5 and S6 Tables). The gut

microbiome of WT Sm+ was also enriched in the ‘GABA shunt’ pathway, whose products (i.e.,

4-aminobutanoate and succinate) are metabolized to butyrate through the ‘4-aminobutanoate

degradation V’ pathway (cf. S5 Table). Furthermore, the gut microbiomes of infected animals

of both host lines displayed enhanced potential for production of acetate and/or lactate, that

are both key substrates for butyrate-producing bacteria [13,14,56,57]. In particular, the path-

ways ‘pyruvate fermentation to acetate and lactate II’ (PWY-5100) and ‘acetylene degradation

(anaerobic)’ (P161-PWY) were enriched in HMA Sm+, whereas ‘homolactic fermentation’

(ANAEROFRUCAT-PWY) was overrepresented in WT Sm+ (Fig 4C and S5 and S6 Tables).

Specific bacteria linked to these functions remained largely unclassified both in WT and HMA

mice (Fig 4C). Nevertheless, a significant contribution of Flavonifractor plautii to PWY-5676

was observed in HMA Sm+, whereas Dorea sp CAG 317, F. plautii andHungatella hathewayi
were significantly linked to the overrepresentation of PWY-5100 in the gut of the same animals

(Fig 4C).

Additional pathways related to SCFA production were underrepresented in both WT Sm+
and HMA Sm+, compared to uninfected counterparts. In particular, the pathways ‘hexitol fer-

mentation to lactate, formate, ethanol and acetate’ (P461-PWY) and ‘succinate fermentation

to butanoate’ (PWY-5677) were enriched in the gut microbiomes of WT Sm- and HMA Sm-,

respectively (S5 and S6 Tables). Nonetheless, these pathways were comparatively less abundant

than those involved in the same metabolic processes (i.e., lactate/acetate and butyrate biosyn-

thesis) and that were overrepresented in Sm+ of the corresponding host line (Fig 4C).
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Metabolic profiling of biofluids had already revealed alterations of gut microbial metabo-

lites in mice infected with S.mansoni, including SCFAs [58,59]. In particular, acetate, propio-

nate and butyrate were depleted in urine samples of infected mice at 7 weeks post-infection,

which suggested either a reduced production of these SCFAs by gut bacteria or an increased

utilization of these metabolites by the vertebrate host [58]. In support of the latter hypothesis,

in a separate study, significantly increased levels of propionate were detected in feces of Sm+

between 7 and 9 weeks post-infection, although no statistically significant differences in buty-

rate levels were detected between infected mice and uninfected controls [59]. The discrepan-

cies between data from our study and that by Li et al. [59] might be linked to differences

between mouse strains [C57BL/6 vs. NMRI, respectively] and/or other factors known to affect

the composition of the host gut microbiota, such as age or diet [18]. Nonetheless, observations

from both our study and that by Li et al. [59]. support a link between S.mansoni infection and

enhanced SCFAs biosynthesis in the rodent gut.

Schistosomiasis may be associated with reduced horizontal gene transfer

within the microbiota of HMA mice

The relative abundances of the top 10,000 functionally annotated gene families identified by

HUMAnN3 in at least 5 metagenomes of either HMA or WT were compared between Sm+

and Sm- by MaAsLin2 and LEfSe. The substantial differences in the microbiomes of WT mice

between the two independent experiments performed (‘B1’ and ‘B2’; cf. Materials and Meth-

ods) impaired the optimal fitting of the linear model (LM) calculated by MaAsLin2 to deter-

mine associations between gene family abundances and S.mansoni infection in these mice.

Therefore, in order to overcome this technical limitation, the MaAsLin2 output was compared

with that obtained by LEfSe; this approach led to the identification of 3 gene families whose

relative abundances were altered by S.mansoni infection according to both MaAsLin2

(q<0.05) and LEfSe [LDA score (log)>2]. These gene families, enriched in the gut microbiome

of WT Sm+ mice compared to WT Sm-, encoded for 2 proteins involved in chromosome seg-

regation (i.e., chromosome partitioning and ParB-like partition proteins) and a TraG-like pro-

tein involved in conjugative plasmid transfer (S8 Table). A total of 6 and 62 gut microbial gene

families were enriched in HMA Sm+ and HMA Sm-, respectively, by both MaAsLin2 (q<0.01)

and LEfSe [LDA score (log)>2)] (S9 Table). Notably, amongst the latter, there were several

families with roles in plasmid biology, including genes encoding proteins involved in conjuga-

tive plasmid transfer (e.g., MobA, MobB and MobC, amongst others), plasmid recombination

(i.e., plasmid recombination enzyme family proteins), initiation of plasmid replication and

plasmid copy control (e.g., protein involved in initiation of plasmid replication and RepA)

(S9 Table).

Plasmids mediate horizontal gene transfer (HGT) between bacteria [60]. A recent study has

revealed that HGT occurs frequently within individual human gut microbiomes, although fre-

quency is higher in industrialized urban populations than in non-industrialized rural commu-

nities [61]. The specific factors responsible for such differences are currently unknown;

however, it has been speculated that alterations in the gut ecosystem linked, for instance, to the

dramatic changes in dietary and sanitation habits experienced throughout the industrialization

process, rather than variations in bacterial species composition, are likely to be held account-

able [61]. Improved sanitation in tropical and subtropical impoverished areas of the world has

led to a significantly reduced risk of infection with many parasitic worms, including Schisto-
soma spp. [62]. Hence, the significance of our observation that several gene families related to

regulation of plasmid transfer were underrepresented in the gut of HMA Sm+ mice is worth

exploring. It is well established that, within the gut microbiota, antimicrobial resistance
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(AMR) genes are maintained and exchanged viaHGT among bacterial communities [63]. A

recent report showed no significant association between gut microbiota, AMR genes and uro-

genital schistosomiasis in preschool-aged children [64]. However, further studies are needed

to determine whether hepato-intestinal schistosomiasis might represent an additional factor

limiting HGT, thus impacting on the distribution of AMR genes in the host gut. Interestingly,

we identified a number of gene families related to resistance against several classes of antibiot-

ics, including beta-lactams, fluoroquinolones, tetracyclines, aminoglycosides, macrolides and

chloramphenicol (S10 Table) and detected significant differences (by MaAsLin2 only) in the

abundance of 9 families linked to AMR in HMA mice (S9 Table). In particular, these gene fam-

ilies, all of which were significantly associated with the gut microbiome of HMA Sm- mice,

encoded for proteins involved in resistance against beta-lactams (4 families), macrolides (3

families), tetracyclines and chloramphenicol (1 family each).

Concluding remarks

In this study, we investigated the impact of S.mansoni infection on the gut microbial composi-

tion and predicted functions of two mouse lines with significant differences in their baseline

gut microbial communities (i.e., WT and HMA). Comparisons of gut microbial functional

profiles between Sm+ and Sm- mice revealed infection-associated alterations in both hosts,

some of which were consistently associated with worm colonization, whereas others displayed

opposite trends in each infection model. Occurrence of consistent microbiome alterations in

response to infection suggest a fine crosstalk between S.mansoni and the host gut microbiome.

In particular, our findings support the hypothesis that gut microbial responses to S.mansoni
infection might involve enhanced production of tryptophan metabolites and butyrate, and

subsequent activation of AhR signaling and further butyrate-regulated pathways, in order to

limit helminth-induced tissue damage. These findings offer a novel and intriguing perspective

on the role(s) of the host gut microbiome in the pathophysiology of schistosomiasis, including

its likely contribution to Schistosoma egg-induced intestinal pathology and inflammation in

infected hosts [4,6]. Indeed, together with those previous reports, our current results point

toward a likely dual role of the gut microbiome in the pathophysiology of schistosomiasis,

where intestinal bacteria may contribute to egg-associated intestinal pathology while, simulta-

neously, protect the host from excessive tissue damage. This data may open new avenues

towards the discovery of tentative bacterial targets for innovative control strategies, that are

desperately needed for this neglected tropical disease. In addition, our preliminary observation

that schistosomiasis mansoni might impact HGT in the vertebrate gut microbiota offers an

intriguing insight into helminth-microbiota relationships, and calls for future investigations

aimed to assess the role(s) that helminth infections might play in gene flow and spread of

AMR in both rodent models and natural hosts.

Materials and methods

Ethics statement

The life cycle of S.mansoni (NMRI strain) was maintained at the Wellcome Sanger Institute

(WSI) by breeding and infecting susceptible intermediate (Biomphalaria glabrata snails) and

definitive hosts (female TO mice). All experimental infections and regulated procedures

described in this study were approved by the Animal Welfare and Ethical Review Body

(AWERB) of WSI. All experiments were conducted under Home Office Project Licenses (Pro-

cedure Project License—PPL) No. P77E8A062 held by Gabriel Rinaldi, and No. P6D3B94CC

held by Trevor D. Lawley. The AWERB is constituted as required by the UK Animals (Scien-

tific Procedures) Act 1986 Amendment Regulations 2012.
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Experimental procedures

Detailed methods for generating and breeding HMA mice, production of S.mansoni infective

stages, experimental infections and parasitological procedures are available from Cortés et al.

[8]. Briefly, 200 μl homogenates obtained from fresh feces from a healthy human donor were

administered to 5 male and 5 female C57BL/6 germ-free mice by oral gavage once a week, for

3 weeks. Mice were subsequently set up as breeding pairs in a decontaminated positive pres-

sure isolator. HMA mice used in this study belonged to the fourth generation of breeding ani-

mals; these were removed from the isolator in sealed ISOcages and maintained on a positive

pressure ISOrack (Tecniplast) for use in the experiments described below. A total of 8 HMA

and 8 WT mice (female C57BL/6, bred at the WSI) were infected percutaneously with 80 S.

mansoni cercariae (Sm+), as described previously [65] and maintained for 50 days with access

to food and water ad libitum. Six HMA and WT mice, respectively, were kept uninfected and

used as negative controls (Sm-). Two independent experiments were performed (identified as

‘B1’ and ‘B2’, respectively) using identical procedures as described above. Experiment B1

included 5 Sm+ and 3 Sm- of each HMA and WT, while experiment B2 included 3 Sm+ and 3

Sm- of each HMA and WT [8]. All mice were euthanized 50 days post-infection, and adult

worms recovered from Sm+ mice via portal perfusion [65]. Control Sm-mice were perfused as

the infected animals. Fecal pellets were collected directly from the colons of individual mice at

necropsy; pellets were transferred to sterile tubes, snap frozen on dry ice, and stored at -80˚C

until DNA isolation, which was performed within 3 weeks from sample collection.

DNA extraction and shotgun metagenomics sequencing

Genomic DNA was isolated from a total of 28 colonic content samples and 4 no-DNA tem-

plate negative controls from both independent experiments, using the PowerSoil DNA Isola-

tion Kit (QIAGEN) according to manufacturers’ instructions. DNA was prepared and

sequenced at WSI using the Illumina Hi-Seq platform with library fragment sizes of 200–300

bp and a read length of 100 or 125 bp, as previously described [66].

Bioinformatics analyses, statistics and reproducibility

WGS reads were subjected to quality and adapter trimming using Trim Galore (version 0.4.0) using

default parameters, and paired reads of<20 bp for at least one of the two sequences were removed

(https://github.com/FelixKrueger/TrimGalore; [67]). Quality-filtered reads were mapped against the

Musmusculus reference genome (GRCm38 assembly) using the BWA-MEM algorithm [68].

Clean reads were mapped against reference bacterial genomes available from GenBank

(S11 Table) and, for each sample, microbial community composition was defined based on the

relative abundance of each genome displaying breadth coverage�1% and depth coverage

>0.01X (S1 Table); the gut microbial communities of Sm- and Sm+ HMA and WT mice were

compared using the online software MicrobiomeAnalyst [69]. In particular, following CSS

data normalization, samples were clustered by PCoA based on Bray-Curtis dissimilarities, and

differences in beta diversity between groups were assessed by Analysis of Similarity (ANOSIM)

[70]. Differences in microbial species richness and Shannon index between groups were

assessed by unpaired t-test. Furthermore, heatmaps displaying Pearson correlation between

community composition and explanatory variables, i.e., mouse line (WT and HMA), infection

status (Sm+ and Sm-) and experiment (B1 and B2) were generated; significant alterations in

the relative abundances of microbial taxa following experimental S.mansoni infection were

determined by LEfSe [71] and Mann-Whitney U test. Occurrence of linear relationships

between the relative abundance (logarithmic) of gut bacterial species significantly impacted by

S.mansoni infection, as well as infection burdens (i.e., worm counts and EPG of liver; cf. [8]),
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was tested by Pearson correlation and the statistical significance of the Pearson correlation

coefficient (r) was assessed by two-tailed t-test.

Functional annotations of gut metagenome data were performed using HUMAnN3 [72],

ran from the biobakery/humann docker container (latest version as of October 2020) using the

Chocophlan nucleotide database and Uniref90 protein database [73]. HUMAnN3 runs the

Metaphlan program as an intermediate step to assign organism-specific functional profiling,

which was performed using the developer-provided MetaPhlAn3 bowtie2 database [17,74].

Additional scripts embedded within HUMAnN3 (humann_rename_table and human_join_-

table) were used to align gene family descriptions and merge the 128 original output gene fam-

ily abundance tables into a single table. The HUMAnN3 pipeline also provided MetaCyc [75]

pathway abundance detected per sample. HUMAnN’s default Reads Per Kilobase (RPK) values

for gene family and pathway abundances were transformed into copies per million (CPM)

units using the “humann_renorm_table” script (included in the HUMAnN3 distribution; S10

and S12 Tables) and associations between the predicted functional properties of each metagen-

ome and S.mansoni infection in either HMA and WT mice were assessed by PCA and CCA

using Calypso [76]. Biological pathways and gene families significantly enriched in the meta-

genomes of either Sm- or Sm+ mice (HMA and WT, respectively) were determined using

MaAsLin2 [77], by applying the LM with default settings (except for the analysis of gene fami-

lies, prior to which data were log-transformed); potential differences between samples col-

lected in each independent experiment were taken into account by fixing this variable as a

random effect. Furthermore, pathway and gene family relative abundances were compared

between Sm+ and Sm- of each HMA and WT using the LEfSe workflow [71] implemented in

Galaxy (https://huttenhower.sph.harvard.edu/galaxy/), setting the variable “experiment” as

subgroup for comparisons. Both pathway and gene family detection for a given rodent line

was defined when confirmed in at least 5 out of the 14 samples analyzed per line.

Supporting information

S1 Fig. Whole genome sequencing output. (A) Read counts obtained from fecal DNA

extracts of wild type (WT) and human-microbiota-associated (HMA) mice, and negative con-

trols (i.e., no-DNA template; NC); �p<0.05, ��p<0.01 and ns = not significant by post hoc
Dunn’s test. (B) and (C) Base counts prior to (= sequenced) and following quality filtering and

removal of host sequences (= filtered) according to mouse line and infection status, respec-

tively. Differences between groups were assessed by Mann-Whitney U test. Sm+ = Schistosoma
mansoni-infected; Sm- = S.mansoni-uninfected.

(EPS)

S2 Fig. Gut microbiota composition of wild type (WT) and human-microbiota-associated

(HMA) mice. (A) Venn diagram indicating the total number of bacterial species and corre-

sponding genera identified in the metagenomes of WT and/or HMA mice following mapping

of shotgun metagenomic reads against bacterial reference genomes available from the Gen-

Bank database. (B) Relative abundances of the 30 most abundant species.

(EPS)

S3 Fig. Gut microbiota composition of wild type (WT) and human-microbiota-associated

(HMA) mice. Relative abundances, per sample, of the 30 most abundant bacterial species.

Samples are hierarchically clustered according to Pearson correlation between species relative

abundances, and explanatory variables are indicated at the top of the figure (i.e., mouse line,

infection status and infection burdens; cf. Fig 1. EPG = eggs per gram).

(PDF)
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S4 Fig. Gut bacterial functional profiles in wild type (WT) vs. human-microbiota-associ-

ated (HMA) mice. Venn diagram indicating the total number of bacterial metabolic pathways

identified by HUMAnN3 in the gut metagenomes of at least five samples of WT and/or HMA

mice.

(EPS)

S5 Fig. Gut bacterial alpha diversity in Schistosomamansoni infected (Sm+) and uninfected

(Sm-) mice. Shannon diversity and species richness in Sm+ and Sm- samples of (A) wild type

(WT) and (B) human-microbiota-associated (HMA) mice. Asterisks indicate significant differ-

ences between groups determined by unpaired t-test: �p<0.05.

(EPS)

S6 Fig. Fecal metabolic profiles of wild type (WT) mice. Principal Component Analysis

(PCA) of the fecal metabolic profiles of WT mice according to experiment and infection status

(Sm+ = Schistosoma mansoni-infected; Sm- = uninfected controls).

(EPS)

S7 Fig. Gut bacterial capacity for amino acid metabolism in wild type (WT) and human-

microbiota-associated (HMA) mice. For each mouse line, only differentially abundant path-

ways between S.mansoni infected (Sm+) and uninfected (Sm-) animals (cf. S5 and S6 Tables)

are shown.

(EPS)

S1 Table. List of bacterial genomes detected in fecal samples of wild type (WT) and/or

human-microbiota-associated (HMA) mice by mapping of reads against reference bacte-

rial genomes available from the GenBank database. Only genomes displaying mean breadth

coverage�1% and mean depth coverage >0.01X were considered in each mouse line.

nd = not detected.

(XLSX)

S2 Table. Metabolic pathways. (A) Metabolic pathways identified in at least 5 fecal samples of

wild type (WT) and/or human-microbiota-associated (HMA) mice by HUMAnN3. (B) Meta-

bolic pathways identified only in WT samples, stratified by known and unclassified organisms.

(C) Metabolic pathways identified only in HMA samples, stratified by known and unclassified

organisms.

(XLSX)

S3 Table. Bacterial species in wild type (WT) and human-microbiota-associated (HMA)

mice. Results of LEfSe and Mann-Whitney U test applied to the identification of differentially

abundant bacterial species between the gut microbial communities of Schistosoma mansoni-
infected (Sm+) and uninfected (Sm-) WT and HMA mice.

(XLSX)

S4 Table. Correlation between gut bacterial abundance and infection burdens. Pearson cor-

relation between the relative abundance of gut bacterial species significantly impacted by Schis-
tosoma mansoni infection in wild type (WT) and human-microbiota-associated (HMA) mice

(cf. Fig 3) and infection burdens (i.e., worm counts and eggs per gram (EPG) of liver; cf. [8]).

(XLSX)

S5 Table. Metabolic pathways in wild type (WT) mice. Differentially abundant metabolic

pathways between the gut microbiomes of Schistosoma mansoni-infected (Sm+) and -unin-

fected (Sm-) WT mice by MaAsLin2 (p<0.05) and/or LEfSe [LDA score (log)>2]. For each

pathway, mean abundance and standard deviation (SD), fold change between groups, and
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functional classification according to MetaCyc database are provided. Fold change

<0 = overrepresented in Sm-; fold change >0 = overrepresented in Sm+.

(XLSX)

S6 Table. Metabolic pathways in human-microbiota-associated (HMA) mice. Differentially

abundant metabolic pathways between the gut microbiomes of Schistosoma mansoni-infected

(Sm+) and -uninfected (Sm-) HMA mice by MaAsLin2 (p<0.05) and/or LefSe [LDA score

(log)>2]. For each pathway, mean abundance and standard deviation (SD), fold change

between groups, and functional classification according to MetaCyc database are provided.

Fold change<0 = overrepresented in Sm-; fold change>0 = overrepresented in Sm+.

(XLSX)

S7 Table. Metabolic pathways in both wild type (WT) and human-microbiota-associated

(HMA) mice. Differentially abundant metabolic pathways [MaAsLin2 p<0.05 and LefSe LDA

score (log)>2] between the gut microbiomes of both WT and HMA mice infected by Schisto-
soma mansoni (Sm+) and matched uninfected controls (Sm-). For each pathway, functional

classification according to MetaCyc database and fold change between infected and uninfected

animals of each line are indicated. Fold change<0 = overrepresented in Sm-; fold change

>0 = overrepresented in Sm+.

(XLSX)

S8 Table. Gene families in wild type (WT) mice. Differentially abundant gene families

between the gut microbiomes of Schistosoma mansoni-infected (Sm+) and uninfected (Sm-)

WT mice, by MaAsLin2 (q<0.05) and/or LefSe [LDA score (log)>2]. For each family, mean

relative abundance, standard deviation (SD) and fold change between Sm- and Sm+ are pro-

vided.

(XLSX)

S9 Table. Gene families in human-microbiota-associated (HMA) mice. Differentially abun-

dant gene families between the gut microbiomes of Schistosoma mansoni-infected (Sm+) and

-uninfected (Sm-) HMA mice, by MaAsLin2 (q<0.01) and/or LefSe [LDA score (log)>2]. For

each family, mean relative abundance, standard deviation (SD) and fold change between Sm-

and Sm+ are provided.

(XLSX)

S10 Table. Gene family abundances. Relative abundances (in CPM; copies per million) of gene

families computed by HUMAnN3 at community level for each sample included in this study.

(XLS)

S11 Table. Mapping results. Results of mapping of whole genome shotgun sequencing reads

against reference bacterial genomes available from GenBank.

(XLSX)

S12 Table. Metabolic pathway abundance. Relative abundances [in CPM (copies per million)

and for each sample included in this study] of metabolic pathways identified by HUMAnN3 at

community level using gene abundances along with the structure of the pathway (based on

MetaCyc pathway definitions).

(XLSX)
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