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Abstract
Fujita and Li have given a characterisation of K-stability of a Fano variety in terms of
quantities associated to valuations, which has been essential to all recent progress in
the area. We introduce a notion of valuative stability for arbitrary polarised varieties,
and show that it is equivalent to K-stability with respect to test configurations with
integral central fibre. The numerical invariant governing valuative stability is modelled
on Fujita’s β-invariant, but includes a term involving the derivative of the volume. We
give several examples of valuatively stable and unstable varieties, including the toric
case.We also discuss the role that the δ-invariant plays in the study of valuative stability
and K-stability of polarised varieties.

1 Introduction

The notion of K-stability of a polarised variety (i.e. a projective variety endowed with
an ample line bundle) has played a central role in algebraic geometry in recent years.
The primary motivation for K-stability is the Yau–Tian–Donaldson conjecture, which
states that K-stability should be equivalent to the existence of constant scalar curvature
Kähler metrics on the polarised variety [24,48,52], and also predicts that one should
be able to form moduli spaces of K-stable polarised varieties.

While this conjecture is completely open in general, there has been enormous
progress on these ideas in the case of Fano varieties. Analytically, it is now known
that K-stability is equivalent to the existence of a Kähler–Einstein metric on a smooth
Fano variety [3,13–15,48].Algebraically, the theory has advancedmassively, primarily
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through Fujita and Li reinterpretation of K-stability in terms of valuations [28,39].
These ideas, together with significant input from birational geometry, have led to
an almost-complete understanding of K-stability of Fano varieties. This is true both
abstractly, in the sense that one can now construct moduli spaces of K-stable Fano
varieties (though properness remains open1), and concretely, in the sense that one can
now give a very thorough understanding of which Fano varieties are actually K-stable.
There are many results along these lines, such as [2,8,18,29] to name only a few. The
valuative approach to K-stability of Fano varieties has been essential to all of these
developments.

From this perspective, one of the main issues in understanding K-stability of an
arbitrary polarised variety is that we do not yet understand the role played by valua-
tions. The original definition of K-stability, due to Donaldson and building on work
Tian, involves test configurations: these are C∗-degenerations of the polarised variety
(X , L) to another polarised scheme (called the central fibre). Donaldson then assigns a
numerical invariant to a test configuration, now called the Donaldson–Futaki invariant,
and K-stability means that this invariant is always positive. Fujita and Li reinterpret
K-stability by replacing test configurations with valuations on X , and replacing the
Donaldson–Futaki invariant with numerical invariants associated to the volume and
log discrepancy of the valuation [28,39].

Our main result gives a complete understanding of how valuations can be used to
study K-stability of polarised varieties, primarily based on the ideas of Fujita [28].
We briefly give the definition, before stating the main results. Let (X , L) be an n-
dimensional polarised variety and let F be a prime divisor over X . Denote by AX (F)

the log discrepancy of F , and Vol the volume function. We define the β-invariant of
F by

β(F) = AX (F)Vol(L) + nμ

∫ ∞

0
Vol(L − xF)dx +

∫ ∞

0
Vol(L − xF)′ · KXdx,

where Vol(L − xF)′ · KX denotes the derivative of the volume in the direction KX ,
and

μ = μ(X , L) = −KX .Ln−1

Ln

is a topological constant. In comparison with Fujita’s invariant, the main novelty is
the appearance of the derivative of the volume; we note that in general the volume is
a continuously differentiable function [9]. As in Fujita’s work, an important class of
divisorial valuations are those that are dreamy; this is a finite generation hypothesis.
We then say that (X , L) is valuatively stable if β(F) > 0 for all dreamy divisorial
valuations F . Ourmain result demonstrates the relationship between valuative stability
and K-stability.

Theorem 1.1 A polarised variety is valuatively stable if and only it is K-stable with
respect to test configurations with irreducible central fibre.

1 Properness has now been proven by Liu–Xu–Zhuang [41].

123



Valuative stability of polarised varieties 359

This fully explains the role played by valuations in the study of K-stability of
polarised varieties. We also prove analogous results for K-semistability, (equivariant)
K-polystability anduniformK-stability.Our proof ismodelled on that of Fujita [27,28],
and the primary differences arise from the fact that the Donaldson–Futaki invariant
takes a significantly simpler form in the Fano setting; this explains the appearance of
the derivative of the volume in the β-invariant.

In general one should not expect that valuative stability is equivalent to K-stability,
and equivariant versions of this statement fail in the toric setting. Nevertheless, a deep
result of Li–Xu states that forK-stability ofFano varieties (X ,−KX ), it is equivalent to
check K-stability with respect to test configurations with irreducible central fibre [40].
Thus Fujita’s work implies that valuative stability of Fano varieties is equivalent to
K-stability. This therefore explains, from the point of view of valuations, the difference
between the Fano theory and the general theory. Moreover, test configurations with
smooth, hence irreducible, central fibre play an important role in many analytic works
concerning the existence of constant scalar curvature Kähler metrics [17,46], and
hence one should expect Theorem 1.1 to be a powerful tool. Theorem 1.1 in any case
produces a concrete obstruction to K-stability of polarised varieties, which we expect
to play a similar role to Ross-Thomas’ slope stability [45], in that the resulting criterion
should be practically checkable in concrete examples.

Beyond the case of anticanonically polarised Fano varieties, Delcroix has recently
shown that there are certain polarised spherical varieties (X , L) forwhich the existence
of a constant scalar curvatureKählermetric is equivalent to equivariant K-polystability
with respect to test configurations with irreducible central fibre [20, Section 11], and is
hence also equivalent to K-polystability [4]. Thus we obtain a full valuative criterion
for K-polystability also in this case. Delcroix’s examples have polarisations close to
the anticanonical class −KX in their ample cone, and he suggests that an analogous
statement should be true for arbitrary polarised spherical varieties, provided the polar-
isation is sufficiently close to the anticanonical class. Going even further, it seems
reasonable to suggest that for general polarisations of Fano varieties (X , L), provided
the polarisation is sufficiently close to −KX , it may be the case that K-polystability
is equivalent to K-polystability with respect to test configurations with irreducible
central fibre, generalising the result of Li–Xu [40] and meaning our valuative criterion
would characterise K-polystability for more general polarisations of Fano varieties.

We hope that some of the numerous applications that the valuative approach to
K-stability of Fano varieties can be applied to general polarised varieties through
Theorem 1.1, andwe plan to return to this in future work. In the present work, we prove
some foundational results along these lines. For example, we show that Calabi-Yau
varieties and canonically polarised varieties are uniformly valuatively stable provided
they have mild singularities. This follows from Theorem 1.1 and work of Odaka, but
demonstrates how one should use the β-invariant for general polarised varieties. We
also prove alpha invariant bounds modelled on work of Fujita–Odaka [32].

We also give a complete geometric description in the toric case. For this we take
(X , L) to be aQ-factorial polarised toric variety. We then call F a toric prime divisor
over X if there is a normal compact toric variety Y andψ : Y → X a proper birational
toric morphism whose exceptional set coincides with F , a toric prime divisor on Y .
By considering only valuations emanating from toric prime divisors we obtain a weak
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notion of equivariant valuative semistability, which turns out to be equivalent to the
classical Futaki invariant [33], which is a function on holomorphic vector fields on
X . We then say that the Futaki invariant vanishes identically if it vanishes for each
holomorphic vector field.

Theorem 1.2 The Futaki invariant of (X , L) vanishes identically (on the torus) if and
only if

β(F) ≥ 0

for any toric prime divisor F over X.

This extends Fujita’s result on toric divisorial stability of Fano varieties [25]. The
proof uses the expression of the classical Futaki invariant of (X , L) as the difference of
the barycentres of the the moment polytope and its boundary exhibited in Donaldson’s
work [24].

Beyond the work of Fujita and Li, perhaps the most important foundational devel-
opment in the study of valuative stability of Fano varieties has been Fujita–Odaka’s
introduction of the δ-invariant δ(L) [32], proved by Blum-Jonsson to equal

δ(L) = inf
F

AX (F)Vol(L)∫ ∞
0 Vol(L − xF)dx

,

where the infimum is taken over all prime divisors F over X [7]. It follows from work
of Fujita–Odaka and Blum–Jonsson that δ(−KX ) ≥ 1 if and only if (X ,−KX ) is K-
semistable,with δ(−KX ) > 1 characterising uniformK-stability.While it is clear from
our definition of β(F) for general polarised varieties that δ(L) plays an important role,
it is natural to ask whether or not a condition on δ(L) actually characterises valautive
stability more generally. While this seems unlikely, we show that one can provide
sufficient conditions for valuative stability in terms of δ(L):

Theorem 1.3 Write δ(L) − μ(L) = (n + 1)γ (L), and suppose that the line bundle

(μ(L) + γ (L))L + KX

is effective. Then (X , L) is uniformly valuatively stable.

Note that this recovers one direction of Fujita-Odaka’s work as a special case: when
L = −KX and δ(−KX ) > 1, γ is strictly positive and hence (μ+γ )L+KX = γ L is
indeed effective. The hypothesis is reminiscent of the sufficient criterion for uniform
K-stability of general polarisations of Fano varieties due to the first author [21] (and
[22, Theorem 1.9]); the effectivity hypothesis, however, has a slightly different flavour.
It is interesting to ask whether one can prove that under the hypothesis of Theorem 1.3
that (X , L) is actually uniformlyK-stable, or admits a constant scalar curvature Kähler
metric.We referwork ofZhang [53,Corollary 6.13] for a closely related analytic result,
and also note that, under the alpha invariant hypotheses just mentioned, the existence
of such a metric is now known [16,23].
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Valuative stability of polarised varieties 361

To this end, we remark that Zhang has recently introduced an analytic counterpart
δA(L) to the δ-invariant, and has made the strong conjecture that the two invariants
agree [53].2 Roughly speaking, δA(L) is the optimal constant for which the entropy
term in the Mabuchi functional on the space of Kähler metrics dominates the (I −
J )-functional. Thus one can ask whether, under the hypotheses of Theorem 1.3 but
replacing the bound on δ(L)with one on δA(L), that (X , L) admits a cscKmetric; this
seems to require new ideas in comparison with the corresponding result concerning
the alpha invariant [23], and perhaps suggests that there are important properties of
δ(L) yet to be discovered.

We finally remark that Zhang invariant has another more direct algebro-geometric
invariant, defined as the optimal constant for which the discrepancy term of the
Donaldson–Futaki invariant (defined in Eq. (2.2)) dominates the minimum norm:

δH (L) = inf
(X ,L)

H(X ,L)Vol(L)

‖(X ,L)‖m , (1.1)

with the infimum taken over all test configurations. It would follow from Zhang’s
conjecture and other conjectures surrounding the Yau–Tian–Donaldson conjecture
that all three δ-invariants agree, and it is again natural to ask whether one can prove
that under the hypotheses of Theorem 1.3 but replacing the bound on δ(L) with one
on δA(L), (X , L) is uniformly K-stable; this would give some evidence for Zhang
conjecture, but also seems to require new ideas.
Outline In Sect. 2 define the various notions of stability relevant to us, most centrally
valuative stability and K-stability. In Sect. 3 we prove Theorem 1.1 and variants for
other notions of stability, such as K-polystability. In particular 3.10 proves valuative
semistability implies K-semistability with respect to test configurations with integral
central fibre, with Lemma 3.12 relating the norms and demonstrating that uniform
valuative stability implies uniform K-stability with respect to the same class of test
configurations. Proposition 3.15 andLemma3.16 give the converse. Section4 provides
various examples, including a proof of Theorem 1.3, while Sect. 5 considers the toric
setting, including a proof of Theorem 1.2.
Notation: We work throughout over the complex numbers, though everything goes
through over an algebraically closed field of characteristic zero. All varieties are taken
to be normal.

2 Preliminaries

2.1 Valuations and associated invariants

We define the invariants associated to valuations of interest to us, and refer to [38] or
the work of Fujita for an introduction.

Let X and Y be normal projective variety, and let π : Y → X be a surjective
birational morphism, with X and Y of dimension n.

2 K. Zhang has recently established his conjecture [54].
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362 R. Dervan, E. Legendre

Definition 2.1 A prime divisor F ⊂ Y for some Y is called a prime divisor over X .

We view F as defining a divisorial valuation on X ; in particular, the information
associated to F which we will be concerned with depends only on the valuation
associated to F . In particular, one can always take Y to be smooth by passing to a
resolution of singularities.

Define a vector subspace H0(X , kL − xF) ⊂ H0(X , kL) via the identifications

H0(X , kL − xF) = H0(Y , kπ∗L − xF) ⊂ H0(Y , kπ∗L) ∼= H0(X , kL),

where we note that the last isomorphism is canonical.

Definition 2.2 For x ∈ R, we define the volume of L − xF to be

Vol(L − xF) := lim sup
k→∞

dim H0(X , kL − �kx� F)

kn/n! .

A basic property is that the limsup defining the volume is actually a limit [38,
Remark 2.2.50]. The volume function extends by homogeneity from Pic(X) to
PicQ(X), and continuously from PicQ(X) to PicR(X). The big cone of X is the locus
inside PicR(X) of R-line bundles with positive volume; this is an open cone.

Theorem 2.3 [9] The volume is a continuously differentiable function on the big cone
of X.

For a big line bundle L on X , and another arbitrary line bundle H on X , we denote
by Vol(L)′ · H the value

Vol(L)′ · H = d

dt
Vol(L + t H)

∣∣∣
t=0

.

Definition 2.4 We define the pseudoeffective threshold of F with respect to L to be

τL(F) = sup{x ∈ R|Vol(L − xF) > 0.}

Observe that if j > τL(F), then H0(Y ,m(π∗L − j F)) = 0.
We now assume that KX and KY are Q-Cartier.

Definition 2.5 The log discrepancy AX (F) is defined to be

ordF (KY − π∗KX ) + 1.

In all cases of interest to us, X will have either log canonical or log terminal
singularities, fromwhich it follows that AX (F) ≥ 0 in the former case and AX (F) > 0
in the latter.

An important class of divisors are those which are dreamy.
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Definition 2.6 [28, Definition 1.3] We say that F is dreamy if for some (equivalently
any) r ∈ Z>0 the Z

⊗2
≥0-graded C-algebra

⊕
j,k∈Z≥0

H0(X , kr L − j F)

is finitely generated.

While this concept depends on L , we will always omit this from our notation.

Example 2.7 Suppose Y a Fano type variety, in the sense that there exists an effective
Q-divisor D on Y such that (Y , D) is log terminal and such that −(KY + D) is big
and nef. Then any F ⊂ Y is dreamy [5, Corollary 1.3.1]. This applies, for example, if
Y is itself Fano or toric.

Not all prime divisors are dreamy, however. An example of a non-dreamy prime
divisor F over (P2,−KP2) has been produced by Fujita [30, Example 3.8].

Now let (X , L) be an n-dimensional normal polarised variety, by which we mean
that L is an ample line bundle on X . The invariant of ultimate interest to us is the
following analogue of Fujita’s β-invariant. Denote by

μ = μ(X , L) = −KX .Ln−1

Ln

the slope of (X , L). It is interesting to note the value μ(X , L) can be interpreted as a
derivative of the volume, namely

−nμ(X , L) = Vol′(L) · KX .

Definition 2.8 Let F be a prime divisor over (X , L). We define the β-invariant of F
to be

β(F) = AX (F)Vol(L) + nμ

∫ ∞

0
Vol(L − xF)dx +

∫ ∞

0
Vol′(L − xF) · KXdx .

Remark 2.9 The integrands vanish once x ≥ τ(F), meaning one can instead define

β(F) = AX (F)Vol(L) + nμ

∫ τ(F)

0
Vol(L − xF)dx +

∫ τ(F)

0
Vol′(L − xF) · KXdx .

Example 2.10 Suppose L = −KX , so that (X ,−KX ) is a Fano variety. Then we show
in Corollary 3.11 using integration by parts that

β(F) = AX (F)Vol(−KX ) −
∫ τ(F)

0
Vol(−KX − xF)dx,

which is precisely Fujita’s β-invariant [28]. Thus our invariant is a generalisation of
Fujita’s invariant to arbitrary polarised varieties.
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364 R. Dervan, E. Legendre

There are three natural numerical invariants on the space of divisorial valuations
which, roughly speaking, play the role of norms. Following Fujita and Blum-Jonsson
[7,28], we set

S(F) =
∫ ∞
0 Vol(L − xF)dx

Ln
,

j(F) = Ln(τ (F) − S(F)) =
∫ ∞

0
(Vol(L) − Vol(L − xF))dx .

Proposition 2.11 The quantities τ(F), S(F) and j(F) are strictly positive on the
space of non-trivial divisorial valuations. Moreover, they are each mutually uniformly
bounded above and below.

That is, for example, there are constants c1, c2 > 0 such that for all non-trivial
prime divisors F we have

0 < c1S(F) ≤ τ(F) ≤ c2S(F).

Proof The proof is essentially the same as that of Fujita and Fujita-Odaka in the case
of Fano varieties with L = −KX [31,32], and in particular the perspective of viewing
these as analogous to norms is due to Fujita [31].

We begin by noting that each is strictly positive on non-trivial divisorial valuations.
This is clear for τ(F) and S(F), and for j(F) follows from the fact that Vol(L−xF) <

Vol(F) for each x ∈ (0, τ (F)).
Thus what remains to show is Lipschitz equivalence. We claim

1

n + 1
τ(F) ≤ S(F) ≤ τ(F). (2.1)

Arguing as in [32, Lemma 1.2], note that

∫ ∞

0
Vol(L − xF)dx ≤ Lnτ(F)

since Vol(L − xF) ≤ Vol(F). Thus S(F) ≤ τ(F). Concavity of the volume function
gives

Vol(L − xF) ≥ Ln
(

x

τ(F)

)n

,

which implies S(F) ≥ 1
n+1τ(F).

By transitivity of Lipschitz equivalence, what remains is to show that τ(F) is
Lipschitz equivalent to j(F). We claim

1

n + 1
τ(F)Ln ≤ j(F) ≤ n

n + 1
τ(F)Ln,
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Valuative stability of polarised varieties 365

which is equivalent to asking

1

n + 1
τ(F) ≤ τ(F) − S(F) ≤ n

n + 1
τ(F).

But this is a simple rearrangement of Eq. (2.1). ��
Remark 2.12 These quantities are closely related to the functionals I , J and I − J on
the space of Kähler potentials in a fixed Kähler class, together with their analogues for
test configurations, which play similar roles. In particular, S(F) is analogous to the
minimum norm of a test configuration; this observation is due to Fujita and Blum-Liu-
Zhou [6,31]. We also note that Boucksom-Jonsson have recently proven a stronger
result than Proposition 2.11, that applies to more general “non-Archimedean metrics”
[11, Theorem C].

Definition 2.13 We say that a polarised variety (X , L) is

(i) valuatively semistable if

β(F) ≥ 0

for all dreamy prime divisors F over (X , L);
(ii) valuatively stable if

β(F) > 0

for all non-trivial dreamy prime divisors F over (X , L);
(iii) uniformly valuatively stable if there exists an ε > 0 such that

β(F) ≥ ε j(F)

for all dreamy prime divisors F .

One could, of course, use any of the three Lipschitz equivalent norms; we use j(F)

to mirror Fujita’s original definitions in the Fano setting.

Remark 2.14 The invariants of interest scale as

βkL(F) = knβL(F), jkL(F) = kn+1 jL(F).

Thus (X , L) is valuatively semistable, for example, if and only if (X , kL) is so. This
allows us to scale L harmlessly in many of the arguments, simplifying the notation.

Remark 2.15 In general, it is not clear whether or not to expect that in the definitions
of valuative uniform and semistability one can remove the dreaminess hypothesis; it
is unlikely that the analogue of this is true for stability.
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2.2 K-stability

The primary aim of the present work is to relate valuative stability to K-stability. This
involves a class of degenerations, called test configurations, as well as an associated
numerical invariant.

Definition 2.16 [24,48] A test configuration is a normal variety X with a line bundle
L together with

(i) a flat projective morphism X → C, making L relatively ample,
(ii) a C

∗-action on (X ,L) making π an equivariant map with respect to the usual
action on C,

such that (Xt ,Lt ) ∼= (X , Lr ) for all t �= 0 and for some r ∈ Z>0. We call r the
exponent of the test configuration.

Since there is a C
∗-action on the central fibre (X0,L0), there is an induced C

∗-
action on H0(X0,Lk

0) for all k. The total weight of this C∗-action is, for k � 0, a
polynomial of degree n + 1 which we denote

wt H0(X0,Lk
0) = b0k

n+1 + b1k
n + O(kn−1).

We similarly denote the Hilbert polynomial by

dim H0(X0,Lk
0) = a0k

n + a1k
n−1 + O(kn−1).

Definition 2.17 [24] The Donaldson–Futaki invariant of (X ,L) is defined to be

DF(X ,L) = b0a1 − b1a0
a0

.

Definition 2.18 [24] We say that (X , L) is

(i) K-semistable if for all test configurations (X ,L), we have DF(X ,L) ≥ 0;
(ii) K-stable if for all non-trivial test configurations (X ,L), we have DF(X ,L) > 0.

Here a test configuration is trivial if it is of the form (X ×C, L), with trivialC∗-action
on X .

In the equivariant setting, we assume G ⊂ Aut0(X , L) is a connected subgroup of
the connected component of the identity Aut0(X , L) of Aut(X , L). A test configura-
tion is then called G-equivariant if there is a G-action on (X ,L) which commutes
with π and extends the usual action on the fibres (Xt ,Lt ) over t ∈ \{0}.
Definition 2.19 We say that (X , L) is G-equivariantly K-polystable if for all G-
equivariant test configurations (X ,L) we have DF(X ,L) ≥ 0, with equality if and
only if (X0,L0) ∼= (X , Lr ) for some r ∈ Z>0.

Another useful perspective on the Donaldson–Futaki invariant is via intersection
theory. For this it is convenient to rescaleL so that on the general fibre it is isomorphic
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Valuative stability of polarised varieties 367

to L rather than Lr ; this may make L aQ-line bundle. We will always assume that we
have performed this scaling.While this will not be used in our proof of Theorem 1.1, it
will be important in motivating our discussion concerning the various delta invariants
contained in the introduction, and will give some motivation for the definitions of
the norms which will be introduced momentarily. A test configuration can be com-
pactified to a family over P1, by compactifying trivially at infinity. We denote this
compactification, abusively, by (X ,L), with X now a projective variety.

Theorem 2.20 [43,50] We have

DF(X , L) = n

n + 1
μ(X , L)Ln+1 + Ln .KX /P1 ,

where KX /P1 denotes the relative canonical class, which is aWeil divisor by normality
of X . Moreover,

b0 = Ln+1

(n + 1)! .

We next turn to the analogues of norms for test configuration. Much as for valua-
tions, there are three natural norm-type quantities one can use. Passing to a resolution
of indeterminacy of the rational map X ×P

1 ��� X if necessary, we may assume that
X admits a morphism to X × P

1. All quantities defined in this way are independent
of choice of resolution of indeterminacy.

Definition 2.21 [10,22] We define

JNA(X ,L) = L.Ln

Ln
− Ln+1

(n + 1)Ln
,

‖(X ,L)‖m = Ln+1

(n + 1)Ln
− Ln .(L − L)

Ln
,

INA(X ,L) = ‖(X ,L)‖m + JNA(X ,L),

and call ‖(X ,L)‖m the minimum norm of the test configuration.

We have divided the minimum norm by an unimportant factor of Ln in comparison
with it original definition [22], to remain consistent with the literature elsewhere.
Boucksom-Hisamoto-Jonsson denote

INA(X ,L) − JNA(X ,L) = ‖(X ,L)‖m,

to emphasise the links to the associated functionals used in Kähler geometry; we prefer
to use the terminology of [22] to emphasise that it plays the role of a norm (which can
more geometrically be defined via the minimum weight of an associated C

∗-action,
explaining its name).

Proposition 2.22 [10,22] The quantities JNA(X ,L), INA(X ,L) and ‖(X ,L)‖m are
strictly positive when (X ,L) is non-trivial, and are moreover are mutually uniformly
bounded below and above.
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368 R. Dervan, E. Legendre

The mutual uniform boundedness is due to Boucksom–Hisamoto–Jonsson.

Definition 2.23 [10,22] We say that (X , L) is uniformly K-stable if there exists and
ε > 0 such that for all test configurations (X , L)

DF(X ,L) ≥ ε‖(X ,L)‖m .

The final numerical invariant which plays only a minor role in the present work is
the non-Archimedean entropy [10, Definition 7.17]:

H(X ,L) = Ln .KX /X×P1

Ln
+ Ln .(X0,red − X0)

Ln
, (2.2)

computed as above on a resolution of indeterminacy, and with X0,red denoting the the
central fibre given the induced reduced structure. This invariant is, up to the error term
vanishing when the central fibre of the test configuration is reduced, the same as the
“discrepancy term” of Odaka [43].

By work of Witt Nyström, a test configuration induces a filtration of the coordinate
ring of (X , L) [51].

Definition 2.24 A filtration of

R = ⊕k≥0H
0(X , kL)

is a chain of vector subspaces

R = F0R ⊃ · · · ⊃ Fi R ⊃ Fi+1R ⊃ · · · ⊃ C

which is

(i) multiplicative, in the sense that (Fi Rl)(Fj Rm) ⊂ Fi+ j Rl+m ;
(ii) homogeneous, in the sense that if f ∈ Fi R then each homogeneous piece of f

is in Fi R.

Theorem 2.25 [51] Let (X ,L) be a test configuration, and denote

F j Rk = {s ∈ Rk |t− j s is holomorphic on X }.

Then F is a filtration.
Set

λ
(k)
min = inf{ j ∈ R|F j Vk �= Vk}, λ(k)

max = sup{ j ∈ R|F j Vk �= 0},

and let

λmin = lim
k→∞

λ
(k)
min

k
, λmax = lim

k→∞
λ

(k)
max

k
.
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Then the weight polynomial of (X ,L) is given for k � 0 by

w(k) =
λ

(k)
max∑

j=λ
(k)
min

j(dimF j V k − dimF j+1V k),

=
λ

(k)
max∑

j=λ
(k)
min

dimF j Vk + λ
(k)
min dim Vk .

Remark 2.26 In fact, by rescaling L so that the test configuration has exponent one,
one can assume that λ

(k)
max = kλmax and λ

(k)
min = kλmin. Geometrically, taking s ∈

H0(X0,L0) is a section of maximal weight, for example, then s⊗k is a section of
H0(X0, kL0) of weight k wt(s). It follows from [44, Lemma 4] that no section can
have weight greater than that of s⊗k .

Of most importance for us will be integral test configurations. Recall that a scheme
is integral if it is reduced and irreducible.

Definition 2.27 We say that a test configuration (X ,L) is integral if its central fibre
X0 is an integral scheme. We then say that a polarised variety (X , L) is

(i) integrally K-semistable if for all integral test configurations (X ,L) we have

DF(X ,L) ≥ 0;

(ii) integrally K-stable if for all non-trivial integral test configurations (X ,L) we
have

DF(X ,L) > 0;

(iii) uniformly integrally K-stable if there exists an ε > 0 such that for all integral
test configurations (X ,L) we have

DF(X ,L) ≥ ε‖(X ,L)‖m;

(iv) G-equivariantly integrally K-polystable if for allG-equivariant integral test con-
figurations (X ,L) we have

DF(X ,L) ≥ 0,

with equality only when (X ,L) is a product test configuration. When G is taken
to be the identity, we simply say (X , L) is integrally K-polystable.

The total space X of a test configuration is always an irreducible variety, hence X
itself is always an integral scheme, so no confusion will arise from the terminology.
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Example 2.28 Integral K-semistability should not be equivalent to K-semistability.
Counterexamples to the equivariant version of this claim arise in the toric setting,
giving strong evidence that this claim fails in general. Restricting to toric test config-
urations (that is, those equivariant under the torus action), the only integral toric test
configurations are those induced byC∗-actions on the variety itself. Thus a counterex-
ample to the equivariant version of this question is given by any toric variety which
has vanishing Futaki invariant, but which is K-unstable. Examples of this kind have
been produced by Donaldson [24, Section 7.2].

The key hypothesis is the irreducibility of the central fibre, rather than it being
reduced:

Lemma 2.29 Integral K-semistability is equivalent to asking

DF(X ,L) ≥ 0

for all test configurations (X ,L) with irreducible central fibre. Analogous statements
also hold for (equivariant) K-polystability and uniform K-stability.

Proof The proof follows the proofs of analogous statements forK-stability of polarised
varieties [1,40] [10, Proposition 7.15]. Suppose (X ,L) is a test configurationwith cen-
tral fibre irreducible, but not reduced. Taking the normalised base change (X(d),L(d))

over the finite cover C → C induced by t → td for d sufficiently divisible induces
a test configuration with reduced and irreducible central fibre. But from Boucksom-
Hisamoto-Jonsson [10, Proposition 7.8 and Proposition 7.15], we have

DF(X(d),L(d)) ≥ d DF(X ,L),

‖(X(d),L(d))‖m = d‖(X ,L)‖m,

with equality in the first equation if and only if (X0,L0) is actually reduced. This
proves the result. ��

This justifies why in the Introduction we only mention test configurations with
irreducible central fibre.

3 Integral K-stability and valuative stability

Here we prove our main result:

Theorem 3.1 A polarised variety (X , L) is

(i) valuatively semistable if and only if it is integrally K-semistable;
(ii) valuatively stable if and only if it is integrally K-stable;
(iii) uniformly valuatively stable if and only if it is uniformly integrally K-stable.

The proof will take the entirety of the current section. Many of the ideas involved
in our proof of the above follow the work of Fujita in the case of Fano varieties
[27,28], and the primary differences arise due to the difference in the definition of
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the Donaldson–Futaki invariant for arbitrary polarised varieties. In particular, for inte-
gral test configurations for Fano varieties, one can understand the Donaldson–Futaki
invariant entirely from the leading order term b0 of the associated weight polynomial,
while this is no longer the case for arbitrary polarised varieties.

3.1 Passing from a valuation to a test configuration

We begin by showing that K-semistability, and its variants respectively, implies val-
uative semistability, and its variants. Let F ⊂ Y → X be a dreamy prime divisor
over X . The goal of the present section is to produce an integral test configuration
associated to F . The approach follows the streamlined strategy of Fujita, improving
on his earlier technique.

For any k ∈ Z>0, denote the vector space

Vk = H0(X , kL).

Associate to the prime divisor F over X the vector subspace

F j Vk = H0(X , kL − j F) if j ≥ 0,

with F j Vk = Vk otherwise. Since F is dreamy, we can define a scheme

X = ProjC
⊕
k∈Z≥0

⎛
⎝⊕

j∈Z
t− jF j Vk

⎞
⎠

by taking relative Proj over C. Thus by the relative Proj construction X admits a
morphism to C and a line bundle L = O(1) which is relatively ample over C.

Lemma 3.2 (X ,L) is an integral test configuration for (X , L).

Proof The proof is in essence identical to Fujita’s proof in the Fano setting [27,
Lemma 3.8], but we recall his proof for the reader’s convenience. It follows from
[10, Proposition 2.15] and [47,51] that (X ,L) is a test configuration (apart from the
claim that X is normal, which we will shortly demonstrate).

We show that X0 is an integral scheme, by showing that its coordinate ring is an
integral domain. Note that by construction its coordinate ring is given by

⊕
k≥0

H0(X0, kL0) ∼=
⊕

j,k∈Z≥0

F j Vk/F j+1Vk,

and denote Sk, j = F j Vk/F j+1Vk . Suppose s1 ∈ Sk1, j1\{0}, s2 ∈ Sk2, j2\{0}. Thus by
definition of F j Vk , the product section s1 ⊗ s2 vanishes precisely j1 + j2 times along
F . It follows that s1 ⊗ s2 ∈ Sk1+k2, j1+ j2\{0}, which shows that X0 is integral. Since
X0 is reduced, it follows that X is normal. ��
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Wenext interpret the Donaldson–Futaki invariant of (X ,L) in terms of the filtration
F associated to F . By construction of (X ,L) and Theorem 2.25, it follows that the
associated weight polynomial takes the form

w(k) =
λ

(k)
max∑

j=λ
(k)
min

dimF j Vk + λ
(k)
min dim Vk,

= f (k) + λ
(k)
min dim Vk, (3.1)

where

f (k) =
λ

(k)
max∑

j=λ
(k)
min

dimF j Vk,

= fn+1k
n+1 + fnk

n + O(kn−1). (3.2)

As usual, the weight polyonial is only a genuine polynomial for k � 0. Rescaling L
so that the test configuration has exponent one, by Remark 2.26 we may assume that
λ

(k)
min = kλmin, λ

(k)
max = kλmax.

Corollary 3.3 The numerical invariants of the test configuration are given by

DF(X ,L) fn + n
μ(X , L)

2
fn+1

and

λmax = τ(F), λmin = 0.

Proof The description of λmin, λmax follows immediately from the description of the
filtration. For k � 0 asymptotic Riemann-Roch provides

dim H0(X , kL) = Ln

n! k
n + −KX .Ln−1

2(n − 1)! kn−1 + O(kn−2),

from which the result follows using Theorem 2.25. ��
Remark 3.4 We will shortly see that the pseudo-effective threshold τ(F) is rational,
since F is assumed to be dreamy.

3.2 Running theMMP

In the range x < τ(F) we are interested in, the line bundle L − xF is merely a big
line bundle in general. We next use the minimal model program to produce birational
models of Y on which L − xF is actually ample. The ampleness will then allow
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us to give a geometric understanding of the Donaldson–Futaki invariant of the test
configuration produced in the previous section. The following is a direct consequence
of [36], using the dreaminess hypothesis.

Theorem 3.5 [36, Theorem 4.2] There exists a sequence of rational numbers

0 = τ0 < τ1 < · · · < τm = τL(F),

and birational contractions

ϕ j : Y ��� Y j

such that (ϕ j )∗(L − xF) is ample for all x ∈ (τ j−1, τ j ) and semiample for all
x ∈ [τ j−1, τ j ], and each Y j is a normal projective variety.

Moreover, for x ∈ (τ j−1, τ j ), the map ϕ j is L − xF negative, in the sense that
letting (p, q) : Z → Y × Y j be a resolution of indeterminacy we have

p∗(L − xF) = q∗((ϕ j )∗(L − xF)) + E,

where E ≥ 0 is effective and Supp E contains the proper transform of the ϕ j -
exceptional divisors. In particular, for all k ≥ 0 and x ∈ (τ j−1, τ j ) there is a canonical
isomorphism

H0(Y , k(L − xF)) = H0(Y j , (ϕ j )∗(kL − kxF)). (3.3)

Denote

L j = (ϕ j )∗L, Fj = (ϕ j )∗F .

The most important consequence is the following.

Proposition 3.6 The leading coefficients of f (k) are given as

fn+1 =
m∑
j=1

1

n!
∫ τ j

τ j−1

(L j − xFj )
ndx,

fn = −
m∑
j=1

1

2(n − 1)!
∫ τ j

τ j−1

((L j − xFj )
n−1.(KYj + Fj )dx .

Moreover for x ∈ [τ j−1, τ j ], we have an equality

Vol(L − xF) = (L j − xFj )
n .

Proof The claim concerning the coefficients of f (k) follows from Fujita’s variant of
asymptotic Riemann-Roch [25, Proposition 4.1], using the isomorphism of Equation
(3.3). This isomorphism also proves the claim concerning the volume, using as well
that the volume function is continuous in x . ��
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It remains to interpret fn more geometrically. We will require the following minor
variant of [28, Claim 5.6].

Lemma 3.7 Let F ′ �= F be a π -exceptional divisor. Then F ′ is ϕ j -exceptional. Thus

KY j − (ϕ j )∗π∗KX = (AX (F) − 1)Fj .

Proof The claim concerning ϕ j -exceptionality follows from [28, Claim 5.6], whose
proof does not use anything specific to his situation that does not apply to ours. That
all such F ′ are ϕ j -exceptional implies

(ϕ j )∗(KY − π∗KX ) = (AX (F) − 1)Fj .

But since ϕ j is a birational contraction,

(ϕ j )∗(KY ) = KYj ,

proving the final statement. ��
The following geometric description of fn explains the appearance of the derivative

of the volume in β(F).

Lemma 3.8 For anyCartier divisor E onY and any x ∈ [τ j−1, τ j ], there is an equality

(L j − xFj )
n−1.((ϕ j )∗E) = 1

n
Vol′(L − xF) · E .

Proof We argue analogously to the above. By differentiability of the volume, it is
enough to prove the result for any fixed x ∈ (τ j−1, τ j ). Thus ϕ j is L − xF negative,
and hence it is also L− xF + tπ∗E negative for all t sufficiently small. It then follows
from [36, Remark 2.4 (i)] that for all m ≥ 0 for which L − xF + t E is integral that

H0(Y ,m(L − xF + t E)) = H0(Y j ,m(L j − xFj + t(ϕ j )∗E)),

which implies

Vol(L − xF + tπ∗E) = (L j − xFj + t(ϕ j )∗E)n

as for t small this line bundle is ample. Differentiating gives the result. ��
We are now in a position to relate the numerical invariants of interest.

Proposition 3.9 The Donaldson–Futaki invariant of DF(X ,L) is given by

2(n − 1)!DF(X ,L) = AX (F)Vol(L) + nμ

∫ τ(F)

0
Vol(L − xF)dx

+
∫ τ(F)

0
Vol′(L − xF) · KX ,

= β(F).
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Proof By what we have proven so far and Lemma 3.7

2(n − 1)!DF(X ,L) =
m∑
j=1

∫ τ j

τ j−1

(L j − xFj )
n−1

· (((ϕ j )∗π∗KX + AX (F)Fj ) + (L j − xFj )
)
dx .

Thus by Proposition 3.6 and Lemma 3.8

2(n − 1)!DF(X ,L) =
∫ τ(F)

0
(μVol(L − x F) + 1

n
Vol′(L − x F) · (KX + AX (F)F))dx .

The fundamental theorem of calculus implies

∫ τ(F)

0
Vol′(L − xF) · Fdx = Ln,

hence

2(n − 1)!DF(X ,L) = AX (F)Vol(L) +
∫ τ(F)

0
(nμVol(L − x F) + Vol′(L − x F) · KX )dx,

which is our formula for β(F). ��
Corollary 3.10 Valuative semistability implies integral K-semistability.

It also follows that β(F) generalises the usual β-invariant used in the study of Fano
varieties.

Corollary 3.11 We have

β(F) = AX (F)Vol(L) − μ

∫ τ(F)

0
Vol(L − x F)dx +

∫ τ(F)

0
Vol′(L − x F) · (μL + KX )dx .

Thus when L = −KX , β(F) agrees with Fujita’s invariant.

Proof Integrating by parts gives

∫ τ(F)

0
(L − xF)n−1.Ldx =

(
1 + 1

n

) ∫ τ(F)

0
Vol(L − xF)dx,

which provides the second interpretation of DF(X ,L). When L = −KX , the term
involving μL + KX = 0 in the formula β(F) vanishes, recovering Fujita’s formula
in this case since μ = μ(X ,−KX ) = 1. ��

We next turn to the norms involved. It seems most convenient to use JNA and j(F),
though one could use any of the Lipschitz equivalent norms.
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Lemma 3.12 We have

Vol(L) JNA(X ,L) = j(F).

Proof [10, Lemma 7.7] gives

L.Ln

Ln
= λmax = τ(F),

which is one of the terms in interest in

JNA(X ,L) = L.Ln

Ln
− Ln+1

(n + 1)Ln
.

The remaining term can be understood through Theorem 2.20 from the leading order
term of the weight polynomial b0, giving

JNA(X ,L) = τ(F) − n!b0
Ln

.

Since the leading order term of the weight polynomial satisfies by Eq. (3.1)

b0 = fn+1 + λmina0 = fn+1,

the equality λmin = τ(L) together with the equation for fn+1 given by Propositon 3.6
provides

Vol(L) JNA(X ,L) =
∫ τ(F)

0
(Vol(L) − Vol(L − xF))dx = j(F),

as required. ��

3.3 The converse

We now show that valuative semistability implies integral K-semistability. Thus let
(X ,L) be an integral test configuration. We fix a resolution of indeterminacy as fol-
lows.

Y

X × P
1 X

q p (3.4)

Denote by X̂0 the strict transform of X0 in Y . Then by pulling back functions from X
to Y , X̂0 induces a divisorial valuation on X which we denote vX0 [10, Section 4.2].
The induced valuation is independent of choice of resolution of indeterminacy. The
filtration associated to (X ,L) can then be understood through the divisor

p∗L − q∗L = D.
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Lemma 3.13 [10, Lemma 5.17] The filtration associated to (X ,L) can be described
as

F j Vk =
{
f ∈ Vk |vX0( f ) ≥ −k ordX̂0

(D) + j
}

.

Thus when j ≥ k ordX̂0
(D) we have

F j Vk = H0
(
X , kL −

(
k ordX̂0

(D) + j
)

vX0

)
,

with F j Vk = Vk otherwise.

In fact Boucksom–Hisamoto–Jonsson’s result is more general, but the resulting
filtration simplifies when the central fibre X0 is integral. Note that X0 is dreamy,
since the filtration F is finitely generated as it arises from a test configuration [10,
Proposition 2.15]. The maximal and minimal weights are thus the following.

Corollary 3.14 We have

λmax = τ(vX0) + ordX̂0
(D),

λmin = ordX̂0
(D).

Using this, we can relate the Donaldson–Futaki invariant and the norm.

Proposition 3.15 The Donaldson–Futaki and β-invariants agree u to a constant:

2(n − 1)!DF(X ,L) = β(vX0).

Proof From the definition of the filtration and a change of variables in the integral, we
have

w(k) =
∫ τ(vX0 )

0
h0(X , kL − xvX0)dx + k ordX0(D)h(k).

Adding a constant multiple of kh(k) to the weight polynomial, which geometrically
corresponds to adding a constant to the weight polynomial, leaves the Donaldson–
Futaki invariant unaffected, so we may disregard the term k ordX0(D)h(k). Since vX0

is a dreamy prime divisor, we may apply the arguments of Sect. 3.2 to understand the
integral

f (k) =
∫ τ(vX0 )

0
h0(X , kL − xvX0)dx .

Indeed, this is precisely the polynomial considered in Sect. 3.2, showing by Proposi-
tion 3.9 that 2(n − 1)!DF(X ,L) = β(vX0). ��

A similar calculation applies to the norm, the details are the same as Lemma 3.12
and are thus left to the interested reader.
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Lemma 3.16 We have

Vol(L) JNA(X ,L) = j(vX0).

Remark 3.17 In the case that the central fibre X0 is actually smooth or has orbifold
singularities, theDonaldson–Futaki invariant of (X ,L) agreeswith the classical Futaki
invariant of the induced holomorphic vector field on X0 by a result of Donaldson [24,
Proposition 2.2.2]. Thus in this situation, the beta invariant of the induced divisorial
valuation β(vX0) also agrees with the classical Futaki invariant, since by our results
2(n − 1)!DF(X ,L) = β(vX0).

3.4 Equivariant K-polystability

We now turn to the equivariant setting. The key notion is the slightly non-geometric
notion of a product type dreamy prime divisor, based on the definition due to Fujita in
the Fano setting [27, Definition 3.9]. From Lemma 3.2 we obtain a test configuration,
which we denote (XF ,LF ).

Definition 3.18 We say that a dreamy prime divisor F over (X , L) is of product type
if its associated test configuration (XF ,LF ) is a product test configuration.

The reason we have postponed this definition until the present section is that the
definition relies on the correspondence between integral test configurations anddreamy
prime divisors. What we have proven thusfar immediately produces:

Corollary 3.19 A polarised variety (X , L) is integrally K-polystable if and only
β(F) ≥ 0 for all dreamy prime divisors F over (X , L), with equality if and only
if F is of product type.

Wefinally turn toG-equivariant K-polystability, withG ⊂ Aut0(X , L) a connected
algebraic group. We say that a dreamy prime divisor F ⊂ Y is G-invariant if there is
a G action on Y , making the map Y → X a G-invariant map, such that F is itself a
G-invariant divisor on Y (by which we mean G sends F to itself rather than F being
contained in the fixed point locus of G). The following is a variant of work of Golota
and Zhu [34,55].

Theorem 3.20 A polarised variety (X , L) is G-equivariantly integrally K-polystable
if and only if β(F) ≥ 0 for all G-invariant dreamy prime divisors F over (X , L), with
equality if and only if F is of product type.

Proof The claim follows from two facts. The first is that the valuation vX0 associated
to a G-equivariant integral test configuration (X ,L) is a G-invariant valuation. This
follows directly from its construction. Indeed, taking a G-equivariant resolution of
indeterminacy

Y

X × P
1 X ,
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one realises the proper transform X̂0 ⊂ Y0 as aG-invariant divisor ofY , implying that
vX0 is a G-invariant divisorial valuation on X , exactly as in Golota’s proof in the Fano
case [34, Proposition 3.13]. The second is that the integral test configuration associated
with a G-invariant dreamy prime divisor is a G-equivariant test configuration, which,
as noted by Zhu in the Fano setting [55, Theorem 3.5], follows immediately from its
definition as

X = ProjC
⊕
k∈Z≥0

⎛
⎝⊕

j∈Z
t− jF j Vk

⎞
⎠ ,

with the G-action induced from the natural action on
⊕
k∈Z≥0

⊕
j∈Z

t− jF j Vk .

��

4 Examples and properties

4.1 Calabi–Yau and canonically polarised varieties

It is a well-known result of Odaka that Calabi-Yau varieties and canonically polarised
varieties are K-stable [42], and one can even show that they are uniformly K-stable
[10,22]. It follows from Theorem 1.1 that they are, therefore, also valuatively stable.
Nevertheless, it seems worth providing a direct proof as a demonstration of how to
understand valuative stability. We will use the δ-invariant δ(L), which is defined as
[7,32]

δ(L) = inf
F

AX (F)Vol(L)∫ ∞
0 Vol(L − xF)dx

.

Theorem 4.1 Let (X , L) be a polarised variety and suppose that either

(i) X has log terminal singularities KX = 0; or
(ii) X has log canonical singularities and L = KX .

Then (X , L) is uniformly valuatively stable.

Proof (i) In this case, the invariant of interest simplifies to

βL(F) = AX (F)Ln,

which is clearly non-negative.To showstrict positivity,weuse a result ofBlum-Jonsson
which implies that, since X has log terminal singularities, δ(L) > 0 [7, Theorem A]
and hence

β(F) ≥ δ(L)S(F),
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proving the result by Proposition 2.11.
(ii) Using μ(X , KX ) = −1, one calculates

βKX (F) = AX (F)(KX )n +
∫ τ(F)

0
Vol(KX − xF)dx .

Since X has log canonical singularities, AX (F) ≥ 0, and the result follows again by
Lipschitz equivalence of j(F) and

∫ τ(F)

0 Vol(KX −xF)dx proved in Proposition 2.11.
��

We next turn to a sufficient criterion involving δ = δ(L).

Theorem 4.2 Write δ(L) − μ(L) = (n + 1)γ (L), and suppose

(μ(L) + γ (L))L + KX is effective.

Then (X , L) is uniformly valuatively stable.

Proof We use the formulation of Corollary 3.11, which demonstrates that

β(F) = AX (F)Vol(L) − μ

∫ ∞

0
Vol(L − xF)dx

+
∫ ∞

0
Vol′(L − xF) · (μL + KX )dx .

We write (n + 1)γ = (n + 1)γ ′ + ε, with ε > 0 chosen so that (μ + γ ′)L +
KX is effective; such a choice exists since effectivity is an open condition in the
Néron–Severi group.

Since by definition of δ there is a lower bound

AX (F)Vol(L) ≥ δ

∫ ∞

0
Vol(L − xF)dx,

the β-invariant has a lower bound of the form

β(F) ≥ (δ − μ)

∫ ∞

0
Vol(L − xF)dx +

∫ ∞

0
Vol′(L − xF) · (μL + KX )dx,

= (n + 1)γ
∫ ∞

0
Vol(L − xF)dx +

∫ ∞

0
Vol′(L − xF) · (μL + KX )dx .

Note from integration by parts as in the proof of Corollary 3.11 that

∫ ∞

0
Vol(L − xF)dx = (n + 1)

∫ ∞

0
Vol′(L − xF) · Ldx .

Thus

β(F) ≥ ε

∫ ∞

0
Vol(L − xF)dx +

∫ ∞

0
Vol′(L − xF) · ((μ + γ ′)L + KX )dx .
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The proof is concluded by noting that since (μ + γ )L + KX is assumed effective, the
derivative of the volume in this direction is non-negative [9, Corollary C], with the
term ε

∫ ∞
0 Vol(L − xF)dx providing uniform valuative stability by Proposition 2.11.

��

The same proof shows that provided (μ + γ )L + KX is nef, (X , L) is valuatively
semistable. We remark that in the case L = −KX , this result recovers Fujita–Odaka’s
result that if δ(−KX ) > 1, then (X ,−KX ) is uniformly valutively stable (hence
uniformly K-stable by the work of Fujita and Li [28,39]). Thus Theorem 4.2 can
be through of as a generalisation of Fujita–Odaka’s work to more general polarised
varieties.

Remark 4.3 It is interesting to note that the dreaminess hypothesis is irrelevant in all
of our sufficient criteria for valuative stability.

4.2 Valuatively unstable varieties

Since valuative stability implies the classical Futaki invariant vanishes, one obtains
many examples of valuatively unstable varieties. It seemsworth providing one calcula-
tion of this fact directly. The example we choose is the blow up of P2 at a point, which
is K-unstable with respect to any polarisation. We show that it is even valuatively
unstable.

Proposition 4.4 Blp P2 is valuatively unstable with respect to any polarisation.

Proof We show that the exceptional divisor destabilises. Note that as X is Fano, the
exceptional divisor is dreamy with respect to any polarisation by Example 2.7.

Let H be the pullback of the hyperplane class on P
2 to Blp P2, and let E be the

exceptional divisor. The ample divisors are of the form

xH − yE, x > y ≥ 0;

this line bundle is nef when x = y. The big divisors are of the form

xH − yE, x ≥ 0.

By [38, Example 2.2.46], the volume is given by

Vol(xH − yE) = x2 − y2, when x > y ≥ 0,

= x2, when x ≥ 0, y ≤ 0.

Thus the pseudoeffective threshold is

τxH−yE (E) = x − y.
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A calculation then gives that

βxH−yE (E) = x2 − y2 + 6x − 2y

x2 − y2

∫ x−y

0
(x2 − y2 − 2yz − z2)dz

+
∫ x−y

0
(−6x + 2y + 2z)dz.

By homogeneity, in considering the sign of this invariant, we may assume that x = 3.
Then we have

β3H−yE (E) = −4(y − 3)2y

3(y + 3)
,

which is negative for 0 < y < 3. Note that when y = 1, the polarisation is given by
the anticanonical class, β3 H−E (E) = −4/3 and one can check this agrees with the
calculation of Fujita’s β-invariant. ��
Example 4.5 It is in general not difficult to produce valuatively unstable varieties with
discrete automorphism group. For example, let E be a simple unstable vector bun-
dle over a polarised Riemann surface (B, L) of genus at least one. Then we claim
(P(E), kL + OP(E)(1)) is valuatively unstable for all k � 0. Indeed, any subbundle
F ⊂ E induces a test configuration

(P(E),OP(E)(1)) → B × C

with E a bundle over B × C which satisfies

E0 ∼= F ⊕ E/F .

Thus P(E)0 is smooth, hence integral. Since B has dimension one and E is by hypoth-
esis unstable, there exists a destabilising subbundle F ⊂ E . It then follows from a
result Ross-Thomas that the Donaldson–Futaki invariant of (P(E), kL + OP(E)(1))
is strictly negative for k � 0 [45, Section 5.4], and hence by Theorem 1.1 is also
valuatively unstable. The associated divisorial valuation is induced by P(E)0 through
the constructions.

4.3 Bounds on the alpha invariant

Recall that the alpha invariant of (X , L) is defined as

α(X , L) = inf
D∈|kL| lct

(
X ,

1

k
D

)
,

where

lct(X , D) = sup{t ∈ R>0 | (X , t D) is log canonical}.
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Fujita-Odaka have shown that K-semistable Fano varieties have alpha invariant
bounded below by 1

n+1 [32]. The analogue for for general K-semistable varieties
is the following. Let us say that (X , L) is strongly valuatively semistable if β(F) ≥ 0
for all prime divisors over X , not necessarily dreamy.

Theorem 4.6 Suppose (X , L) is a strongly valuatively semistable. Then

α(X , L) ≥ μ(X , L)

n + 1
.

Proof Consider a divisor D ∈ |kL|. Note that lct(X , D) = AX (D) [37, Proposi-
tion 8.5]. By working with D as a Q-divisor, we may assume k = 1, and hence
τL(D) = 1. It follows that

βL(D) = lct(X , D)Ln+nμ

∫ 1

0
(1 − x)n Vol(L)dx

+
∫ 1

0
(1 − x)n−1 Vol′(L) · KXdx,

= lct(X , D)Ln + Ln

n + 1
+ Ln−1.KX .

By hypothesis, (X , L) is a strongly valuatively semistable, and hence βL(D) ≥ 0.
Thus

lct(X , D) ≥ μ(X , L)

n + 1
.

The result follows by taking the infimum over all such D. ��
In the toric setting, we can replace strong valuative semistability with valuative

semistability.

Corollary 4.7 Suppose (X , L) is a valuatively semistable toric variety. Then

α(X , L) ≥ μ(X , L)

n + 1
.

Proof By a result of Cheltsov–Shramov, the alpha invariant α(X , L) can be computed
using toric divisors D on X [12, Lemma 5.1]; the proof degenerates an arbitrary divisor
in the linear system |kL| to a linearly equivalent one which is invariant under each
C

∗-action inside the torus successively, and uses that the log canonical threshold can
only drop when taking such a limit.

Thus let D be a toric divisor. Since D is toric, one can take a toric resolution of
singularities Y → X of (X , D). Since Y is toric, the proper transform of D on Y is thus
dreamy. This means that in the previous argument, we can weaken strong valuative
semistability to simply valuative semistability, proving the result. ��
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These results are of course only interesting whenμ(X , L) > 0; this is automatic for
toric varieties. Since K-semistability implies valuative semistability, the above applies
to K-semistable toric varieties.

5 Toric varieties

Let X = X� be a compact n–dimensional toric variety associated to a fan � ⊂ NR

where N is the lattice of circle subgroups of the torus TN � (C∗)n . We first consider
valuative stability for toric divisors on X itself. We follow the notation of [19] and thus
denote M = N∗ the lattice of characters of TN and �(1) the set of rays of �. Each
ρ ∈ �(1) determines both a prime divisor Dρ and an element uρ ∈ N , namely the
(unique) primitive vector in ρ ∩ N , see [19, § 4.1]. The ample line bundle corresponds
to a full dimensional lattice polytope P = PL (uniquely determined by the linear
equivalence of L up to a translation) whose fan is �.

We will consider the case where � is simplicial, to ensure that X� is a Mori dream
space [35]. In that case, X� has at worst orbifold singularities; equivalently it is normal
and Q–factorial (i.e any Weil divisor is Q-Cartier) [19, p.549].

The torus relative Futaki invariant of a toric polarised variety (X , L) can be iden-
tified with the difference of the barycentres of the polytope PL and its boundary as
highlighted in [24]. More precisely, NR is the Lie algebra of the real compact torus
lying in TN and thus parameterises the space of toric holomorphic vector fields on
X . Alternatively, elements of NR are identified with affine-linear functions on PL .
The Futaki invariant in this setting coincides, up to a positive factor, with a function
Fut : NR → R defined at f ∈ NR by

Fut( f ) = 1

VolM (∂PL)

∫
∂P

f �∂P − 1

VolM (PL)

∫
P
f � M (5.1)

where VolM (∂PL) = ∫
∂P �∂P , VolM (PL) = ∫

P � M and the measures � M and
�∂P will be defined in the next paragraph. It follows from this formula (5.1), since
f is affine linear, that the vanishing of the Futaki invariant for all such functions f is
equivalent to the barycentres of P and ∂P being the same, as claimed.

We now recall the definition of the measures used to compute these barycentres.
With the lattice M comes a unique measure on MR, the Lebesgue measure, scaled so
thatMR/M has volume1. The samehappens for each rational subspaces H ofMR, i.e.,
those such thatM∩H span H . In particular, this is true for the hyperplaneρ∨+mwhere
ρ ∈ �(1) andm ∈ M and more generally by translation form ∈ MR. These measures
will be encoded by volume forms, say � M ∈ �n(MR) and �ρ ∈ �n−1(ρ∨ +m). We
define �∂P so that its restriction to the facet of P corresponding to ρ ∈ �(1) equals
�ρ .

Remark 5.1 Note that along ρ∨ + m, we have

uρ ∧ �ρ = −� M (5.2)

so the Futaki invariant formula (5.1) coincides with Donaldson’s formula in [24].
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Recall that a Cartier divisor D on X is necessary of the form D ∼ ∑
ρ∈�(1) aρDρ

and is associated to a polyhedron

PD := {m ∈ MR | 〈m, uρ〉 ≥ −aρ, ρ ∈ �(1)}.

For ρ ∈ �(1), we define the (possibly empty) convex set FPD
ρ := PD ∩ {m ∈

MR | 〈m, uρ〉 = −aρ}. The boundary of PD , if non-empty, is an union of set of the
forms FPD

ρ . If D is ample FPD
ρ is a non empty codimension 1 face for any ρ ∈ �(1),

otherwise FPD
ρ might be of lower dimension or empty. If dim FPD

ρ < dim MR − 1
then FPD

ρ has no contribution on the following numerical invariant:

VolM (∂PD) :=
∑

ρ∈�(1)

∫
F
PD
ρ

�ρ.

Here, if dim FPD
ρ = n − 1, then FPD

ρ is endowed with the orientation coming from
the inclusion FPD

ρ ⊂ PD; that is,
∫
F
PD
ρ

�ρ > 0.

Thanks to [19, Theorem 4.1.3], VolM (∂PD) depends on D only up to linear equiva-
lence. The notation VolM (∂PD) might be misleading because when dim PD = n − 1,
the usual boundary ∂PD = ∅ but VolM (∂PD) �= 0. This situation does not happen
when D is big [19, p.427].

Lemma 5.2 Let L be an ample line bundle over X = X� . For any x ∈ [0,+∞) and
ρ ∈ �(1), we have Vol(L) = n!VolM (P),

Vol(L − xDρ) = n!VolM (PL ∩ (〈, uρ〉 ≥ x − aρ)),

and for x ∈ [0, τL(Dρ))

Vol′(L − xDρ) · (KX ) = −n!VolM (∂(PL−xDρ )).

Proof The first two statements are proved by substituing −KX with L in Fujita’s
argument of Claim 6.2 in [25]. For the last statement, note that for x ∈ [0, τL(Dρ)),
the divisor L − xDρ is big and thus Px := PL−xDρ is a full dimensional polytope,
and the same hold for Px,t := PL−xDρ+t KX when t ∈ R is sufficiently small. We pick
aλ(x) ∈ R so that

L − xDρ ∼
∑

λ∈�(1)

aλ(x)Dλ

and recall that −KX ∼ ∑
λ∈�(1) Dλ [19, Theorem 8.2.3]. Hence

L − xDρ + t KX ∼
∑

λ∈�(1)

(aλ(x) − t)Dλ.
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Assuming t > 0, Px,t ⊆ Px and if ε > 0 is small enough the combinatorial type
of Px,t does not depend on t ∈ [0, ε). Then

VolM (Px,t ) = VolM (Px ) − VolM (Px\Px,t )
= VolM (Px ) −

∫ t

0
VolM (∂Px,s)ds. (5.3)

The derivative with respect to t of the right hand side is −VolM (∂(PL−xDρ )). To
conclude the proof, one argues that the left hand side isC1 so that wemay compute the
derivative at t = 0 using any converging sequence (so assuming t > 0 is sufficient). ��
Corollary 5.3 For a compact toric variety X� and ample bundle L, we have that

μ(X , L) = VolM (∂PL)

nVolM (PL)

and for any prime toric divisor D = Dρ , we have

βL(D) = VolM (PL) + VolM (∂PL)

VolM (PL)

∫ τ

0
VolM (PL−xD)dx −

∫ τ

0
VolM (∂(PL−xD)dx .

Lemma 5.4 Fix λ ∈ �(1) and an ample line bundle L. We have

βL(Dλ)

VolM (∂PL)
= 〈bPL − b∂PL , uλ〉

where bPL := bar(PL ,� M ) and b∂PL := bar(∂PL ,��) are the barycentres.

Remark 5.5 Whenever L = −KX , using −KX ∼ ∑
λ∈�(1) Dλ one can check that

(
1 + 1

n

)
bP = b∂P

and we recover Fujita’s formula [25, Theorem 6.1].

Proof We denote P = PL , Px := PL−xDλ and τ = τDλ(L). Note that

P =
⊔

0≤x≤τ

Fλ,x

where Fλ,x = P ∩ {m ∈ MR | 〈m, uλ〉 = −aλ + x} and L = ∑
ρ∈�(1) aρDρ . Then,

∫
P
〈m, uλ〉� M =

∫ τ

0
(x − aλ)

(∫
Fλ,x

�λ

)
dx =

∫ τ

0
(x − aλ)Volλ(Fλ,x )dx
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where Volλ(Fλ,x ) := ∫
Fλ,x

�λ. Now, we have

Volλ(Fλ,x ) = −1

n!
d

dx
Vol(L − xDλ) = − d

dx
VolM (PL−xDλ).

Hence, using integration by parts, we obtain

∫
P
〈m, uλ〉� M = −aλ VolM (P) +

∫ τ

0
VolM (PL−xDλ) dx . (5.4)

We define the affine-linear function �λ(m) = 〈m, uλ〉 + aλ so that 0 = minP {�λ}
and thus τ = maxP {�λ}. The boundary barycentre gives

〈b∂P , uλ〉 + aλ = 1∫
∂P ��

∫
∂P

�λ ��. (5.5)

As before we can write

∫
∂P

�λ �� =
∫ τ

0
x Voln−2

λ,� (∂P ∩ {�λ = x})dx

where Voln−2
λ,� (∂P ∩ {�λ = x}) is the volume of ∂P ∩ {�λ = x} with respect to a

volume form and orientation that are cumbersome to define but satisfy

− d

dx
VolM (∂P ∩ {�λ > x}) = Voln−2

λ,� (∂P ∩ {�λ = x}).

Using that VolM (∂P ∩{�λ > x}) = VolM (∂Px )−Volλ(Fλ,x ) and integration by parts
produces

∫
∂P

�λ �� =
∫ τ

0
d

(
x

[
VolM (∂Px ) − Volλ(Fλ,x )

])

+
∫ τ

0

(
VolM (∂Px ) − Volλ(Fλ,x )

)
dx

= −τ VolM (∂Pτ ) + τ Volλ(Fλ,τ ) +
∫ τ

0
VolM (∂Px )dx − Vol P

=
∫ τ

0
VolM (∂Px )dx − Vol P. (5.6)

Here, VolM (∂Pτ ) := limx→τ VolM (∂Px ) and for the last line we have used that
VolM (∂Pτ ) = Volλ(Fλ,τ ). Indeed, if there is no parallel facets to FP

λ in P then both
vanish, while if Fλ,τ is a facet of P then VolM (∂Pτ ) = Volλ(Fλ,τ ). We get the result
we seek by combining (5.6), (5.5) and (5.4). ��
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5.1 Star subdivision

We next consider the case of a toric prime divisor on a birational toric model Y → X .
Assume again that X = X� is a compact toricmanifoldwith (complete and simplicial)
fan �. Consider uν ∈ N a primitive lattice element with ray ν = Cone(uν) and the
associated star subdivision�∗

ν := �∗(ν) as defined in [19, p.515] which is refinement
of �. Note that

�∗
ν (1) = �(1) ∪ {ν}

as proved in [19, Theorem 11.1.6] and that �∗
ν is complete and simplicial. Thus �∗

ν is
associated to a (normal) compact toric variety sayY , with atworst orbifold singularities
[19, Theorem 11.4.8], and on which ν defines Dν , a primeWeil divisor. This divisor is
the exceptional divisor of the toric morphism ψ : Y → X induced from the inclusion
ψ : �∗

ν → �.
We assume that ν /∈ �(1) (actually the case ν ∈ �(1) coincides with what we

have done above) and denote σ the cone of � of minimal dimension, say r , among
those containing ν. Thus σ(1) = {u1, . . . , ur } and there exists ci ∈ N

∗ such that
uν = ∑r

i=1 ci ui . Using [19, Lemma 11.4.10], we have that

KY + Dν = ψ∗KX + AX (Dν)Dν

where AX (Dν) = ∑r
i=1 ci .

Letting L = ∑
ρ∈� aρDρ be an ample line bundle over X , we denote ϕL : � → R,

the support function of L (so that aρ = −ϕL(uρ)). Using the fact that the support
function of ψ∗L =: H is also ϕL (see the proof of [19, Lemma 11.4.10]) we obtain
that

H =
(

−
r∑

i=1

ciϕL(ui )

)
Dν +

∑
ρ∈�

aρDρ.

Moreover, since L is ample on X there are points m ∈ PL such that 〈m, ui 〉 =
ϕL(ui ), ∀ui ∈ σ(1). More precisely, the hyperplane A := {m ∈ MR | 〈m, uν〉 =∑r

i=1 ciϕL(ui )} intersects PL in a face F whose normal cone is σ . Denote the affine-
linear function

�ν(m) := 〈m, uν〉 −
r∑

i=1

ciϕL(ui ).

We have that PL ⊂ {�ν ≥ 0} and thus PH = PL .
Observe that in the proof of Lemma 5.4 does not use that Cone(uλ) ∈ �, hence

recycling it in our case gives

βL(Dν)

VolM (∂PL)
= (AX (Dν) − 1)

VolM PL
VolM (∂PL)

+ 〈bPL − b∂PL , uν〉. (5.7)
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Corollary 5.6 Assume that the (torus relative) Futaki invariant of (X , L) vanishes
identically (i.e bPL = b∂PL ). To any primitive vector ν ∈ N there is an associated a
valuation Dν , defined via the refinement �∗

ν as above, which satisfies βL(Dν) ≥ 0.
Moreover, equality holds if ν ∈ �(1).

Suppose now that Y is a compact toric variety Y and ψ : Y → X is a proper
birational toric morphism with exceptional (toric prime) divisor F . Note that in that
situation, Y is associated to a fan, Y = X�̃ , and the associated map ψ : �̃ → � is a
refinement. Also, �̃ must be of the form above using the description of the exceptional
sets [19, Proposition 11.1.10]. Thus Corollary 5.6 gives a complete description of toric
valuative stability.

Proof of Theorem 1.2 Assume βL(F) ≥ 0 for any toric prime divisor F over X .
Because X compact, � is complete and thus some positive real numbers tρ > 0
satisfy

∑
ρ∈�(1)

tρuρ = 0.

By linearity of the Futaki invariant and by Lemma 5.4, we have

0 ≤
∑

ρ∈�(1)

tρβL(Dρ) = VolM (∂PL)
∑

ρ∈�(1)

tρFutL(uρ) = 0.

Thus, βL(Dρ) = 0 for any ρ ∈ �(1). The converse is Corollary 5.6. ��
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36. Kaloghiros, A.-S., Küronya, A., Lazić, V.: Finite generation and geography of models. (Kyoto, 2011),

Adv. Stud. Pure Math., vol. 70, pp. 215–245. Math. Soc., Tokyo (2016)
37. Kollár, J.: Singularities of pairs. Algebraic geometry–Santa Cruz 1995. In: Proc. Sympos. Pure Math.,

Part 1, vol. 62, pp. 221–287. American Mathematical Society, Providence, RI (1997)
38. Lazarsfeld, R.: Positivity in algebraic geometry I: Classical setting line bundles and linear series. Ergeb-

nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics,
vol. 48, pp. xviii+387. Springer, Berlin (2004)

39. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)
40. Li, C., Xu, C.: Special test configuration and K-stability of Fano varieties. Ann. Math. (2) 180(1),

197–232 (2014)
41. Liu, Y., Xu, C., Zhuang, Z.: Finite generation for valuations computing stability thresholds and appli-

cations to K-stability (2021). arXiv:2102.09405
42. Odaka, Y.: The Calabi conjecture and K-stability. Int. Math. Res. Not. 2012(10), 2272–2288 (2012)
43. Odaka, Y.: A generalization of the Ross–Thomas slope theory. Osaka J. Math. 50(1), 171–185 (2013)
44. Phong, D., Sturm, J.: Test configurations for K-stability and geodesic rays. J. Symplectic Geom. 5(2),

221–247 (2007)
45. Ross, J., Thomas, R.: An obstruction to the existence of constant scalar curvature Kähler metrics. J.

Differ. Geom. 72(3), 429–466 (2006)
46. Székelyhidi, G.: On blowing up extremal Kähler manifolds. Duke Math. J. 161(8), 1411–1453 (2012)
47. Székelyhidi, G.: Filtrations and test-configurations. With an appendix by Sebastien Boucksom. Math.

Ann. 362(1–2), 451–484 (2015)
48. Tian, G.: Kähler–Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)
49. Tian, G.: Canonical metrics in Kähler geometry. Lectures in Mathematics ETH Zürich, pp. vi+101.

Birkhäuser, Basel (2000)
50. Wang, X.: Height and GIT weight Math. Res. Lett. 19(4), 909–926 (2012)
51. WittNyström,D.: Test configurations andOkounkovbodies.Compos.Math.148(6), 1736–1756 (2012)
52. Yau, S.T.:Openproblems in geometry.Differential geometry: partial differential equations onmanifolds

(Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, pp. 1–28. American Mathematical
Society, Providence, RI (1993)

53. Zhang,K.: Continuity of delta invariants and twistedKähler-Einsteinmetrics. Adv.Math. 388(107888),
25 (2021)

54. Zhang, K.: A quantization proof of the uniform Yau–Tian–Donaldson conjecture (2021).
arXiv:2102.02438

55. Zhu, Z.: A note on equivariant K-stability. Eur. J. Math. 7(1), 116–134 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.mathsoc.jp/section/algebra/algsymp_past/algsymp19_files/Fujita.pdf
http://arxiv.org/abs/2102.09405
http://arxiv.org/abs/2102.02438

	Valuative stability of polarised varieties
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Valuations and associated invariants
	2.2 K-stability

	3 Integral K-stability and valuative stability
	3.1 Passing from a valuation to a test configuration
	3.2 Running the MMP
	3.3 The converse
	3.4 Equivariant K-polystability

	4 Examples and properties
	4.1 Calabi–Yau and canonically polarised varieties
	4.2 Valuatively unstable varieties
	4.3 Bounds on the alpha invariant

	5 Toric varieties
	5.1 Star subdivision

	Acknowledgements
	References




