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A B S T R A C T

Deformable image registration (DIR) can be used to track cardiac motion. Conventional DIR algorithms aim to
establish a dense and non-linear correspondence between independent pairs of images. They are, nevertheless,
computationally intensive and do not consider temporal dependencies to regulate the estimated motion in a
cardiac cycle. In this paper, leveraging deep learning methods, we formulate a novel hierarchical probabilistic
model, termed DragNet, for fast and reliable spatio-temporal registration in cine cardiac magnetic resonance
(CMR) images and for generating synthetic heart motion sequences. DragNet is a variational inference
framework, which takes an image from the sequence in combination with the hidden states of a recurrent
neural network (RNN) as inputs to an inference network per time step. As part of this framework, we condition
the prior probability of the latent variables on the hidden states of the RNN utilised to capture temporal
dependencies. We further condition the posterior of the motion field on a latent variable from hierarchy
and features from the moving image. Subsequently, the RNN updates the hidden state variables based on
the feature maps of the fixed image and the latent variables. Different from traditional methods, DragNet
performs registration on unseen sequences in a forward pass, which significantly expedites the registration
process. Besides, DragNet enables generating a large number of realistic synthetic image sequences given
only one frame, where the corresponding deformations are also retrieved. The probabilistic framework allows
for computing spatio-temporal uncertainties in the estimated motion fields. Our results show that DragNet
performance is comparable with state-of-the-art methods in terms of registration accuracy, with the advantage
of offering analytical pixel-wise motion uncertainty estimation across a cardiac cycle and being a motion
generator. We will make our code publicly available.
1. Introduction

Spatio-temporal motion tracking has been widely used in medical
applications such as motion management in radiation therapy, tumour
localisation, treatment planning, assessing organ motion in different
image modalities (Giger et al., 2018; Teng et al., 2021; Mezheritsky
et al., 2022), as well as analysing the heart motion along a cardiac
cycle via motion indices (De Craene et al., 2012; Rohé et al., 2018;
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Krebs et al., 2019b, 2021). One way of motion tracking is to perform
image registration which finds an optimal spatial transformation that
best aligns two or more images based on some image similarity met-
rics. Traditional deformable registration algorithms iteratively solve
an optimisation problem for each image pair. These techniques are
computationally intensive and not applicable to real-time motion anal-
ysis. For real-time settings, the registration must be fast and accurate.
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Computation of the motion fields in a sequence is, therefore, more
challenging using traditional techniques.

Deep learning (DL) based techniques have provided the means to
significantly speed up the registration process for unseen images by
proposing a trained network (Chen et al., 2021). These techniques can
be categorised into supervised or unsupervised forms. The supervised
methods rely on ground-truth displacement vector fields (DVFs), which
are often provided by random transformation generation (Salehi et al.,
2018; Eppenhof and Pluim, 2018; Eppenhof et al., 2018), conven-
tional registration methods (Sentker et al., 2018; Fan et al., 2019), or
model-based DVF generation techniques (Uzunova et al., 2017; Sokooti
et al., 2019). Random transformations are generally different from
the true physiological motion, which results in bias in the training
and performance degradation. Sokooti et al. (2019) have shown that
training a supervised model for 3D-CT lung image registration using
a realistic model-based DVF generation performs better compared to
the random transformations in terms of registration error. In most
medical applications, the lack of training datasets with known ground-
truth DVFs limits the utility of the supervised registration algorithms.
Besides, lacking availability of training images of a certain kind is a big
challenge. Uzunova et al. (2017) proposed a model-based data augmen-
tation scheme to allow for deep learning on small training populations.
They adapted the supervised FlowNet (Dosovitskiy et al., 2015) ar-
chitecture for convolutional neural networks (CNN)-based optical flow
estimation in cardiac images. This approach is limited to generating a
diverse set of training image pairs with known correspondences but is
not suitable for generating realistic sequential image data.

Unsupervised motion estimation techniques have effectively allevi-
ated the data associated challenges of the supervised models. In these
techniques, generally, some 2D or 3D convolutional layers are followed
by a spatial transformer layer to form the structure of the unsupervised
DIR networks (Balakrishnan et al., 2019; Dalca et al., 2018; Krebs
et al., 2018, 2021; De Vos et al., 2017, 2019; Kuang and Schmah,
2019). Jaderberg et al. (2015) proposed the spatial transformer net-
work (STN), which has been utilised frequently as a component in
the unsupervised registration models (Balakrishnan et al., 2019; Dalca
et al., 2018; Krebs et al., 2018, 2021; De Vos et al., 2017). STN deforms
the moving image in a fully differentiable manner and enables im-
age similarity optimisation during training. Balakrishnan et al. (2019)
proposed an unsupervised CNN-based model in the UNet structure,
termed VoxelMorph, for brain MRI registration. VoxelMorph achieves
comparable performance to the non-learning-based methods such as
ANTs SyN (Avants et al., 2008, 2011) and NiftyReg in terms of the
Dice score of multiple anatomical structures while operating orders
of magnitude faster (Balakrishnan et al., 2019). De Vos et al. (2017)
proposed the 2D DIRNet model consisting of a CNN regressor, a spatial
transformer, and a resampler and tested that on MNIST and short-axis
(SAX) cardiac MR (CMR) image slices. Later, the 3D deep learning
image registration (DLIR) framework consisting of a stack of CNNs
was proposed for multi-stage unsupervised affine and deformable image
registration (De Vos et al., 2019). The model was evaluated on image
pairs of cardiac MRIs and chest CT with comparable results to the
conventional SimpleElastix method (Marstal et al., 2016), but achieved
a faster running time (De Vos et al., 2019). FAIM, a CNN model for
3D Brain MR image registration, includes a penalty loss on negative
Jacobian determinants to decrease regions of non-invertibility (Kuang
and Schmah, 2019). With the same objectives, Zhang (2018) proposed
Inverse-Consistent deep Network (ICNet) on T1-weighted brain MRI,
which controls the diffeomorphic property of the transformation by
inverse-consistent and anti-folding constraints.

These learning-based DIR models, although valuable in many as-
pects, cannot generate synthetic motion beyond the registration task.
This is interesting for recovering missing frames in a sequence, data
augmentation, and even validating supervised DIR algorithms. Re-
2

cently, probabilistic frameworks were suggested for this purpose (Dalca
et al., 2018; Krebs et al., 2018, 2019a,b, 2021). Dalca et al. (2018) pro-
posed a probabilistic model based on a 3D UNet-style architecture and
applied that on brain MRIs enforcing diffeomorphic registration by in-
troducing scaling and squaring differentiable layers. Krebs et al. (2018,
2019a) proposed a low-dimensional probabilistic parameterisation of
deformations using a conditional variational autoencoder (CVAE) net-
work. They utilised a Gaussian smoothness kernel followed by a dif-
ferentiable exponentiation layer to obtain diffeomorphism transforma-
tions, using symmetric local cross-correlation criterion as the similarity
loss function. However, these models lack the constraints deploying
temporal dependencies in the loss function to regulate the continuous
motion in a sequence. More recently, Krebs et al. (2021) extended
their probabilistic model to a spatio-temporal registration method for
SAX cine CMR images. In this model, time dependencies are mod-
elled using a temporal convolutional network (TCN) and a temporal
dropout (TD) scheme to capture local dependencies over time. They
performed motion simulation and motion transport by applying the re-
covered motion from one subject to another (Krebs et al., 2019b, 2021).
Although the temporal dependencies were elegantly captured via a
Gaussian process in the low dimensional latent space, no pixel-wise
explicit probability distributions for the deformations were specified.
The uncertainties in the estimated deformations remained unexplored
and only cardiac cycle generation was demonstrated in terms of heart
volumetric variations.

Another advantage of the probabilistic view over other learning-
based methods is analytical uncertainty estimation. Clinicians benefit
from this information in terms of the data analysis and confidence in
the model for decision-making. Data related uncertainty (also referred
to as aleatoric uncertainty) and uncertainty in the model parameters
and structure (epistemic uncertainty) induce the predictive uncertainty
(i.e., the confidence we have in a prediction) (Psaros et al., 2022).
However, they are difficult to be assessed in a high-dimensional com-
plex model, needing an uncertainty quantification approach proposed
in Bayesian neural networks (Psaros et al., 2022; Wilson and Izmailov,
2020). One practical approach for approximate inference of the uncer-
tainties is to execute stochastic forward pass when applying dropouts to
weights (Gal and Ghahramani, 2015; Kendall et al., 2015; Kendall and
Gal, 2017). However, this strategy increases inconsistent outputs (Kohl
et al., 2018). By sampling from the learned velocity fields, propagating
them through the diffeomorphic layers to calculate the deformation
fields, and calculating the empirical diagonal covariance across sam-
ples, Dalca et al. (2018) describe an empirical method for estimating
uncertainty for motion fields. However, the pixel-level deformation
uncertainties are not explicitly modelled by this technique.

In summary, for motion tracking, unsupervised learning-based DIR
approaches are preferred. The majority of the proposed methods re-
cover deformations between independent pairs of images and, as a
result, do not capture temporal dependencies. Only a few research
provide probabilistic models to simulate motion for a particular appli-
cation, and mainly do not include spatio-temporal modelling. Explicit
modelling of deformation uncertainties is largely ignored in most of
these studies. On the other hand, generating a realistic motion sequence
given one frame is reported challenging in cardiac spatio-temporal
motion modelling (Krebs et al., 2021).

In this study, to address these limitations, we propose a novel
probabilistic spatio-temporal registration framework for cine cardiac
MR imaging with two distinctive aims: (i) learning temporal motion
fields by modelling the dependencies across the full range of cardiac
frames, and (ii) generation of realistic CMR image sequences and their
corresponding motion fields, which could be potentially applicable for
motion simulation and data augmentation. Our main contributions are
as follows:

• We propose an unsupervised statistical motion model, which
uses a recurrent latent variable structure to infer probabilistic

displacement fields in their original high dimensional spaces.
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• We generate high temporal resolution image sequences given only
one reference frame. To this end, the model learns to generate
time dependent motion fields. This is accomplished through learn-
ing spatio-temporally-solved probability distributions for motion
fields.

• The proposed probabilistic framework explicitly models the
spatio-temporal uncertainty maps in the pixel level, which en-
ables efficient analysis of the confidence in the derived heart
motions without opting for empirical methods.

he remainder of this paper is organised as follows. The proposed
odel is described in Section 2. Section 3 presents the experimental

nalysis and results. We discussed the results in Section 4. Finally,
ection 5 draws conclusions and signposts directions for future work.

. Methodology

We leverage the generative nature of the variational autoencoder
VAE) in combination with recurrent neural network (RNN) (Chung
t al., 2015) to introduce the Deformable Registration and Generative
etwork (DragNet) for predicting spatio-temporal DVFs in image se-
uences and generating synthetic datasets. Here, the purpose of the
emporal registration algorithm is to compute the probability distri-
ution of the DVFs per time step 𝑡 (𝑝(𝐃𝑡)), which spatially transforms

image 𝐈𝑡−1 (moving image) to the next image 𝐈𝑡 (fixed image). Note
that considering a reference moving image and finding deformations
between that and all other images in the sequence is also possible in
this framework (Section 3.7). Details of the method are described in the
following including, the probabilistic DragNet, objective function, and
the network architecture.

2.1. DragNet for probabilistic spatio-temporal registration

Given a temporal sequence of 𝑇 images, {𝐈0,… , 𝐈𝑇−1}, acquired
during a full cardiac cycle, consider expanding the joint distribution
𝑝(𝐈≤𝑇−1, 𝐳≤𝑇−1,𝐃≤𝑇−1) using the chain rule as

𝑝(𝐈≤𝑇−1, 𝐳≤𝑇−1,𝐃≤𝑇−1)

=
𝑇−1
∏

𝑡=0
𝑝(𝐈𝑡|𝐈<𝑡, 𝐳≤𝑡,𝐃≤𝑡)𝑝(𝐳𝑡|𝐳<𝑡, 𝐈<𝑡,𝐃≤𝑡)𝑝(𝐃𝑡|𝐃<𝑡, 𝐳<𝑡, 𝐈<𝑡) (1)

where the image at time 𝑡, 𝐈𝑡, depends on a set of preceding images
𝐈<𝑡, the latent variables 𝐳≤𝑡, and the displacement field maps 𝐃≤𝑡. The
model learns the spatio-temporal dependencies between images via a
recurrent Convolutional Long Short Term Memory (Conv-LSTM) (Shi
et al., 2015). The dependencies among the preceding images, the latent
variables, and the displacements field maps (i.e., 𝐈<𝑡, 𝐳<𝑡, and 𝐃<𝑡) are
captured through the hidden state variable 𝐡𝑡−1 in the Conv-LSTM.
Besides, at each time step, we condition the generative process only
on the previous image 𝐈𝑡−1 (moving image) and generate the current
image 𝐈𝑡 using the inferred distribution 𝐃𝑡. Consequently, we assume
the following factorisation replacing Eq. (1)

𝑝(𝐈≤𝑇−1, 𝐳≤𝑇−1,𝐃≤𝑇−1) =
𝑇−1
∏

𝑡=0
𝑝(𝐈𝑡|𝐈𝑡−1,𝐃𝑡)𝑝(𝐳𝑡|𝐡𝑡−1)𝑝(𝐃𝑡|𝐡𝑡−1) (2)

Here, we define 𝐈−1 = 𝐈𝑇−1, such that for 𝑡 = 0 in Eq. (2), we
have 𝑝(𝐈0|𝐈𝑇−1,𝐃0), meaning that in the consecutive image registration
framework, we use the last image in the sequence (i.e., 𝐈𝑇−1) as the
moving image to generate the image at the time 0. For the sake
of simplicity, we assume that 𝐈𝑡 is conditionally independent of 𝐳≤𝑡
but dependent on 𝐃𝑡. Because of the 𝐳𝑡 dependence on 𝐡𝑡−1, we can
indirectly relate 𝐈𝑡 to 𝐳𝑡 and also to the preceding frames by inferring
the posterior distribution of the displacements from the latent variable
𝐳𝑡, as described below. In Eq. (2), we condition the prior probability of
the latent variables 𝐳𝑡 on the 𝐡𝑡−1, which is assumed to be a multivariate
Gaussian distribution
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𝑝(𝐳𝑡|𝐡𝑡−1) =  (𝐳𝑡;𝝁𝐳𝑡 ,𝑝𝑖, 𝑑𝑖𝑎𝑔(𝝈𝐳𝑡 ,𝑝𝑖
)) (3) a
Fig. 1. Graphical representation of the model at time 𝑡, indicating the prior distribution
of 𝐳𝑡 based on Eq. (3) (in brown), inference of the approximate posterior probabilities
of 𝐳𝑡 and 𝐃𝑡 using Eqs. (6) and (7), respectively, generating motion 𝐃𝑡 and image 𝐈𝑡
in red), updating the hidden state variables of the RNN based on Eq. (9)(in blue).

here 𝝁𝐳𝑡 ,𝑝𝑖 and 𝝈2
𝐳𝑡 ,𝑝𝑖

denote the mean and covariance of the distri-
ution learned via a network. We also assume a Gaussian distribution
or the prior of the displacement fields 𝐃𝑡 with a zero mean and the
dentity covariance

(𝐃𝑡|𝐡𝑡−1) =  (𝐃𝑡; 𝟎, 𝟏) (4)

e use the variational approach introduced by Kingma and Welling
2013) and assume that the approximate posterior of 𝐳𝑡 and 𝐃𝑡 can be
actorised as

(𝐃≤𝑇−1, 𝐳≤𝑇−1|𝐈≤𝑇−1) =
𝑇−1
∏

𝑡=0
𝑞(𝐳𝑡|𝐳<𝑡,𝐃<𝑡, 𝐈≤𝑡)𝑞(𝐃𝑡|𝐃<𝑡, 𝐳≤𝑡, 𝐈≤𝑡)

=
𝑇−1
∏

𝑡=0
𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1)𝑞(𝐃𝑡|𝐈𝑡−1, 𝐳𝑡) (5)

here

(𝐳𝑡|𝐈𝑡,𝐡𝑡−1) =  (𝐳𝑡;𝝁𝐳𝑡 , 𝑑𝑖𝑎𝑔(𝝈
2
𝐳𝑡
)) (6)

hen, we take a sample, �̂�𝑡, from 𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1) using the standard repa-
ameterisation trick (Kingma and Welling, 2013). Features of this sam-
le in concatenation with the feature sets from 𝐈𝑡−1 form the input of
neural network that estimates 𝝁𝐃𝑡

and 𝜮𝐃𝑡
, the parameters of the

ultivariate Gaussian posterior distribution of 𝐃𝑡 defined as

(𝐃𝑡|𝐈𝑡−1, �̂�𝑡) =  (𝐃𝑡;𝝁𝐃𝑡
,𝜮𝐃𝑡

) (7)

wo inference networks implement the Eqs. (6) and (7), predicting
he parameters of the Gaussian distributions from their corresponding
nputs. For image generation at time 𝑡, we first draw a sample displace-
ent field �̂�𝑡 ∼ 𝑞(𝐃𝑡|𝐈𝑡−1, �̂�𝑡) and then obtain 𝐈′𝑡 image by warping the

𝑡−1 via the displacement fields �̂�𝑡 using a spatial transformer network
STN) (Jaderberg et al., 2015):

′
𝑡 =  (𝐈𝑡−1, �̂�𝑡) (8)

here  is the spatial transformation (resampling) module.
Finally, the Conv-LSTM module updates its hidden state variables

sing the recurrence equation

𝑡 = 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀
(

𝐈𝑡, 𝐳𝑡,𝐃𝑡,𝐡𝑡−1
)

(9)

ig. 1 shows the graphical representation of our models for implement-
ng the prior, variational inference, generative, and the recurrence path
t time 𝑡.
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Fig. 2. The architecture of the proposed DragNet is illustrated. The model comprises of five main modules: neural networks to compute the parameters of the prior and the
posterior distributions of the latent variables (𝐳𝑡), posterior distributions of the displacement field (𝐃𝑡), the deterministic recurrent parameters (𝐡𝑡) via Conv-LSTM layer, and a
spatial transformer network (STN) layer that warps the moving image from the previous frame (or a specific reference frame) to the fixed image at time 𝑡. The CMR images were
reproduced with a permission of UK Biobank©.
2.2. Objective function

The generative model 𝑝(𝐈≤𝑇−1, 𝐳≤𝑇−1,𝐃≤𝑇−1), Conv-LSTM network,
and the inference model 𝑞(𝐃≤𝑇−1, 𝐳≤𝑇−1|𝐈≤𝑇−1) are trained jointly by
maximising a variational Evidence Lower Bound (ELBO) (Kingma and
Welling, 2013) with respect to their parameters using stochastic gra-
dient methods. Moreover, to control the smoothness of the predicted
motion fields, we use a smoothness loss used in previous learning-based
methods by Yu et al. (2016) and Balakrishnan et al. (2019). Therefore,
The overall loss function is given by

 = −𝐸𝐿𝐵𝑂 + 𝜆𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 (10)

where 𝜆 is a regularisation parameter that balances the registration
accuracy and the smoothness of the predicted displacements. In our
experiments, we have set 𝜆 = 0.03. 𝐸𝐿𝐵𝑂 is defined as

𝐸𝐿𝐵𝑂 = E𝑞(𝐃≤𝑇−1 ,𝐳≤𝑇−1|𝐈≤𝑇−1) log
𝑝(𝐈≤𝑇−1, 𝐳≤𝑇−1,𝐃≤𝑇−1)
𝑞(𝐃≤𝑇−1, 𝐳≤𝑇−1|𝐈≤𝑇−1)

(11)

Using Eqs. (2) and (5), the ELBO term can be written as

𝐸𝐿𝐵𝑂 = E∏𝑇−1
𝑡=0 𝑞(𝐳𝑡|𝐈𝑡 ,𝐡𝑡−1)𝑞(𝐃𝑡|𝐈𝑡−1 ,𝐳𝑡)

[𝑇−1
∑

𝑡=0
log 𝑝(𝐈𝑡|𝐈𝑡−1,𝐃𝑡)

+ log
𝑝(𝐳𝑡|𝐡𝑡−1)

𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1)
+ log

𝑝(𝐃𝑡|𝐡𝑡−1)
𝑞(𝐃𝑡|𝐈𝑡−1, 𝐳𝑡)

]

(12)

which can be decomposed into three terms as follows

𝐸𝐿𝐵𝑂 = 𝑆𝑖𝑚 + 𝐳 + 𝐃 (13)

where 𝑆𝑖𝑚 controls the similarity between the warped image obtained
from Eq. (8) and the fixed image at each time step (i.e., 𝐈𝑡). On the other
hand, 𝐳 and 𝐃 constrain the probability distribution of the latent
variables 𝐳𝑡 and 𝐃𝑡. We derive the 𝑆𝑖𝑚 as

𝑆𝑖𝑚 ≃
𝑇−1
∑

𝑡=0

1
𝐿

𝐿
∑

𝑙=1
E𝑞(𝐃𝑡|𝐈𝑡−1 ,𝐳

(𝑙)
𝑡 ) log 𝑝(𝐈𝑡|𝐈𝑡−1,𝐃𝑡) (14)

where the expectation over 𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1) is taken empirically using 𝐿
Monte Carlo samples. In a similar manner, we have:

E𝑞(𝐃 |𝐈 ,𝐳(𝑙)) log 𝑝(𝐈𝑡|𝐈𝑡−1,𝐃𝑡) ≃
1

𝐾
∑

log 𝑝
(

𝐈𝑡|𝐈𝑡−1,𝐃
(𝑘)
𝑡 (𝐳(𝑙)𝑡 )

)

(15)
4

𝑡 𝑡−1 𝑡 𝐾 𝑘=1
where 𝐃(𝑘)
𝑡 (𝐳(𝑙)𝑡 ) indicates the 𝑘th DVF sample as a function of 𝐳(𝑙)𝑡 ∼

𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1). Hence Eq. (14) can be simplified as

𝑆𝑖𝑚 ≃ 1
𝐿𝐾

𝑇−1
∑

𝑡=0

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
log 𝑝

(

𝐈𝑡|𝐈𝑡−1,𝐃
(𝑘)
𝑡 (𝐳(𝑙)𝑡 )

)

≃ 1
𝐿𝐾

𝑇−1
∑

𝑡=0

𝐿
∑

𝑙=1

𝐾
∑

𝑘=1
‖𝐈𝑡 −  (𝐈𝑡−1,𝐃

(𝑘)
𝑡 (𝐳(𝑙)𝑡 ))‖2 (16)

The gradient of this approximation can be backpropagated with the
reparameterisation trick (Kingma and Welling, 2013).

The second term in the ELBO (Eq. (12)) denotes the Kullback–
Leibler divergence (KL divergence) (Hershey and Olsen, 2007) be-
tween the approximate posterior 𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1) and the prior distribution
𝑝(𝐳𝑡|𝐡𝑡−1) and is given by

𝐳 = −
𝑇−1
∑

𝑡=0


(

𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1) ∥ 𝑝(𝐳𝑡|𝐡𝑡−1)
)

(17)

which is computed analytically. Similarly, by drawing 𝐿 Monte Carlo
samples from 𝑞(𝐳𝑡|𝐈𝑡,𝐡𝑡−1), the KL divergence between the estimated
posterior and prior of 𝐃𝑡 can be computed using

𝐃 = − 1
𝐿

𝑇−1
∑

𝑡=0

𝐿
∑

𝑙=1


(

𝑞(𝐃𝑡|𝐈𝑡−1, 𝐳
(𝑙)
𝑡 ) ∥ 𝑝(𝐃𝑡|𝐡𝑡−1)

)

(18)

The detailed computations of 𝐳 and 𝐃 are given in Appendices A and
B.

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 in Eq. (10), acts as a diffusion regulariser and encour-
ages a smooth displacement field 𝐃𝑡 by taking spatial gradients of
displacements over the entire cardiac cycle

𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 =
𝑇−1
∑

𝑡=0
‖∇𝐃𝑡‖

2 (19)

We use stochastic gradient descent based methods to optimise the total
loss function (Eq. (10)) and learn the parameters of the network.

2.3. Network architecture and implementation

As Fig. 2 illustrates, the architecture of the model consists of five
different components:

• Module one (Prior of 𝐳𝑡): This module computes the parameters of
the prior distribution of the latent variable 𝐳𝑡 using Eq. (3). We
define 𝐡𝑡−1 ∈ R𝐶×𝑀×𝑁 , where 𝐶 and 𝑀 ×𝑁 indicate the channel
and spatial dimensions, respectively. In our implementation, we
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Fig. 3. Spatio-temporal registration between consecutive frames in an LAX CMR image sequence consisting of seven frames. The registered image at the first time point is obtained
by warping the image at time point 7 to the ED frame. The registered images show overall good compatibility with the reference images. The corresponding colour-coded DVF
maps showing the direction of displacements are smooth and mostly have positive Jacobian determinants. The reference CMR images were reproduced with a permission of UK
Biobank©.
set 𝐶, 𝑀 , and 𝑁 as 16, 32, and 32, respectively. We pass 𝐡𝑡−1
through the convolutional layers, then reshape the output to be
compatible for feeding through fully connected (FC) layers that
compute 𝝁𝐳𝑡 ,𝑝𝑖 and 𝝈2

𝐳𝑡 ,𝑝𝑖
∈ R𝑑 . In our experiments, we have set

the latent space dimension as 𝑑 = 64.
• Module two (Inference of 𝐳𝑡): Here, we compute the parameters

of the posterior distribution of the latent variable 𝐳𝑡 according
to Eq. (6), where a CNN generated feature map of 𝐈𝑡 ∈ R1×𝐻×𝑊

(i.e., 𝐅𝐈𝑡 ∈ R32×32×32 in Fig. 2) is concatenated with 𝐡𝑡−1 and used
as input. We sample 𝐳𝑡 ∈ R𝑑 and apply it as input to the next
module.

• Module three (Inference of 𝐃𝑡): In this module, we compute the
parameters of the posterior distribution for the displacement field
(𝐃𝑡) based on Eq. (7). The sampled 𝐳𝑡 from module 2 is applied
as an input to a fully connected layer and then reshaped to a 3D
tensor (𝐅𝐳𝑡 in Fig. 2) to be concatenated with 𝐅𝐈𝑀𝑜𝑣𝑖𝑛𝑔 (i.e., the
feature map of the moving image). Finally, after passing the
latter through the deconvolution layers in Fig. 2, this module
generates the tensors of 𝝁𝐃𝑡

,𝐕𝑡 ∈ R2×𝐻×𝑊 , and 𝝈2
𝐃𝑡

∈ R1×𝐻×𝑊

that determine the mean of the 𝐃𝑡’s posterior distribution as its
covariance matrix is given using

𝜮𝐃𝑡
= 𝝈2

𝐃𝑡
𝟏 + 𝐕𝑡𝐕𝑡

⊺ (20)

where 𝟏 ∈ R2×2×𝐻×𝑊 represents an identity matrix.
• Module four (Warping): This module consists of a spatial trans-

former network layer that, given a displacement field 𝐃𝑡 and
moving image, resamples the latter at the pixel locations specified
by 𝐃𝑡, warping the image.

• Module five: Here, a Conv-LSTM network is implemented to model
the temporal dependencies of the latent and deformation vari-
ables. As shown in Fig. 2, at each time step, this module updates
the hidden state variables based on the features of latent variables
and the fixed image at time 𝑡. The updated hidden state plays a
critical role in the estimation of the distribution of 𝐳𝑡+1 and 𝐃𝑡+1.

The whole framework is implemented using Python and PyTorch. The
Adam optimiser (Kingma and Ba, 2014) is used for optimising the loss
function, with the learning rate of 0.001.
5

3. Experiments and results

3.1. Utilised dataset

In this study, a dataset from UK Biobank (UKB) LAX cine CMR
images (4-chamber view) comprising 4620 subjects (mean age 58.7,
52.5% female) (Petersen et al., 2015) is analysed. The balanced steady-
state free precession (bSSFP) cine acquisition was used. Each cardiac
cycle imaged at 50 frames with the matrix size of 208 × 187 and
the in-plane image resolution of 1.8 × 1.8 mm2. More details on the
image acquisition protocol can be found in Petersen et al. (2015).
Ground-truth contours of the left and right atria (LA/RA) at the end-
diastolic (ED) and end-systolic (ES) frames, which were annotated by
clinical experts, are also used to evaluate the model performance. Each
sequence starts from the ED frame. All images were cropped to the
equal size of 128 × 128 pixels to cover the whole heart avoiding
redundant areas. Moreover, the image intensities were normalised to
the range of [0, 1] before feeding to the network. We have trained the
model using 4000 image sequences, which were selected randomly
from the population. The rest of the 620 subjects were used for the
evaluation. Each batch of training consists of 10 cardiac sequences.

3.2. Baseline registration methods and evaluation metrics

We compare our model, in terms of registration accuracy and spatio-
temporal deformation regularity, with five state-of-the-art deformable
image registration methods: Demons (Vercauteren et al., 2008, 2009),
ANTs SyN (Avants et al., 2008, 2011), NiftyReg (Modat et al., 2010),
a learning-based model (VoxelMorph) (Balakrishnan et al., 2019), and
temporal B-spline algorithm in Elastix (2D + t (3D)-Elastix) (Metz
et al., 2011). The diffeomorphic Demons approach is implemented
based on the original algorithm in Vercauteren et al. (2008) and
Vercauteren et al. (2009) and optimised on the CMR images in three-
level resolution with the number of iterations of 250. For the ANTs
SyN, we use the Symmetric Normalisation (SyN) implementation in
the publicly available Advanced Normalisation Tools (ANTs) software
package (Avants et al., 2011), with a mutual information similarity
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Table 1
Registration results (mean ± std) between consecutive frames on test sequences for different methods in terms of RMSE, the
number of pixels with negative Jacobian determinant, Dice scores at ED and ES when deforming LA+RA masks sequentially
from ED towards ES and vice versa, and the temporal gradients of the displacement fields. Bold values indicate the best
results among different techniques in each column.

Method RMSE #|𝐽𝐃| ≤ 0 Dice (%) at ED Dice (%) at ES Temporal Grad.

Demons 0.032 ± 0.01 3311 76.1 ± 6.2 85.5 ± 5.5 0.70 ± 0.22
ANTs SyN 0.037 ± 0.01 4060 79.4 ± 5.7 90.7 ± 2.9 0.53 ± 0.09
NiftyReg 0.033 ± 0.01 2484 80.9 ± 5.3 88.5 ± 2.8 0.65 ± 0.14
VoxelMorph 0.030 ± 0.01 3409 80.8 ± 4.9 90.6 ± 2.9 0.46 ± 0.09
2D+t-Elastix 0.036 ± 0.01 6369 80.4 ± 6.7 86.8 ± 5.8 0.32 ± 0.07
DragNet 0.032 ± 0.01 2118 81.1 ± 4.6 89.4 ± 3.0 0.33 ± 0.08
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measure. The gradient step size is set to 0.6, and smoothing for update
fields is 5 at three scales with 60 iterations each. We use the NiftyReg
package based on the Free-Form Deformation algorithm for non-rigid
registration and utilise the CPU version, which is publicly available by
the authors Modat et al. (2010). Specifically, we used the Localised
Normalised Cross Correlation (LNCC) objective function, grid spacing
of 5, and the number of iterations of 300. The temporal Elastix regis-
tration method is implemented based on the publicly available python
package and the original paper (Metz et al., 2011). We tuned it for
the given cine cardiac MRI by setting grid spacing of 8 and number
of iterations of 256. We implement VoxelMorph method with cross-
correlation similarity measure, based on a publicly available package
and trained the model using 4662 image pairs from the LAX CMR
dataset for 40 epochs with the learning rate of 0.001.

To measure the registration accuracy, we use the root mean square
error (RMSE) of intensities between the fixed and the warped images.
We also evaluate the diffeomorphic (invertibility) property of the reg-
istration algorithm by computing the Jacobian matrix 𝐽𝐃𝑡𝑘

= ∇𝐃𝑡𝑘 ∈
R2×2 that captures the local properties of deformation around pixel 𝑘.
The local deformation is diffeomorphic, only at locations for which
|𝐽𝐃𝑡𝑘

| > 0 (Ashburner, 2007). To assess the diffeomorphic property, we
count the number of pixels where |𝐽𝐃𝑡𝑘

| ≤ 0. The estimated temporal
deformations are assessed by deforming the LA/RA masks at the ED
phase towards the ES phase and vice versa. Then, the Dice similarity
coefficient (Dice, 1945) is utilised to assess the motion fields deforming
the anatomical structures of LA and RA over time. A Dice score of
one indicates the maximum anatomical match, whereas a score of zero
shows no overlap. A statistical paired t-test is applied to determine
if there is a significant difference between the groups of measured
metrics.

To assess the quality of the generated images, we use structural
similarity index measure (SSIM) (Wang et al., 2004) between the
original and the generated sequences. To investigate how the generated
motion sequences resemble the actual motion of a typical heart (motion
quality assessment), we measure variations of the area of the simulated
LA/RA over time when compared to the original variations.

3.3. Registration of consecutive frames

In this experiment, we evaluate the model performance on esti-
mating the DVFs between successive CMR images within sequences
consisting of seven frames showing clear distinctive appearances. The
original sequences were downsampled in time, such that the first frame
represents ED and the fourth frame corresponds to ES. Fig. 3 represents
an example set of results of spatio-temporal registration using the pro-
posed framework. The results show that there is generally a good match
between the reference and the registered images. The DVF maps are
smooth, leading to positive Jacobian determinant values. The colour
wheel shows the magnitude and direction of motion fields, where the
angle with the 𝑥-axis indicates the motion direction, and the colour
intensity expresses the magnitude of the displacement.

Table 1 shows the performance of the proposed model (DragNet)
compared with five other state-of-the-art techniques on the test se-
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quences in terms of: registration accuracy, the number of locations S
with non-positive Jacobian determinants, Dice scores for the anatom-
ical structures, and the temporal gradient of the displacement fields.
Detailed box plots of the results are represented in Fig. 4. The results
indicate that DragNet performs temporal registration within RMSE
ranges comparable to those obtained with Demons, NiftyReg, and Vox-
elMorph, but significantly better than ANTs, and 3D-Elastix (𝑝 < 0.05).
n addition, DragNet presents fewer negative Jacobian determinant
ocations than other algorithms in the consecutive frame registrations
Table 1 and Fig. 4). In terms of Dice scores, when deforming anatom-
cal structures sequentially from ED towards ES and vice versa, the
roposed model significantly outperforms the Demons and 3D-Elastix
lgorithms at ES (𝑝 < 0.05) but is on par with VoxelMorph and NiftyReg
𝑝 = 0.31 and 𝑝 = 0.64, respectively) (Table 1). Fig. 5 shows an example
et of results for deforming LA + RA contours from ED towards ES
hases in a sequence for all six methods.

The comparable results in terms of Dice and RMSE and lower tempo-
al gradients of the displacements indicate that DragNet has the ability
o significantly improve the temporal regularity of the deformation
ields over the learning-based VoxelMorph model and all the other con-
entional pair-wise image registration algorithms (𝑝 < 0.001) (Table 1
nd Fig. 4). This feature is justified by the limitation of pair-wise image
egistration methods on estimating the motion as a sequence of inde-
endent deformation fields. In contrast, DragNet considers the temporal
ependencies when computing the deformation fields between pairs of
mages (via hidden states of the RNN). Compared to the temporal 2D

t-Elastix algorithm, DragNet presents similar temporal gradients of
he displacements on average; however, it generally shows improved
erformance in other registration metrics (Table 1 and Fig. 4).

.4. Uncertainty assessment

DragNet enables estimation of the spatio-temporal uncertainties in
he DVFs through computing 𝜮𝐃𝑡

from Eq. (20):

(𝐃𝑡) ≈ E[− log 𝑞(𝐃𝑡|𝐈𝑡−1, 𝐳𝑡)] =
1
2
log

(

(2𝜋)2|𝜮𝐃𝑡
|

)

(21)

Fig. 6 shows the motion uncertainty maps in three different cardiac
sequences.2 The uncertainty values are lower in the anatomical bound-
aries, suggesting that the deformations are generally driven locally by
high contrast areas such as boundaries of the heart. To assess the local
variations, we have computed the average and the standard deviation
of the uncertainties inside the anatomical structures of LA/RA and
around the boundaries at ED and ES frames among the test dataset. The
results reported in Table 2 and Fig. 7 indicate that the uncertainties
around the boundaries are significantly lower than those within the
hearts (𝑝 < 0.001). The homogeneous areas that do not move sig-
ificantly (mainly outside the heart) show similar uncertainty values
ver time (see the Supplementary Materials). The local covariance
atrix 𝜮𝐃𝑡

values are larger in these regions due to the lack of local
maging features, resulting in higher uncertainty values there according
o Eq. (21). Similarly, due to the absence of regional characteristics

2 A GIF file showing the animated uncertainty maps is also presented in the
upplementary Materials (Uncertainty_animation).
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Fig. 4. The results of spatio-temporal registration between successive frames of test sequences showing RMSE, the number of non-positive Jacobian determinant locations, the
Dice scores for anatomical structures, and the temporal gradients of the displacement fields. DragNet presents the registration results comparable to or even better than some
state-of-the-art methods, while on par with temporal Elastix considerably improves temporal gradients.
in the blood pool motions, one can observe overall lower confidence
in registrations within those areas compared to the boundaries. The
uncertainty range for the example subjects shown in Fig. 6 is [−1.4,
−0.8], which is the outcome of the logarithm function applied to the
covariance matrix values ranging from 6e−7 to 0.08, considering both
𝑥 and 𝑦 directions.

3.5. Generation of synthetic motion sequences

As mentioned, in addition to registration, our proposed DragNet
model can generate synthetic cine LAX CMR images given only one
reference frame 𝐈0. To demonstrate this, we utilised the ED frame as the
reference image to generate a full sequence accordingly. Fig. 8 shows
7

Table 2
Local uncertainty measurement (mean ± std) of motion fields inside the LA/RA area
and around the borders. The results show a significant difference in the uncertainty
values between the two regions (statistical significance 𝑝-value < 0.001) at both ED
and ES phases.

Region ED ES

Inside LA/RA −1.084 ± 0.021 −1.062 ± 0.014
Boundaries −1.168 ± 0.026 −1.146 ± 0.021

two samples of generated cine CMR image sequences together with
their corresponding DVF and Jacobian determinant maps. The original
sequence is also shown for comparison. The results show that the
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Fig. 5. Tracking LA + RA contours over time from ED frame towards ES using deformations estimated by Demons, ANTs SyN, NiftyReg, VoxelMorph, 3D-Elastix, and the proposed
model, DragNet. Comparison with the ground-truth (GT) contours at ES (last column) in terms of Dice scores indicates that DragNet after NiftyReg outperforms the other methods
in the temporal evolution of LA/RA structures. The CMR images were reproduced with a permission of UK Biobank©.

Fig. 6. Spatio-temporal DVF uncertainty maps for three different subjects, indicating lower uncertainties in the heart boundaries.
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Fig. 7. The distribution of average DVF uncertainty values inside LA/RA and around
the borders across the test population.

generated motion and image sequences are different in two generated
instances and non-identical to the original one. Moreover, the gener-
ated motion sequences are also diffeomorphic with positive Jacobian
determinant maps. Samples of the generated sequences with different
temporal resolution are provided in the Supplementary Materials.

In contrary to the conventional generative models such as VAE that
assume a Gaussian distribution with zero mean and identity covariance
for the prior distribution of the latent variables 𝐳𝑡, DragNet learns the
prior distribution at each time from the history information captured
using 𝐡𝑡−1. This temporal modelling allows for generating realistic
cardiac motion sequences in a cycle. To show this effect, we perform
an ablation study by discarding the LSTM module and assume a unique
Gaussian distribution for the prior distribution of 𝐳𝑡 similar to the
regular variational autoencoders. The result of a generated sequence
is presented in Fig. 9, along with a sample sequence generated by
considering 𝐡𝑡. The generated sequence without considering 𝐡𝑡 does
not reflect the actual evolution of the anatomical structures, which
should occur similarly to the original sequence in that at ED, the
heart should show contracted atria and dilated ventricles, and as it
moves towards ES, these conditions should be reversed. In the shown
generation example without 𝐡𝑡, one observes a random generation of
cardiac MRI at each time point that does not follow a typical motion.
However, when we consider the temporal modelling via LSTM hidden
states, the generated cardiac sequence resembles a realistic motion.

3.6. Image and motion quality assessment of the generated sequences

In this experiment, we generate 100 synthetic heart motion samples
based on single or more frames observed from each subject of the
test dataset, generating a total of 62 000 synthetic cardiac images. We
evaluate the quality of the acquired images using the SSIM (Wang
et al., 2004), a perception-based model that considers image lumi-
nance (brightness), contrast (texture variations), and structural infor-
mation when comparing the real to synthetic images. Fig. 10 represents
the SSIM values between the test and the corresponding synthetic
sequences obtained from DragNets delivering seven (Fig. 10a) and
fourteen frames (Fig. 10b) per time point. Having observed image 𝐈0,
generates 𝐈1 and the rest of the sequence including the cardiac frame
at time point zero. We also investigate the impact of observing more
frames on the quality of the synthesised images.

As shown in Fig. 10, the generated images have SSIM values mainly
in the range of 70%–90% indicating an acceptable quality in terms
of luminance, contrast, and presentation of structures when compared
with the original images in the test dataset. Feeding more than one
frame to the generation process increases the SSIM values in the starting
time points. However, it tends to decrease to values even lower than
those when only 𝐈0 were observed. The reason is that the model learns
to capture the time-specific characteristics when updating the hidden
9

state variables, such that starting only from the frame 𝐈0, it converges
to a better local minimum with a lower value of the loss function.
If more frames are provided to the model the generation starts from
more detailed information in the initial frames causing large SSIM
values. However, the converged local minimum is more constrained by
the information from the initial frames and eventually becomes more
suboptimal. The effect is pronounced when generating longer sequences
(Fig. 10b).

To assess the quality of the generated motion sequences, we also
investigate the variations of LA + RA area across the whole cardiac
cycle and compare those with the motion in the test dataset. To this
end, we warp the ground-truth LA + RA masks from ED phases towards
the end of the cycle using 62K generated motion sequences discussed
before. The box plots presenting the normalised area of the generated
structures, along with the corresponding variations in the reference
test dataset in red are shown in Fig. 11 (see the top row). The results
are presented for seven-frame and fourteen-frame motion models. As
shown, the synthetic motion sequences result in a pattern similar to
the original test samples within an acceptable range of variations, in-
dicating the diversity of the generation. The plots in the bottom row of
Fig. 11 show the LA + RA areas computed from 100 synthetic sequences
generated using a limited number of frames of a test sample. One
can see that providing the model with more than one observed frame
results in similar area values to those of the test sample in the initial
frames at the cost of generating less divergent frames. Furthermore
when the model observes more initial frames, a larger deviation from
the real cardiac motion is obtained towards the end of the sequence.
The improvement in the SSIM criterion alongside the larger range of
variations in LA + RA motion in the synthetic sequences suggests that
DragNet can generate realistic high temporal resolution cardiac motion
sequences from a single frame.

3.7. Registration from the ED phase to the other phases

In this section, we evaluate the performance of the DragNet when
the ED frame is registered to other cardiac frames and therefore larger
displacement fields are generated. This experiment is performed on the
seven-frame CMR sequences discussed in Section 3.3 and six DVF maps
are computed for each sequence. Fig. 12 shows the results of different
registration methods in a sample sequence. The registered ED images
using DragNet are generally in good agreement with the target frames,
where the RMSE values are comparable with the learning-based Vox-
elMorph and other state-of-the-art image registration techniques while
presenting spatio-temporally smoother DVFs. Table 3 shows the quan-
titative results obtained using different registration methods on the
test dataset. As shown DragNet achieves RMSE errors similar to those,
shows less folding compared to the VoxelMorph, and outperforms all
methods in terms of preserving more temporal DVF continuities (𝑝 <
0.05). The box plots in Fig. 13 compare the performance of the methods
for all time points. The time point 2 in this figure shows the registration
results from ED to ES. As it can be seen, the RMSE and the number of
negative Jacobian determinant pixels initially increase slightly and then
decrease towards the end of the sequence. This is because the largest
displacements occur when registering the ED to ES phases.

Here, DragNet infers the large displacements between the ED and ES
based on the RNN hidden state variables, which convey the information
from the smaller previous displacements. Therefore, the model learns to
build up large motion fields recursively by refining the previously ob-
served smaller displacement, a difficulty that other algorithms address
by taking a multi-scale registration approach.

4. Discussion

In this paper, we derive probabilistic motion fields for cardiac
motion by formulating an unsupervised motion model based on the re-

current variational Bayes. Explicit modelling of the mean and variance
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Fig. 8. Generation of two sample sequences of LAX CMR images along with the corresponding motion sequences and the Jacobian determinant maps, both generated from a
reference image 𝐈0 (ED frame). The generated images are different from the original sequence, and the generated DVF sequences show invertibility by positive Jacobian determinants.
The original CMR images were reproduced with a permission of UK Biobank©.
Fig. 9. The effect of hidden state variables of the LSTM on the generation of cardiac MRI sequences. Modelling temporal dependencies via hidden state variables of LSTM (𝐡𝑡)
allows the model to learn the realistic motion of cardiac cycles. In contrast, the model cannot generate meaningful temporal variations without 𝐡𝑡.
of the deformation fields over both space and time allows for efficient
motion sampling as well as quantifying the uncertainties without opting
for numerical dropout based approaches. The proposed model can
compute the motion fields both between the consecutive frames or a
reference and other frames, resulting in larger deformations.

In the proposed DragNet framework, we model deformations
retroactively using information from the previous time steps through
formulating the joint distribution 𝑝(𝐈 , 𝐳 ,𝐃 ) using a chain
10

≤𝑇−1 ≤𝑇−1 ≤𝑇−1
rule presented in Eq. (1). We use an LSTM network to model the
retrospective dependencies to discern the temporal variations on the
latent space and deformations. The hidden state variables of the LSTM
update recursively from the current data and the previous hidden
states (i.e., 𝐡𝑡−1 to keep track of the past) via Eq. (9). The hidden
state variables play a key role in retrieving temporal dependencies
between the motion fields. These variables convey the information from
previous deformations in the sequence to inform the next deformation
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Fig. 10. Assessment of the image quality in 62 000 synthetic sequences in terms of structural similarity index measure (SSIM) between the generated and the original test samples
in (a) the seven-frame model (b) fourteen-frame model. The results indicate that more frames lead to initial higher SSIM values which tend to decrease towards the final frames.
Fig. 11. Assessment of the quality of the motion in the generated sequences via analysing the variations of LA + RA areas extracted by warping the ED masks towards the end
of the cycle using the synthetic motion sequences. The results are plotted along with the variations seen in the original test population. Top row: 62K synthetic sequences are
compared with the 620 actual test sequences. Bottom row: 100 generated motion sequences from a random test sample are compared with the real cardiac motion. Results in
the seven-frame (a) and fourteen-frame model (b). The effect of the model observing more than one frame to initiate the generation process is also shown. The synthetic motion
sequences result in patterns similar to those observed in the original test samples, showing diversity.
Table 3
Results of registering the ED phase to other frames quantifying the RMSE, the numbers
of negative Jacobian determinant pixels, Dice score between the registered LA+RA and
the reference masks, and temporal gradients of the DVFs shown in mean ± std values.
Bold values indicate the best results among different techniques in each column..

Method RMSE #|𝐽𝐃| ≤ 0 Dice (%) Temp.Grad.

Demons 0.046 ± 0.01 7755 76.7 ± 7.3 0.52 ± 0.15
ANTs SyN 0.048 ± 0.01 18 598 80.1 ± 5.9 0.41 ± 0.08
NiftyReg 0.055 ± 0.01 28 914 80.5 ± 7.2 0.67 ± 0.16
VoxelMorph 0.041 ± 0.01 27 917 82.2 ± 4.5 0.33 ± 0.06
3D-Elastix 0.049 ± 0.01 31 106 83.3 ± 4.3 0.23 ± 0.05
DragNet 0.044 ± 0.01 18 940 82.4 ± 3.8 0.21 ± 0.04

field, which is more efficient than random initialisation and coarse-
to-fine tuning. Because LSTM matches our modelling formulation and
our objective to generate high temporal resolution sequences while
11
capturing long-distance dependencies, we have chosen it as a solution.
However, an alternative approach such as temporal convolutional
network (TCN) has been used by Krebs et al. (2021) is beneficial for
focusing on local dependencies and short-time sequences.

The prior and posterior probability distributions of the latent vari-
ables 𝐳𝑡 at time 𝑡 are conditioned on the hidden states of the recurrent
network, 𝐡𝑡−1, which include temporal dependencies of previous dis-
placements. This modelling improves the temporal regularisation and
precision of the posteriors of 𝐳𝑡 and, therefore, the deformations 𝐃𝑡,
resulting in a registration error equivalent to or a bit higher than that
of a UNet-based framework like VoxelMorph (Figs. 12 and 13). We
further condition the posterior of the motion fields on features from
the moving image, which can also help retrieve details. In contrast
to Dalca et al. (2018), where only the velocity fields are explicitly
modelled via Gaussians at the pixel level, we explicitly define pixel-
wise distributions for the displacement fields. Modelling the variances
of displacements via 𝜮 variables eliminates the need for computing
𝐃𝑡
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Fig. 12. Registration of the ED phase to other cardiac phases, generating large displacement fields. The results are presented for different registration techniques. The registered
images by DragNet are in good agreement with the target images and comparable with the state-of-the-art registration methods. The corresponding colour-coded DVF maps are
spatio-temporally smooth in DragNet and have positive Jacobian determinants. The reference CMR images were reproduced with a permission of UK Biobank©.
the registration uncertainty maps via empirical sampling (as proposed
in Dalca et al. (2018)) for velocities and propagating those via diffeo-
morphic layers, which can be computationally costly. It should be noted
that, the UNet-based registration models such as Dalca et al. (2018) and
VoxelMorph (Balakrishnan et al., 2019), capture image details through
skip connections in these structures, resulting in a higher displacement
detail level and, consequently, a higher registration accuracy. However,
from the generation perspective and diversity of the generated samples
(not explored in Dalca et al. (2018)), relying on the latent variables
is advantageous in our work even if at the cost of losing some de-
tails. Here, we assume similar image intensity distributions for scans,
however other similarity metrics, such as cross-correlation or mutual
information between the warped and target images, can also be used
as the registration error.

The proposed model can also be used to generate a large number of
synthetic CMR sequences. We demonstrated this using a single frame
as the initial frame. We showed that feeding the network with more
than one frame leads to more similarity to the source motion in the
first frames but more deviation at the ending frames, especially in long
sequences.
12
Comparing the model performance with five other deformable reg-
istration techniques in Tables 1 and 3 showed that the DragNet registra-
tion accuracy is comparable to VoxelMorph and generally better than
others while improving the spatio-temporal smoothness of the derived
displacements. It should be noted that the DragNet is a generative
model, while VoxelMorph is a deterministic learning-based approach
based on the UNet structure and not a generative model. DragNet is
considerably faster than conventional registration techniques such as
Demons, ANTs, NiftyReg, and 2D + t-Elastix in computing the entire
sequence of motion fields. Training the DragNet takes 72 min on 4K
seven-frame CMR sequences using an NVIDIA GeForce RTX 3080 GPU.
However, it takes only 0.042 s to compute the entire DVF maps per test
sequence. Table 4 compares the runtime for different methods on the
GPU and an Intel(R) Core(TM)i9-10850K CPU for a seven-frame sample
test sequence.

5. Conclusion

In this paper, we developed a probabilistic model for cardiac cine
CMR registration and deriving spatio-temporal deformations featuring
a fast runtime. The model is generative and can efficiently gener-
ate a large number of synthetic motion sequences. Compared to the



Medical Image Analysis 83 (2023) 102678A. Zakeri et al.

d
f

Fig. 13. The results of spatio-temporal registration between frame ED and other frames in the seven-frame CMR sequences showing RMSE, the number of non-positive Jacobian
eterminant locations, the Dice scores for anatomical structures at ES, and the temporal gradients of the displacement fields. DragNet shows comparable RMSE results to those
rom VoxelMorph, but smoother DVFs and improves temporal gradients compared with all methods.
Table 4
Runtimes for different techniques to compute DVFs from an unseen seven-frame test
sequence.

Method GPU (s) CPU (s)

Demons – 4.586
ANTs SyN – 15.29
NiftyReg – 1.55
VoxelMorph 0.034 0.086
2D+t-Elastix – 5.35
DragNet 0.042 0.21
13
conventional image registration techniques, the proposed model is
significantly faster and capable of generating smoother temporal de-
formations. DragNet also computes explicit form of spatio-temporal
uncertainty estimates, making the results more accountable for the
clinical procedures. In terms of speed, it derives the DVFs of a new
CMR image sequence in under a second. This feature makes the pro-
posed model more applicable in real-time settings, such as radiotherapy
applications where fast compensating for tumour displacement due to
breathing becomes crucial. Besides, the proposed framework synthe-
sises high temporal resolution cardiac motion sequences, which can
be applicable for recovering missing frames in a cardiac sequence,
validation of supervised DIR algorithms, and even enabling in-silico
trials which involve modelling a specific moving organ. Our future
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work will focus on extending this model to automated abnormal cardiac
motion detection considering patient metadata. Besides, we will extend
the proposed framework to 3D + t settings suitable for applications such
s respiratory motion modelling and 4D-CT data analysis.
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