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Abstract
Pension schemes all over the world are under increasing pressure to efficiently hedge 
longevity risk imposed by ageing populations. In this work, we study an optimal 
investment problem for a defined contribution pension scheme that decides to hedge 
longevity risk using a mortality-linked security, typically a longevity bond. The pen-
sion scheme promises a minimum guarantee which allows the members to purchase 
lifetime annuities upon retirement. The scheme manager invests in the risky and 
riskless assets available on the market, including the longevity bond. We transform 
the corresponding constrained optimal investment problem into a single investment 
portfolio optimization problem by replicating future contributions from members 
and the minimum guarantee provided by the scheme. We solve the resulting opti-
mization problem using the dynamic programming principle. Through a series of 
numerical studies, we show that the longevity risk has an important impact on the 
investment strategy performance. Our results add to the growing evidence support-
ing the use of mortality-linked securities for efficient hedging of longevity risk.
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1 Introduction

Pension schemes provide an important economic function in the society. They 
provide people with regular incomes after retirement from the productive 
labor workforce and incentivize sustainable consumption over a life time. With 
regards to benefit and contribution policies, there are two main categories of 
pension schemes: defined benefit schemes (DB schemes) and defined contribu-
tion schemes (DC schemes). In a DB scheme, pension benefits to be paid by the 
scheme after retirement are pre-defined. In this case, scheme members only need 
to pay contributions regularly and bear no investment risk. The scheme sponsor 
bears the risk of bad investment performance and may fail to deliver the benefits. 
In a DC scheme, the amount of contributions payable by scheme members is pre-
determined rather than the benefit payments. The benefits depend on the size of 
the accumulated contributions and the scheme’s investment performance, and are 
uncertain until the retirement time. The sponsor bears no investment risk as its 
only responsibility is to pay joint contributions, while the employees face risks 
originating from market fluctuations. Historically, pension schemes were domi-
nated by PAYGO DB schemes. However, DC schemes have become increasingly 
popular over the last decades. It is a consequence of the financial unsustainability 
of the DB schemes, especially in the presence of an ageing population.

In this paper, we focus our attention on DC schemes and study the optimal 
investment strategy for DC schemes from a theoretical point of view. In a DC 
scheme, members’ benefits rely heavily on the scheme’s investment performance. 
Therefore, it is crucial to study the optimal portfolio selection problem such 
that the scheme delivers satisfactory benefits at retirement. Gao (2008) used the 
dual approach to solve the optimal asset allocation problem for a DC scheme in 
a market with stochastic interest rates. Battocchio and Menoncin (2004) studied 
the optimal asset allocation problem for a DC pension plan manager who maxi-
mizes expected exponential utility of final wealth considering salary and inflation 
risk. However, Gao (2008) and Battocchio and Menoncin (2004) supposed that 
scheme members have full trust in the manager and do not take the attractiveness 
and effectiveness of the scheme management into consideration. Classically, DC 
schemes do not provide downside protections, leaving their members exposed to 
the risk of receiving insufficient benefits after retirement. DC schemes that do 
provide a minimum guarantee on the benefits however can also be more attrac-
tive to employers. Boulier et  al. (2001) studied the optimal investment problem 
for a DC scheme in a framework with stochastic interest rates where a down-
side protection for the member’s benefits is provided. They obtained the optimal 
investment strategy which maximizes the expected terminal utility from the sur-
plus between the scheme’s final wealth and the downside guarantee by applying 
the dynamic programming principle. Deelstra et al. (2003) extended their model 
to the case where the contribution process is stochastic. They modeled the man-
ager’s remuneration as an increasing concave function of the surplus between the 
scheme’s terminal wealth and the minimum guarantee. The martingale method 
is used to find the optimal investment strategy that maximizes the manager’s 
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expected utility from remuneration. Han and Hung (2012) further developed the 
model to consider inflation and labor income risks. They introduced a minimum 
guarantee on the purchase of an inflation-indexed annuity at retirement. To hedge 
the inflation risk, they included an inflation-indexed bond in the investment port-
folio. Studies like Guan and Liang (2014), Chen et  al. (2017) and Tang et  al. 
(2018) investigated asset allocation problems for DC schemes with various types 
of guarantees on the terminal wealth. Nonetheless, these papers did not take the 
members’ stochastic mortality behavior into consideration and ignored the mor-
tality risk.

In the context of insurance, life insurers also often include a number of guar-
antees in their products. Some of these products have similar downside protec-
tion structures to the DC schemes with minimum guarantees. For example, a 
guaranteed annuity option (GAO) gives its policyholder the right to convert the 
accumulated funds to a life annuity when the policy matures at a fixed conver-
sion rate. A variable annuity (VA) with a guaranteed minimum maturity bene-
fit (GMMB) rider guarantees the policyholder a certain minimum benefit at its 
maturity. A policyholder of a guaranteed minimum income benefit (GMIB) con-
tract receives at least a pre-specified stream of lifetime income after annuitizing 
the VA. A guaranteed minimum withdrawal benefit (GMWB) ensures a steady 
stream of periodical withdrawals regardless of investment performance. There is 
a rich literature on the fair valuation and risk management of life insurance con-
tracts with embedded guarantees, for example, Boyle and Hardy (2003), Pelsser 
(2003), Bauer et al. (2008), Van Haastrecht et al. (2010), Hyndman and Wenger 
(2014), Shen et al. (2016), Mamon et al. (2021) and Huang et al. (2022). Stochas-
tic optimal control problems for insurance policies with various forms of guaran-
teed minimum benefits have been studied in the literature. See, for example, Dai 
et  al. (2008), Chen and Forsyth (2008), Steinorth and Mitchell (2015), Horneff 
et al. (2015), Forsyth and Vetzal (2014), Lin et al. (2017), Wu et al. (2020), Mac-
Kay and Ocejo (2022). Dai et al. (2008) developed a singular stochastic control 
model for pricing GMWB contracts without considering mortality risk. Assum-
ing the policyholder is fully rational, they investigated the optimal withdrawal 
strategy that maximizes the expected discounted value of the annuity policy. 
MacKay and Ocejo (2022) studied an optimal portfolio selection problem in a 
non-participating GMMB contract where the guaranteed amount is deterministic. 
The objective is to maximize the policyholder’s expected utility subject to a fair 
pricing constraint. Lin et al. (2017) studied the optimal investment strategies for 
an insurer that offers defaultable and fully protected participating contracts with 
a constant interest rate. The minimum guarantee appears as a constraint on the 
portfolio wealth. Wu et al. (2020) extended the work of Lin et al. (2017) studying 
the optimal management of participating contracts with mortality risk under a 
stochastic interest rate model. However, they used a deterministic force of mortal-
ity and ignored that the force of mortality can itself be stochastic and be exposed 
to shocks. In our work, we introduce life annuities as the guarantee target and 
incorporate stochastic interest rate and force of mortality. The annuity price and 
thus the value of the minimum guarantee are contingent on members’ expected 
remaining lifetime and future risk-free interest rate.
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According to Cocco and Gomes (2012), the average life expectancy of a 65-year-
old US (UK) male increases by 1.2 (1.5) years per decade. Consequently, a DB 
scheme for those populations in the US for example would have needed 29% more 
wealth in 2007 than in 1970. The increase in life expectancy in the UK is largely 
responsible for the underfunding of pay-as-you-go state pensions, defined benefit 
company pensions, and state-sponsored pension plans. Biffis and Blake (2014) men-
tioned that the estimate of the global amount of annuity- and pension-related lon-
gevity risk exposure amounts to $15 trillion. However, most articles studying opti-
mal portfolio strategies for DC schemes focus on the financial risks (for example, 
interest rate risk, inflation risk) and leave longevity risk aside. Those studies that 
take longevity risk into account, mainly focus on optimal asset allocation problems 
for DB pension schemes, using time-varying but deterministic forces of mortality to 
implement longevity risk into their models. This approach ignores the fact that the 
force of mortality can itself be stochastic. In our work, we study an optimal port-
folio problem for a DC scheme within the framework of a stochastic force of mor-
tality as well as stochastic interest rates. Force of mortality, or the instantaneous 
rate of mortality, is often used within the context of survival analysis in actuarial 
science. Classical work, including De  Moivre (1725) and Gompertz (1825), has 
studied deterministic force of mortality models. However, more recent research on 
mortality risk modeling considers discrete-time and continuous-time models with 
stochastic force of mortality. It is straightforward to model the force of mortality in a 
discrete-time setting since the mortality data are usually reported annually. Lee and 
Carter (1992) were among the earliest to model and estimate the force of mortal-
ity using time series methods. Other discrete-time models include, for example, the 
CBD model and Renshaw-Haberman cohort model (Cairns et  al. 2006; Renshaw 
and Haberman 2006). Some studies, such as Milevsky and Promislow (2001) and 
Dahl (2004), found similarities in the methodology between interest rates and force 
of mortality; for example, that both are positive and have a term structure. Thus, 
drawing from the interest rate modeling literature, diffusion processes and jump pro-
cesses are now used to study the impact of the force of mortality. In particular, affine 
mortality models are popular and are studied in works such as Dahl (2004), Biffis 
and Millossovich (2006a), Luciano and Vigna (2005), Russo et al. (2011) and Zed-
douk and Devolder (2020). Russo et al. (2011) calibrated three different affine sto-
chastic mortality models using term assurance premiums of three Italian insurance 
companies, and proposed that such affine models can be used for pricing mortality-
linked securities. Luciano and Vigna (2005) described the force of mortality through 
affine models and calibrated the models using observed and projected UK mortal-
ity tables. Their results show that non-mean-reverting models outperform mean-
reverting models for mortality modeling. Zeddouk and Devolder (2020) extended 
Luciano and Vigna (2005) to examine the impact of adding a time-dependent long-
term mean reversion level to non-mean-reverting affine processes for the force of 
mortality. They assessed five affine mortality models by calibrating the processes 
to historical and projected Belgian mortality tables. Their results show that mov-
ing-target mean-reverting models describe the force of mortality more appropriately 
than fixed-target mean-reverting models as well as non-mean-reverting models. 
In this work, we assume that the evolution of the mortality rate of all the scheme 
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members can be described by the same continuous-time stochastic process. We fol-
low Menoncin (2009) and Zeddouk and Devolder (2020) and describe the force of 
mortality using an affine model which is analogous to the Cox-Ingersoll-Ross (CIR) 
process. The considered pension scheme is attractive to its members as it provides a 
minimum guarantee on purchasing lifetime annuities upon retirement. The longev-
ity risk arises as the value of the minimum guarantee depends on members’ actual 
survival rate and expected remaining lifetime and is uncertain until retirement time. 
Besides, future contribution payments depend on members’ actual survival rate. As 
such, the manager invests in a security which allows to hedge the scheme’s exposure 
to the longevity risk.

Proposed by Blake and Burrows (2001), a longevity bond provides coupon pay-
ments based on the number of survivors in a chosen reference population. There-
fore, investment in a longevity bond not only provides an efficient way to hedge the 
longevity risk, but also allows diversification of investment portfolios. Menoncin 
(2008) studied an optimal consumption and investment problem for an investor with 
a stochastic time of death. He maximized the investor’s inter-temporal consumption 
until the time of death and used a rolling longevity bond to hedge against the inves-
tor’s longevity risk. De Kort and Vellekoop (2017) modeled the force of mortality 
using the CIR process which guarantees the mortality rates to be non-negative. They 
argued that although there is no liquid market for such longevity bonds, it is not 
practical to put the market price of longevity risk at zero. Instead, they assumed a 
time-varying market price of longevity risk which is proportional to the square root 
of the mortality rate. Cocco and Gomes (2012) studied the optimal consumption 
and investment problem in a life-cycle model. By calibrating to US historical data 
and current projections, they showed considerable uncertainty with respect to future 
improvements in mortality rates. They also suggested that longevity linked securi-
ties can help in longevity risk management. Menoncin and Regis (2017) studied the 
optimal consumption and investment problem for an individual investor to hedge 
his longevity risk before retirement. They showed that the optimal proportion that 
should be invested in longevity bonds is higher than for other assets.

In this work, we consider a financial market that consists of three risky assets: a 
stock, a rolling bond and a rolling longevity bond. Our results show that the longev-
ity bond provides an efficient way to hedge the longevity risk. Our main contribution 
is extending the works of Boulier et al. (2001), Gao (2008) and Menoncin and Regis 
(2017) by investigating the optimal portfolio allocation for DC schemes while hedg-
ing the longevity risk. The pension scheme promises that the scheme’s wealth level 
must be sufficient to allow the members to buy lifetime annuities at retirement, in 
this way providing a minimum guarantee. The scheme is exposed to longevity risk 
as the value of the minimum guarantee would be higher than anticipated if mem-
bers’ life expectancy and actual survival rate exceeded expectations. At retirement 
time, the manager receives a fixed fraction of the surplus between the scheme wealth 
and the minimum guarantee as remuneration. The manager’s aim is then to maxi-
mize the expected utility from remuneration by controlling the investment strategy. 
To hedge the longevity risk, a rolling longevity bond as introduced in Menoncin 
(2008) is added to the investment portfolio. Our results show that the longevity risk 
plays an important role in the pension scheme’s risk management and reveals that 
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the longevity bond can not only offer an efficient way to hedge future longevity risk, 
but also provide attractive risk premiums.

The rest of this paper is organized as follows. Section  2 presents the mathematical 
framework of the problem. We introduce the state variables, the financial market and the 
management of pension scheme. Moreover, the optimization problem in which the man-
ager maximizes his utility of terminal wealth is defined. Section 3 gives our main results. 
In Sect. 3.1, we identify different components of the investment portfolio and reformulate 
the portfolio selection problem as a single investment portfolio optimization problem. We 
derive the analytical solution for the optimal investment strategy by using the dynamic pro-
gramming principle in Sect. 3.2. Section 4 discusses several numerical studies including 
a sensitivity analysis with respect to different model parameters, which reveal the signifi-
cance of introducing a rolling longevity bond in the investment portfolio.

2  Model

2.1  The state variables

Let (Ω,F, 𝔽 ,ℙ) be a filtered probability space satisfying the usual conditions 
on an infinite time horizon T = [0,∞) . ℙ is the physical (observable) probabil-
ity measure and F(t) signifies the information available to an investor at time t. 
On this probability space, we consider a friction-less financial market consist-
ing of a stock, a rolling bond and a rolling longevity bond. For practical pric-
ing of zero-coupon and longevity bonds, we consider a stochastic risk-free inter-
est rate r(t) and a stochastic force of mortality �(t). Furthermore, we denote by {
W(t) ∣ t ∈ T

}
=
{[
W1(t),W2(t),W3(t)

]�
∣ t ∈ T

}
 a three-dimensional Brownian 

motion under ℙ. In addition, let � = {G(t)}t≥0 denote the sub-filtration of �  gener-
ated by W(t). We model the interest rate r(t) as a CIR process:

where ar , br and �r are positive constants. We further assume that the Feller condi-
tion 2ar ≥ �2

r
 is satisfied so that for any t ∈ T  , r(t) > 0, almost surely under ℙ.

To model the pension scheme members, we consider a group of identical indi-
viduals with same age, gender, health condition, etc. Moreover, we assume that all 
the individuals from this group are homogeneous in their mortality behavior. Hence, 
we can describe the mortality behavior of the whole group using a single stochas-
tic force of mortality process. A similar set-up is considered in Wong et al. (2017). 
As discussed earlier in Sect. 1, moving-target mean-reverting affine processes could 
appropriately model the evolution of the force of mortality. Thus, in the same spirit, 
we assume that �(t) evolves as

where a�(t) is a deterministic function, and, b� and �� are positive constants. We 
impose the condition 2a�(t) ≥ �2

�
, on the model parameters to ensure the strict 

dr(t) = (a
r
− b

r
r(t))dt + 𝜎

r

√
r(t)dW1(t), r(0) = r0 > 0,

(1)d𝜆(t) =
�
a𝜆(t) − b𝜆𝜆(t)

�
dt + 𝜎𝜆

√
𝜆(t)dW2(t), 𝜆(0) = 𝜆0 > 0,
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positivity of �(t) . The analytical tractability of the affine model allows us to price 
mortality-linked securities, such as the longevity bond, using the arbitrage-free pric-
ing framework developed for interest-rate derivatives.

The initial value of the mortality intensity �0 is calculated according to the 
deterministic Gompertz-Makeham law and is given by

where t0,m,� and b are positive constants. As in Menoncin (2009) and Zeddouk and 
Devolder (2020), we require that the expected value of �(t) equals to the correspond-
ing deterministic Gompertz-Makeham force of mortality to ensure at any time t,  �(t) 
has a reasonable value. To achieve this, we require that a�(t) is of the following form

Next, we measure the cumulative survival rate or survival probability in the group of 
individuals considered by tracking p(t),  the fraction of the group of individuals that 
survives from time 0 to t. Since the force of mortality measures the instantaneous 
rate of mortality, we can write

Suppose that there are n identical individuals in the group at the start. Then, by the 
homogeneity assumption of the mortality behavior, the number of individuals alive 
at time t is np(t). This follows from our conditionally independent and identically 
distributed (i.i.d.) assumption on the individual death occurrences. As such, given 
the force of mortality process �(t), the mortality behaviour of the individuals in the 
considered group is independent of each other. Let � denote the remaining lifetime 
of an individual in the group. Given the individual is alive at t, the (conditional) 
expected survival probability from t to s > t can be computed using p(t) as follows

where �[⋅] is the expectation operator under the physical measure ℙ.
We define by H(t) ∶= �{�≤t}, t ≥ 0, the death occurrence process which records 

whether the individual has died at each time t. �{⋅} denotes an indicator function. Let 
ℍ be the filtration whose �-algebras H(t) are generated by {H(s) ∶ 0 ≤ s ≤ t}. Then, 
ℍ collects information on the actual individual death occurrence. As the instantane-
ous rate of mortality is given by �(t), it can be shown that the process H̃(t) defined as

is an (ℍ,ℙ)-martingale. See, for example, Bielecki and Rutkowski (2013, Sect. 4.2).

(2)�0 = � +
1

b
e

t0−m

b ,

a�(t) = b�

(
� +

(
1

b�b
+ 1

)
1

b
e

t−m

b

)
.

dp(t)

p(t)
= −�(t)dt, p(0) = 1.

ℙ(𝜏 ≥ s|𝜏 > t) = 𝔼

[
p(s)

p(t)

|||| G(t)
]
= 𝔼

[
e− ∫ s

t
𝜆(u)du

|||| G(t)
]
,

H̃(t) ∶= H(t) − ∫
t∧�

0

�(u)du,
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Remark 1 There are two sources of longevity (mortality) risk in the model: system-
atic and idiosyncratic (unsystematic) longevity risk. Systematic longevity risk arises 
from the unexpected changes in population mortality that apply to all individuals in 
the population. Systematic longevity risk is non-diversifiable since it comes from 
the uncertainty in the path of mortality intensity (which is revealed by informa-
tion in � ). Idiosyncratic longevity risk is the uncertainty in an individual’s survival, 
given known survival probability. It arises from the randomness of individual death 
occurrence. Idiosyncratic longevity risk can be diversified by pooling a large enough 
number of policyholders. We refer to: Duffie (2001, Chapter 11) for discussions on 
uncertainties regarding doubly stochastic default time; Dahl (2004), Luciano et al. 
(2012), and Hanewald et al. (2013) for systematic and unsystematic mortality risks.

2.2  The financial market

To discuss the prices of tradable financial risky assets in the market, we first char-
acterize a risk-neutral pricing measure ℙ̃ that is equivalent to ℙ on (Ω,F, 𝔽 ,ℙ) . 
We set 𝔽 = 𝔾 ∪ ℍ such that �  reveals all the information on past asset prices, 
mortality intensity evolution and actual individual death occurrence. Let 
{Θ(t) ∣ t ∈ T} =

{[
�1(t), �2(t), �3(t)

]� || t ∈ T
}
 be an ℝ3-valued, G -adapted process 

such that process

is a martingale under ℙ , and �[Z(t)] = 1 . Let {�(t)|t ∈ T} be a H -predictable pro-
cess with ∫ t

0
𝜙(u)𝜆(u)du < ∞ , and define

Then, a new probability measure ℙ̃ that is equivalent to ℙ can be defined by

By Girsanov’s theorem, under ℙ̃,

is a three-dimensional standard Brownian motion, and the instantaneous inten-
sity of the death occurrence process H(t) is (1 + �(t))�(t) . We use the notation {
W̃(t) ∣ t ∈ T

}
=
{[
W̃1(t), W̃2(t), W̃3(t)

]� || t ∈ T
}
 . We refer to Bielecki and Rut-

kowski (2013, Sect. 5.3) for further technical details.
The introduction of a risk-neutral measure also allows us to motivate the idea of a 

market price of risk or risk-premium through Θ(t) and �(t) in our framework. In par-
ticular, Θ(t) gives the market prices of interest rate risk, (systematic) longevity risk, 

Z(t) = exp

(
−∫

t

0

Θ(s)�dW(s) −
1

2 ∫
t

0

|Θ(s)|2ds
)
.

Z̃(t) = 1 + ∫
t

0

�(u)Z̃(u−)dH̃(u),

dℙ̃

dℙ
= Z(t)Z̃(t).

W̃(t) = W(t) + ∫
t

0

Θ(s)ds,
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stock price risk, and �(t) can be viewed as the market price of idiosyncratic longevity 
risk. Since the idiosyncratic longevity risk is diversifiable, pension scheme providers/
insurers may have little interest in hedging this risk. Hence, as in Luciano et al. (2012), 
we assume that the market gives no value to the idiosyncratic longevity risk, i.e. there 
is zero risk premium for individual death occurrences. Under this assumption, the risk-
neutral probability measure ℙ̃ is characterized via dℙ̃

dℙ
= Z(t).

The first financial asset in the market is a representative stock. We suppose that the 
stock price process S(t) under ℙ evolves as

where �S, �r
S
, �r, �S are constants. Here, we have assumed that the market prices of 

interest rate risk and stock price risk are �1(t) = �r
√
r(t) and �3(t) = �S , respectively. 

The instantaneous covariance between the stock price and risk-free interest rate is 
captured by �r

S

√
r(t). The market price of stock price risk and different volatility 

coefficients ( �S, �r ) could be stochastic and take many different forms. However, as 
we mainly focus on the interest rate risk and longevity risk rather than investment 
risk, it is reasonable to suppose that they are constants.

For the pricing of a zero-coupon bond B(t, TB) which pays one unit of currency at a 
fixed maturity time TB, we first introduce a money market account R(t) via

The risk-neutral pricing formula then gives

where �̃[⋅] is the expectation operator under the measure ℙ̃ . As the interest rate r(t) 
follows an affine model, we can solve for the bond price as

where

The above result can be found in several sources, for example, Brigo and Mercurio 
(2007, Sect. 3.2.3), Cuchiero (2006, Sect. 3.1.2). The dynamics of B(t, TB) under ℙ 
is given as

dS(t)

S(t)
=
�
r(t) + 𝜃r𝜎

r
S
r(t) + 𝜃S𝜎S

�
dt + 𝜎r

S

√
r(t)dW1(t) + 𝜎SdW3(t), S(0) = S0 > 0,

dR(t)

R(t)
= r(t)dt, R(0) = 1.

B(t, TB) = �̃

[
R(t)

R(TB)

|||||
F(t)

]
= �̃

[
e− ∫ TB

t
r(u)du

|||| F(t)

]
,

(3)B(t, TB) = ef0(t,TB)−f1(t,TB)r(t),

f0(t, TB) =
2ar

𝜎2
r

log

(
2𝜂re

1

2
(b̃r+𝜂r)(TB−t)

(b̃r + 𝜂r)(e
𝜂r(TB−t) − 1) + 2𝜂r

)
,

f1(t, TB) =
2(e𝜂r(TB−t) − 1)

(b̃r + 𝜂r)(e
𝜂r(TB−t) − 1) + 2𝜂r

,

𝜂r =

√
b̃2
r
+ 2𝜎2

r
, b̃r = br + 𝜃r𝜎r.
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where we denote �B(t, TB) = −f1(t, TB)�r
√
r(t).

As argued in Boulier et al. (2001), rolling bonds that can dynamically replicate 
other bonds in the market are useful and convenient for fund management. Thus, we 
also introduce a rolling zero-coupon bond B(t) with a constant time to maturity TB in 
our analysis. A rolling bond can be viewed as a self-financing trading strategy which 
continuously reinvests in the bonds with a fixed time to maturity. For detailed a dis-
cussion on rolling bonds, we refer to Rutkowski (1999), Bielecki and Pliska (2004) 
and Bielecki et al. (2005). It is indeed possible to construct a suitable portfolio that 
dynamically adjusts its investment in the zero-coupon bonds to keep the portfolio a 
constant horizon TB . Using the results in Rutkowski (1999), it can be shown that B(t) 
satisfies the following stochastic differential equation

Since we use a one-factor CIR model for r(t), a zero-coupon bond with any maturity 
in the market can be replicated by rolling bonds and the money market account. 
Moreover, it can be shown that the zero-coupon bond B(t, TB) is related to the rolling 
bond B(t) via

Hence, the use of the rolling bond B(t) via Eq. (4) is analogous to the use of a fixed 
maturity zero-coupon bond B(t, TB).

The third and final asset in the market is a zero-coupon longevity bond, which 
is primarily used to hedge the longevity risk. A longevity bond is a financial secu-
rity paying, at the expiration date, an amount equal to the fraction of survivors 
from time 0 to the maturity time in a reference population. The reference popula-
tion can be a large number of similar individuals, e.g. a male generation born in 
the same year. We suppose that all individuals in the reference population have 
homogeneous mortality behavior and use (1) to model their mortality intensity. 
Let TL be the fixed maturity time, then the payoff of the zero-coupon longevity 
bond is p(TL) . Suppose that the market price of longevity risk is �2(t) = ��

√
�(t). 

Then, the arbitrage-free price L(t, TL) of a zero-coupon longevity bond with fixed 
maturity time TL is given as

Due to the affine nature of r(t) and �(t) and their independence, the longevity bond 
price can be expressed in the following form

dB(t, TB)

B(t, TB)
=
�
r(t) + �r

√
r(t)�B(t, TB)

�
dt + �B(t, TB)dW1(t),

(4)
dB(t)

B(t)
=
�
r(t) + �r

√
r(t)�B(t, t + TB)

�
dt + �B(t, t + TB)dW1(t).

dB(t, TB)

B(t, TB)
=

(
1 −

�B(t, TB)

�B(t, t + TB)

)
dR(t)

R(t)
+

�B(t, TB)

�B(t, t + TB)

dB(t)

B(t)
.

L(t, TL) = �̃

[
R(t)

R(TL)
p(TL)

|||| F(t)

]
= e− ∫ t

0
�(u)du

�̃

[
e− ∫ TL

t
(r(u)+�(u))du

|||| F(t)

]
.

(5)L(t, TL) =e
− ∫ t

0
�(u)duN(t, TL),
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where

By denoting �r
L
(t, TL) = −f1(t, TL)�r

√
r(t) and ��

L
(t, TL) = −h1(t, TL)��

√
�(t) , the 

evolution of L(t, TL) is then described as

In the same manner as for the zero-coupon bond, we consider a rolling longevity 
bond L(t) with a constant time to maturity TL whose price process under ℙ is given 
as

We see that the rolling longevity bond correlates with the interest rate r(t) as well 
as the force of mortality �(t) . In fact, zero-coupon longevity bonds with any fixed 
maturity can be replicated using rolling bond, rolling longevity bond and cash via

where

Like earlier, the above relation also shows that the creation of the rolling longev-
ity bond does not lead to any arbitrage. It is common in the literature in fact to use 
rolling bonds: Han and Hung (2012) introduced a rolling indexed bond to hedge the 
inflation risk for a DC scheme. Menoncin (2008) used a rolling longevity bond to 
transfer an individual’s longevity risk. In principle, the problems considered here 
can also be solved using a fixed term maturity zero-coupon longevity bond and a 
fixed term zero-coupon bond. However, the use of rolling longevity bond and rolling 
bond simplifies the calculations in Sect. 3 significantly.

N(t, TL) = ef0(t,TL)−f1(t,TL)r(t)+h0(t,TL)−h1(t,TL)𝜆(t),

h1(t, TL) =
2(e𝜂𝜆(TL−t) − 1)

(b̃𝜆 + 𝜂𝜆)(e
𝜂𝜆(TL−t) − 1) + 2𝜂𝜆

,

h0(t, TL) = −∫
TL

t

a𝜆(u)h1(u, TL)du,

𝜂𝜆 =

√
b̃2
𝜆
+ 2𝜎2

𝜆
, b̃𝜆 = b𝜆 + 𝜃𝜆𝜎𝜆.

dL(t, TL)

L(t, TL)
=
�
r(t) + �r

√
r(t)�r

L
(t, TL) + ��

√
�(t)��

L
(t, TL)

�
dt

+ �r
L
(t, TL)dW1(t) + ��

L
(t, TL)dW2(t).

(6)
dL(t)

L(t)
=
�
r(t) + �r

√
r(t)�r

L
(t, t + TL) + ��

√
�(t)��

L
(t, t + TL)

�
dt

+ �r
L
(t, t + TL)dW1(t) + ��

L
(t, t + TL)dW2(t).

dL(t, TL)

L(t, TL)
= n0(t)

dR(t)

R(t)
+ nB(t)

dB(t)

B(t)
+ nL(t)

dL(t)

L(t)
,

nL(t) =
��
L
(t, TL)

��
L
(t, t + TL)

, nB(t) =
�r
L
(t, TL)

�B(t, t + TB)
− nL(t)

�r
L
(t, t + TL)

�B(t, t + TB)
,

n0(t) = 1 − nB(t) − nL(t).
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Our choice of market price of risk Θ(t) =
�
�r
√
r(t), ��

√
�(t), �S

�� ensures that Z(t) is 
a ℙ-martingale (see Shirakawa (2002), Theorem 3.2) due to the Novikov condition (see, 
for example, ?, Corollary 3.5.14). Hence, ℙ̃ is well defined. Moreover, the processes r(t) 
and �(t) remain affine even after a change of measure to ℙ̃. For any t, TB, TL ∈ T  , we 
describe the risky asset prices in the form of a vector:

where

For ease of presentation, we also use the notation z(t) = [r(t), �(t)]� whose dynamics 
is given as

where

2.3  The pension scheme management

During the accumulation phase, scheme members continuously contribute to the 
pension scheme and delegate the scheme’s management to the scheme manager. 
That is to say, the manager is responsible for the investment. In return, the scheme 
promises a minimum guarantee at retirement in the form of lifetime annuities to 
its members. The scheme manager receives a fraction of the surplus between the 
scheme’s final wealth and the minimum guarantee as his one-off remuneration.

We suppose that there are n identical members (i.e. same age, gender, wage, 
etc.) in the scheme initially. Moreover, we assume that the scheme members’ mor-
tality behavior correlates perfectly with the longevity bond’s underlying mortality 
experience, and the dynamics of the members’ mortality intensity is described by 
(1). Before retirement, each surviving member contributes a constant fraction of 
his instantaneous wage w(t). Previous studies, such as Han and Hung (2012) and 
Guan and Liang (2014), model the wage (or, contribution) as a stochastic process to 

(7)

⎡
⎢⎢⎢⎣

dB(t)

B(t)
dL(t)

L(t)
dS(t)

S(t)

⎤
⎥⎥⎥⎦
= (r(t)� +M(t))dt + Σ(t)�dW(t),

M(t) =

⎡
⎢⎢⎣

�r
√
r(t)�B(t, t + TB)

�r
√
r(t)�r

L
(t, t + TL) + ��

√
�(t)��

L
(t, t + TL)

�r�
r
S
r(t) + �S�S

⎤
⎥⎥⎦
,

Σ(t)� =

⎡⎢⎢⎣

�B(t, t + TB) 0 0

�r
L
(t, t + TL) ��

L
(t, t + TL) 0

�r
S

√
r(t) 0 �S

⎤⎥⎥⎦
.

(8)dz(t) = �(t, z(t))dt + �(t, z(t))�dW(t), z(0) = [r0, �0]
�,

�(t, z(t)) =

�
ar − brr(t)

a�(t) − b��(t)

�
, �(t, z(t))� =

�
�r
√
r(t) 0 0

0 ��
√
�(t) 0

�
.
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study the optimal asset allocation problem for DC schemes. To simplify our calcula-
tions, the instantaneous wage in this work is assumed to be constant, that is, for any 
t ∈ [0, T] , w(t) = w. Thus, the contribution c(t) = c is also constant, and the contri-
bution rate is c/w. We note that our following analysis is also applicable when w(t) 
and c(t) are treated as independent stochastic processes or deterministic functions. 
In the case where a member dies before retirement time, we assume that he stops 
paying contribution immediately and his heirs receive nothing. For any t ∈ [0, T] , 
the scheme manager invests the amounts �S(t), �B(t) and �L(t) of money in stock, 
rolling bond and rolling longevity bond, respectively. It then follows that the amount 
of money invested in the money market is �0(t) = F(t) − �B(t) − �L(t) − �S(t), where 
F(t) denotes the scheme’s wealth level. The dynamics of F(t) is given as

where 
{
�(t) || t ∈ [0, T]

}
 =

{[
�B(t), �L(t), �S(t)

]� || t ∈ [0, T]
}
 denotes the investment 

in risky assets.
At retirement time T, the scheme manager promises that the pension wealth F(T) 

must exceed the lifetime annuities’ price, this acts as minimum guarantee G(T). Such 
minimum guarantee was also previously considered in works such as Boulier et al. 
(2001), Deelstra et al. (2003), Han and Hung (2012) and Guan and Liang (2014). 
Moreover, we suppose that the manager receives a constant fraction of the terminal 
surplus F(T) − G(T) as remuneration. Note that the manager’s remuneration will be 
positive only if F(T) − G(T) > 0 . Deelstra et al. (2003) used a similar assumption 
on the manager’s remuneration. Here, we extend these works to the case where the 
death time is uncertain and the force of mortality is stochastic.

To compute the price of the lifetime annuity and G(T), we first need to decide 
the level of installments that the annuity delivers. Typically, the wage replacement 
ratio, the percentage of retirement income to pre-retirement income, is a good esti-
mate of the income needed to maintain the living standard in retirement. We set the 
instantaneous installment of the annuity to be � , which gives the wage replacement 
ratio as �∕w . As in Boulier et al. (2001), Boyle and Hardy (2003), Guan and Liang 
(2014), Menoncin and Regis (2017), we assume that the annuity is fairly priced, and 
its price is calculated using an expected discounted cash flow approach under the 
risk neutral measure ℙ̃ . Assuming that the annuity provider also models the mortal-
ity behavior of members using �(t) , the price of a lifetime annuity a(T) at retirement 
time T is given as

More generally, the annuity providers’s risk-neutral probabilities concerning the 
evolution of mortality are different from those of the policyholders. However, we do 
not make such a distinction. The treatment of the more general problem as studied 
by Biffis and Millossovich (2006b) is beyond the scope of our work.

(9)
dF(t) =

(
r(t)F(t) + cnp(t) + 𝛼(t)�M(t)

)
dt + 𝛼(t)�Σ(t)�dW(t), F(0) = F0 > 0,

a(T) =�̃

[
∫

∞

T

�
R(T)

R(s)

p(s)

p(T)
ds

|||| F(T)

]
.
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The minimum guarantee is met in purchasing lifetime annuities for surviving 
members at retirement time T. Therefore, its value at T is given as

As shown, the value of the minimum guarantee is contingent on the future risk-free 
interest rate and members’ survival rate, and it is unknown until the retirement time.

2.4  The utility maximization problem

We follow Merton (1969) and suppose the manager aims to maximize his expected 
utility of terminal remuneration. Hyperbolic absolute risk aversion (HARA) identi-
fies a class of utility functions which is most commonly used. Constant relative risk 
aversion (CRRA), constant absolute risk aversion (CARA), and quadratic utility are 
all HARA type utility functions which have been used frequently in the past. For 
instance, Gao (2008) and Boulier et al. (2001) used CRRA utility function to study 
optimal asset allocation problems for DC schemes. Battocchio and Menoncin (2004) 
and Cairns (2000) adopted CARA and quadratic utilities, respectively. In this paper, 
we use a CRRA utility function in the form of

where 𝛾 > 0 and � ≠ 1 . In the case when � = 1 , U(x) = ln x is the log-utility func-
tion. This choice is motivated by two factors. First, pension schemes usually manage 
a large amount of money. With an increasing or decreasing relative risk aversion, 
the fraction of wealth invested in risky assets is affected by the total level of wealth. 
However, the CRRA utility function shows constant relative risk aversion and in 
conclusion the investment strategy is not affected by scale. Second, our optimization 
problem is analytically tractable when using CRRA utility. For other types of util-
ity functions, we lose analytical tractability of the solutions and the ability to make 
precise qualitative statements, even if we were to numerically solve the optimization 
problem using our approach.

Using the CRRA utility function U(⋅) , maximizing the manager’s expected util-
ity from remuneration is equivalent to maximizing the expected utility from the 
scheme’s terminal surplus. Therefore, we formulate the utility maximization prob-
lem as

In the above, the set A  denotes the set of all admissible strategies which are defined 
as below.

G(T) = np(T)a(T) = n�̃

[
∫

∞

T

�
R(T)

R(s)
p(s)ds

|||| F(T)

]
.

(10)U(x) =
x1−𝛾

1 − 𝛾
, x > 0,

(11)sup
�∈A

�

[
(F(T) − G(T))1−�

1 − �

]
such that F(T) ≥ G(T) a.s..
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Definition 1 A portfolio strategy {�(t) ∈ ℝ3 ∣ t ∈ [0, T]} is called admissible if �(t) 
is progressively measurable with respect to F  and �

[∫ T

0
|𝛼(t)|2dt

]
< ∞.

In our setting, scheme members continuously contribute to the scheme during the 
accumulation phase. The term cnp(t)dt in (9) reveals that the wealth process F(t) is 
not self-financing. Besides, at the retirement time T, there is a minimum guarantee 
G(T) to be met. This means that the proposed problem (11) is not a classical Merton 
type optimal investment problem. To solve this non-self-financing constrained prob-
lem, we convert it into a self-financing investment portfolio optimization problem 
by introducing an auxiliary surplus process. We then solve the transformed problem 
using the dynamic programming principle.

3  Main results

3.1  Single investment portfolio optimization problem

Inspired by Boulier et al. (2001), we split the scheme’s wealth into two parts: one 
part is the future contributions to be paid by living members and the other part is 
a self-financing portfolio. For any t ∈ [0, T] , denoting by D(t) the present value of 
future contributions until retirement time T, we can write

D(t) can be viewed as a coupon-paying bond that pays instantaneous coupon rate 
cnp(s) from time t to T. Next, we show that D(t) can be replicated by investing in the 
rolling bond, rolling longevity bond and money market.

Proposition 1 For any t ∈ [0, T] , D(t) in (12) can be replicated as

where

is the investment in risky assets. The holding in the money market is 
�D
0
(t) = D(t) − �D

B
(t) − �D

L
(t).

See Appendix 1 for the proof.

(12)D(t) = �̃

[
∫

T

t

cnp(s)
R(t)

R(s)
ds

|||||
F(t)

]
.

(13)dD(t) =
(
r(t)D(t) − cnp(t) + �D(t)�M(t)

)
dt + �D(t)�Σ(t)�dW(t),

(14)�D(t) =

⎡⎢⎢⎢⎣

�D

B
(t)

�D

L
(t)

0

⎤⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

cn ∫ T

t
L(t,s)f1(t,s)ds

f1(t,t+TB)
−

f1(t,t+TL)

f1(t,t+TB)

cn ∫ T

t
L(t,s)h1(t,s)ds

h1(t,t+TL)

cn ∫ T

t
L(t,s)h1(t,s)ds

h1(t,t+TL)

0

⎤⎥⎥⎥⎥⎦
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Our next step is to construct a replicating portfolio for G(T). At time t ∈ [0, T] , the 
present value of G(T) is given by

Similar to replicating D(t), we show in the following proposition that G(t) can be 
replicated by investing in the bond, longevity bond and money market.

Proposition 2 For any t ∈ [0, T] , G(t) in (15) can be replicated as

where

is the investment in risky assets. The holding in the money market is 
�G
0
(t) = G(t) − �G

B
(t) − �G

L
(t).

The proof is similar to Proposition 1 and is omitted here for the sake of brevity. 
Finally, we construct an auxiliary process Y(t) = F(t) + D(t) − G(t) . At retirement time 
T, from (12), we see that D(T) = 0 and we have Y(T) = F(T) − G(T) . That is, Y(T) is 
the surplus of the terminal scheme wealth over the minimum guarantee. From (9), (13) 
and (16), we obtain the following equation

where

Thus, our simplified portfolio optimization problem is given as

Lemma 3 For any t ∈ [0, T] , if �Y (t) ∈ A  , then �(t) ∈ A, and the optimization 
problems (11) and (20) are equivalent.

See Appendix 2 for the proof.
We see that the wealth process (18) is self-financing. Once we are able to solve 

(20) and obtain the unique optimal control 𝛼Y⋆(t) , we can use (14), (17) and (19) 

(15)G(t) =�̃

[
G(T)

R(t)

R(T)

|||||
F(t)

]
.

(16)dG(t) =
(
r(t)G(t) + �G(t)�M(t)

)
dt + �G(t)�Σ(t)�dW(t)

(17)�G(t) =

⎡
⎢⎢⎢⎣

�G

B
(t)

�G

L
(t)

0

⎤
⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎣

�n ∫ ∞

T
L(t,s)f1(t,s)ds

f1(t,t+TB)
−

f1(t,t+TL)

f1(t,t+TB)

�n ∫ ∞

T
L(t,s)f1(t,s)ds

h1(t,t+TB)
�n ∫ ∞

T
L(t,s)f1(t,s)ds

h1(t,t+TB)

0

⎤
⎥⎥⎥⎦

(18)
dY(t) = dF(t) + dD(t) − dG(t)

=
(
r(t)Y(t) + �Y (t)�M(t)

)
dt + �Y (t)�Σ(t)�dW(t)

(19)�Y (t) = �(t) + �D(t) − �G(t).

(20)sup
�Y∈A

�

[
Y(T)1−�

1 − �

]
such that Y(T) ≥ 0 a.s..
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to obtain 𝛼⋆(t) . We require that Y(0) = F(0) + D(0) − G(0) > 0 and suppose 
that Y(t) does not become negative before time T. If Y(t) hits zero, it stays there 
and no further investment takes place. Moreover, we assume that the manager is 
under the supervision of a regulator and choose the investment strategy as such that 
Y(T) = F(T) − G(T) ≥ 0 almost surely.

3.2  The optimal solution

We define the value function of our simplified problem (20) as

with terminal condition V(T , y, z) =
y1−�

1−�
 . We assume that 

V(t, y, z) ∈ C1,2,2([0, T] ×ℝ3
+
). Then, by following the usual dynamic programming 

principle (see, for example, Pham (2009, Chapter 3)), V satisfies the following Ham-
ilton-Jacobi-Bellman (HJB) equation

where

Vt , Vy, Vyy, Vz, Vzz and Vyz are the first and second order partial derivatives with 
respect to t,  y,  z. In particular, Vz =

[
Vr,V�

]� , Vyz =
[
Vyr,Vy�

]� and 
Vzz =

[[
Vrr,V�r

]�
,
[
Vr�,V��

]�] . Solving the first order condition on �Y , we obtain the 
unique investment strategy as

Substituting (22) in (21), we obtain

Once we solve for the value function V(t, y, z) in (23), we can obtain the optimal 
control 𝛼Y⋆(t) . The following proposition provides the explicit optimal investment 
strategy for the transformed problem (20).

V(t, y, z) ∶= sup
�Y∈A

�

[
Y(T)1−�

1 − �

|||||
F(t)

]
,

(21)0 = Vt(t, y, z) + sup
�Y∈ℝ3

L
�Y V(t, y, z),

L
�Y V = Vy(ry + �Y �M) + ��Vz +

1

2
tr(���Vzz) +

1

2
�Y �Σ�Σ�YVyy + �Y �Σ��Vyz.

(22)𝛼Y⋆ = −
Vy

Vyy

(Σ�Σ)−1M −
1

Vyy

Σ−1𝜉Vyz.

(23)
0 =Vt + Vyry −

1

2

Vy
2

Vyy

M�(Σ�Σ)−1M −
Vy

Vyy

M�Σ−1�Vyz + ��Vz

+
1

2
tr(���Vzz) −

1

2

1

Vyy

Vyz
����Vyz.
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Proposition 4 For any t ∈ [0, T] and risk-aversion parameter

under the financial market setting (7)–(8), the optimal solution to (20) is given as

where

We include the proof in Appendix 1. Next, we show that Y⋆(t) obtained using 
𝛼Y⋆ is always positive, and also verify the admissibility of the optimal control 𝛼Y⋆.

Remark 2 For any t ∈ [0, T] , let �̃�Y⋆

(t) =
𝛼Y

⋆
(t)

Y⋆(t)
 , we have

According to Proposition 4, we see that the optimal �̃�Y⋆

(t) is a well-defined vector of 
continuous (deterministic) functions. Thus, �

[∫ T

0
|�̃�Y⋆

(t)|2dt
]
< +∞ , Y⋆(t) admits a 

unique solution and is bounded over [0,  T]. Thereafter, we have 
�

[∫ T

0
|𝛼Y⋆

(t)|2dt
]
< +∞ and 𝛼Y⋆(t) ∈ A  . Besides, we get

(24)𝛾 > max

{
2𝜎2

r
+ 𝜎2

r
𝜃2
r
+ 2br𝜃r𝜎r

(br + 𝜃r𝜎r)
2 + 2𝜎2

r

,
2b𝜆𝜃𝜆𝜎𝜆 + 𝜎2

𝜆
𝜃2
𝜆

(b𝜆 + 𝜃𝜆𝜎𝜆)
2

}
,

𝛼Y⋆(t) =

⎡⎢⎢⎣

𝛼Y

B

⋆
(t)

𝛼Y

L

⋆
(t)

𝛼Y

S

⋆
(t)

⎤⎥⎥⎦
=

⎡
⎢⎢⎢⎣

𝜃S𝜎
r

S
−𝜃r𝜎S−𝜎S𝜎rA1

(t,T)

𝜎S𝜎r f1(t,t+TB)
+

f
1
(t,t+TL)

f
1
(t,t+TB)

𝜃𝜆+𝜎𝜆A2
(t,T)

𝜎𝜆h1(t,t+TL)

−
𝜃𝜆+𝜎𝜆A2

(t,T)

𝜎𝜆h1(t,t+TL)
𝜃S

𝜎S

⎤
⎥⎥⎥⎦

Y⋆(t)

𝛾
,

⎧
⎪⎪⎨⎪⎪⎩

A1(t, T) =
a11a12 exp(−

√
Δ1(T−t))−a11a12

a12 exp(−
√
Δ1(T−t))−a11

,

Δ1 = b2
r
+

�−1

�

�
2�2

r
+ �2
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From the above proposition, we observe a proportional relationship between 
𝛼Y
S

⋆
(t) and Y(t) for constant �S , �S and � . Namely, the optimal stock weight 𝛼

Y
S

⋆
(t)

Y(t)
 

always stays the same throughout the investment horizon. This is similar to the clas-
sical Merton portfolio problem where the optimal portfolio weight on the risky asset 
is constant over time. The convention is that the constant market price of risk causes 
no change in the investment behavior. We also find that the optimal investment in 
the longevity bond 𝛼Y

L

⋆
(t) is actually taken from the investment in the bond 𝛼Y

B

⋆
(t) 

proportionally by a factor of − f1(t,t+TL)

f1(t,t+TB)
 . From (3) and (5), we see that f1(t, t + TB) and 

f1(t, t + TL) are the duration of the rolling bond and rolling longevity bond, respec-
tively. Since the duration is always positive, − f1(t,t+TL)

f1(t,t+TB)
 is negative. We conclude that 

there is a negative relationship between the optimal investments in bond and longev-
ity bond. Besides, if the maturities of the rolling bond and the rolling longevity bond 
are the same (that is, TB = TL ), we have f1(t, t + TL) = f1(t, t + TB) and 𝛼Y

L

⋆
(t) is fully 

deduced from 𝛼Y
B

⋆
(t) . For any t < T  , h1(t, t + TL) stays constant and A2(t, T) is nega-

tive and increases with t. Thus, it is easy to deduce that the optimal investment pro-
portion in longevity bond 𝛼

Y
L

⋆
(t)

Y(t)
 is decreasing over time. Even though the behavior of 

optimal proportions invested in bond and money market is not clear, it is apparent 
that greater the manager’s risk-aversion, lower the portfolio weights on the longevity 
bond and stock. Lemma 3 shows that Problem (11) and (20) are equivalent. Accord-
ing to (14), (17), (19) and Proposition 4, we obtain the solution to the initial problem 
(11) by straightforward calculations.

Proposition 5 For any t ∈ [0, T] , under condition (24) and the financial market set-
ting (7)–(8), the optimal solution to (11) is given as

We find that the optimal amount invested in the stock does not depend directly 
on the fund’s wealth F(t) but on the process Y(t). Besides, the optimal stock 
weight 𝛼

⋆
S
(t)

F(t)
 does not keep constant any more and depends on the ratio Y(t)

F(t)
 . From 

the drift terms of F(t) and Y(t) in (9) and (18), we deduce that F(t) is expected to 
increase with t faster than Y(t). Thus, we conclude that the optimal stock weight 
falls over time. Similar to the result in Proposition 4, the optimal investments in 
bond and longevity bond correlate negatively. It is not possible to infer from the 
solution how the optimal weights in bond and longevity bond change over time. 
Section 4 shows the results of numerical simulations which allow us to observe 

𝛼⋆
B
(t) =
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the optimal investment strategy dynamically. However, it is not straightforward to 
detect from the optimal solution how the risk-aversion coefficient � , contribution 
rate c/w and wage replacement ratio �∕w affect the optimal strategy. We provide a 
numerical analysis and comparative statics on these parameters in the following 
section.

4  Numerical applications

We first provide a base scenario to visualize the optimal proportions invested in 
risky assets and money market. Then, sensitivity analyses are provided to study 
the impact of model parameters on the optimal investment strategy. In what fol-
lows, we denote by wB(t) , wL(t) , wS(t) and w0(t) the investment proportions in roll-
ing bond, rolling longevity bond, stock and money market, respectively.

4.1  The base scenario

The values of the parameters for the base scenario are given in Table 1. We do 
not use real market data but most of these parameter values are taken from Men-
oncin and Regis (2017) and Han and Hung (2012) and represent a consensus of 
the current literature. Here, we assume that there exists a rolling bond and a roll-
ing longevity bond with constant maturity time (in years) TB = 10 and TL = 10 , 
respectively. As the longevity bond is supposed to be issued based on the mortal-
ity index of an older population, we assume that the market consists of a rolling 
longevity bond whose underlying is the survival index of the 40-year-old popula-
tion. The longevity risk tends to be largely ignored in very early ages. Hence, 
we suppose that the scheme manager considers to add the longevity bond to the 
investment portfolio after the scheme members reach the age of 40, that is, the 
initial age (in years) is t0 = 40 . �0 given in (2) is computed by using the param-
eters given in Table  1. The retirement age is chosen as 65 years old, in other 
words the retirement time is T = 25 years. �� is the parameter of the market price 
of longevity risk. It not easy to infer upon the value of �� as longevity bonds are 
traded over the counter (OTC) and not through an exchange. In our base sce-
nario, we use �� = −0.10 . At time 0, the rolling bond offers a risk premium of 
about 0.01370 and the longevity bond provides a total risk premium of around 

Table 1  Values of parameters in 
the base scenario

Interest rate Mortality Stock

r
0
= 0.0621328 b = 12.9374 �

S
= 0.14926

a
r
= 0.0056210 � = 0.0009944 �r

S
= −0.0046306

b
r
= 0.0904668 m = 86.4515 �

S
= 0.1108301

�
r
= 0.0543625 b� = 0.5610000

�
r
= −0.5590635 �� = 0.0352
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0.01372. The stock offers a total risk premium of around 0.01670. In this setting, 
the longevity risk premium is far less than the interest rate and stock risk premia. 
Later, we provide optimal investment strategies for different scenarios with differ-
ent values of �� . Without loss of generality, we normalize the size of membership 
of the fund to n = 1 . Pension contribution rates differ widely among schemes and 
countries. According to HMRC (2018), in the UK, there is a limit on the amount 
of tax-free pension savings that an individual can pay into his pension account 
in each tax year. However, there is no cap on the contribution rate. As stated in 
DWP (2013), the Department for Work and Pensions requires that the minimum 
contribution rate for DC schemes is 8% , which is UK legislation. We first con-
sider c∕w = 0.15 then give a sensitivity analysis on the contribution rate. OECD 
(2019) shows that the net replacement rates vary across a large range from around 
30% to 90% or more in OECD countries. The average net replacement rates of an 
average earner from mandatory schemes is 59% . Since in the proposed scheme 
contributions are not returned to dead members, it is natural to set a replacement 
ratio that is above average. In our base scenario, we adopt �∕w = 0.75 . We set 
the instantaneous wage as w = 15 , thus the instantaneous contribution and annu-
ity installment are c = 2.25 and � = 11.25 , respectively. We suppose the initial 
scheme wealth is F0 = 20 and the manager’s risk aversion coefficient is � = 2.5.

We obtain 1000 simulated paths and present the average paths of optimal 
investment proportions in Fig. 1. As discussed in Sect. 3.2, we see that the opti-
mal stock weight w⋆

S
(t) declines over time. The optimal weight in cash is initially 

negative and is increasing over time. In the beginning, the short position in the 
money market reveals that the scheme manager borrows money and invests in 
risky assets to obtain risk premia. It implies that the manager takes an aggressive 
approach to quickly increase the pension scheme’s wealth to a high level in the 
early stage. The reduction in the total proportion invested in risky assets shows 
that, when closer to retirement, the manager becomes more conservative and 
shifts the scheme’s wealth to safer assets.

Fig. 1  Average paths of optimal 
investment proportions
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The longevity bond dominates the portfolio in the second half of the management 
period. This implies that it plays an important role in the risk management of the 
scheme. Both bond and longevity bond provide interest rate hedging, but the opti-
mal investments in the two assets act differently. Throughout the whole management 
period, the optimal bond weight is declining. The optimal weight in the longevity 
bond keeps increasing, though it drops slightly in the last few years. Besides, we see 
that the sum of bond and longevity bond weights declines over time. These obser-
vations reveal that, when approaching retirement, the need for interest rate hedg-
ing becomes lower while the need to hedge against longevity risk is still significant. 
Consequently, the manager cuts down the proportion of wealth invested in the bond 
while increasing the longevity bond’s weight. Generally, our base scenario implies 
that the longevity bond is an important element in the investment portfolio and pro-
vides an efficient way to hedge against both interest rate and longevity risks.

4.2  Sensitivity analysis

In Sect. 3.2, we give some comments on the impact of model parameters on the 
optimal investment strategy. This section provides various scenarios to investi-
gate the impact of model parameters numerically. We are interested in the fol-
lowing parameters: risk aversion coefficient ( � ), market price of longevity risk 
parameter ( �� ), maturity of rolling longevity bond ( TL ), contribution rate (c/w) 
and wage replacement ratio ( �∕w ). Other factors such as the market prices of 
interest rate risk and stock risk may also affect the optimal investment strategy 
sufficiently. Nonetheless, we do not look into those factors as the focus of our 
study is on hedging longevity risk.

4.2.1  Risk‑aversion

In the context of the CRRA utility function (10), � measures the scheme manag-
er’s aversion to risk. A higher value of � signifies a higher risk aversion. Figure 2 
shows the average paths of optimal investment proportions with different values of 
� . We observe that the investment proportions in bond and cash increase with � , 
whereas the investment proportions in longevity bond and stock decrease with � . A 
risk-averse investor tends to avoid relatively higher risk and prefers investments with 
lower risk but higher guaranteed returns. Although stock and longevity bond provide 
higher risk premiums, a high-risk-averse manager prefers to invest more in safer 
assets, i.e., bond and cash. This can also be explained by the optimal solution in 
Proposition 5. The optimal investment proportions in bond and longevity bond are 
negatively correlated. Since the longevity bond weight decreases with � , the bond 
weight increases accordingly. This behavior occurs as the bond is a safer asset than 
the longevity bond.

It is surprising that the optimal bond weight can become negative, meanwhile the 
holding in the money market is positive. This indicates that the manager chooses 
to short sell bonds when approaching retirement time T. Gao (2008) and Han and 
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Hung (2012) also made similar findings. They showed that the pension portfolio 
would shift from investments into risky assets to the money market. The conven-
tion is that the bond guarantees a fixed amount of money at maturity. In the begin-
ning, the weight put on the bond is relatively high and declines when moving closer 
to T. It also implies that the need to hedge interest rate risk becomes lower when 
approaching T.

Figure 2 shows that the longevity bond always suppresses other assets in the late 
management period, even for a high-risk-averse investor, as shown in the bottom 
right plot. Moreover, the longevity bond weight rises to around 50% by the end. Fur-
ther, we find that the optimal weight for the longevity bond is almost always higher 
than for the stock, in all scenarios. Overall, we conclude that, even though highly 
risk-averse managers invest less in the longevity bond, the latter is always an impor-
tant element in the scheme’s investment portfolio.

4.2.2  Market price of longevity risk

Market price of risk parameters �r , �� and �S all affect the optimal strategy. How-
ever, we are more interested in the impact of the longevity risk premium and there-
fore focus on the parameter �� . From (6), we learn that the longevity risk premium 
offered by the rolling longevity bond increases with −�� . Figure 3 shows the average 

Fig. 2  Average paths of optimal investment proportions with � = 2 , 3, 4 and 5



 A. Agarwal et al.

1 3

   11  Page 24 of 34

optimal strategies for different values of �� . In all these cases, the longevity risk pre-
mium is much smaller than the interest rate risk and stock risk premia determined 
by −�r and �s , respectively. In general, we observe that the optimal weight for the 
longevity bond increases with −�� while the optimal bond weight decreases with 
−�� . Besides, with increasing −��, the investment in the longevity bond suppresses 
other assets. This behavior is consistent with conventional thinking that an asset 
with higher risk premium is more attractive. The top left plot in Fig. 3 indicates that 
even in the case where the longevity risk premium is very low, the longevity bond 
dominates the portfolio over the last 8 years. It thus reveals that the kind of longev-
ity bond considered in this work is a very efficient instrument to hedge the longevity 
risk.

We provide Fig. 4 to take a closer look at the impact of �� on the optimal invest-
ment strategies. Again, the higher the longevity risk premium, the higher the portfo-
lio weight for the longevity bond. With other parameters unchanged, a higher −�� 
increases the longevity risk premium but does not increase the uncertainty in the 
longevity bond value. Thus, it makes the longevity bond more attractive. The oppo-
site reaction of bond weight and longevity bond weight against �� is explained in the 
discussion of Proposition 5. It is not a surprise that the optimal weight for the stock 
is barely affected by �� . The reason can be inferred from the optimal solution: the 
optimal stock weight is �S

�S�

Y(t)

F(t)
 . �S

�S�
 does not depend on �� and Y(t)

F(t)
 is only slightly 

Fig. 3  Average paths of optimal investment proportions with �� = −0.06 , −0.08 , −0.12 and −0.14
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affected by �� . Besides, the weight for cash is not sensitive to �� . This is because the 
changes in bond and longevity bond weights offset each other, and the total propor-
tion in risky assets is not sensitive to �� . In summary, we conclude that the longevity 
bond is an important element in the pension scheme’s investment portfolio and 
hedges the scheme’s longevity risk efficiently. Even when the longevity bond pro-
vides a relatively low longevity risk premium, it is optimal to invest a large propor-
tion of the scheme’s wealth into the latter, especially during the late management 
period when the longevity risk is high.

4.2.3  Maturity of the rolling longevity bond

Now, we investigate the optimal strategy when TL varies. Generally, Fig.  5 shows 
that the longer the rolling longevity bond’s maturity, the lower the investment pro-
portions in bond and longevity bond, while more weight is shifted into cash. We 

Fig. 4  Average paths of optimal investment proportions varying ��

Fig. 5  Average paths of optimal investment proportions varying T
L
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observe that wL shows an obvious decline when TL rises from 5 to 10. No distin-
guishable change in wL is observed when TL takes the values 15, 20 and 25. Intui-
tively, this is because longer maturity times result in more uncertainty in the rolling 
longevity bonds. For a risk-averse investor, it is therefore better to have less portfolio 
weight attached to a longevity bond with a longer maturity. Figure  6 shows that 

1

h1(t,t+TL)
 is decreasing with TL and 1

F(t)
 does not change much when TL changes. 

According to Proposition  5, this results in the decline of the longevity bond’s 
weights. At first, 1

h1(t,t+TL)
 drops dramatically when TL increases and later on it 

changes only slightly. Thereafter, we observe that the optimal longevity bond weight 
decreases with TL but is not sensitive to longer maturities.

Compared to wL , wB reacts stronger to changes in TL . This is apparent from the 
optimal solution as the changes in wL are scaled up by the factor − f1(t,t+TL)

f1(t,t+TB)
 . Fig-

ure 6 shows that f1(t,t+TL)
f1(t,t+TB)

 increases with TL . Therefore, the optimal weight for the 
bond decreases significantly with TL due to decreasing − f1(t,t+TL)

f1(t,t+TB)
wL(t) . The opti-

mal investment proportion in the bond becomes negative during the later years 
except for the case when TL = 5 . This is because the longevity bond is able to 
hedge longevity risk as well as interest rate risk. When nearing retirement, the 
need to hedge interest rate risk reduces while the longevity risk is still high. The 
negative position in the bond offsets the interest rate risk hedge provided by the 
longevity bond. Even though a negative position in the bond can be observed, the 
sum of the weights for longevity bond and bond are always positive. In addition, 
we observe that the longevity bond dominates the portfolio with higher TL. Over-
all, longer maturity times may lessen the attractiveness of longevity bonds. Even 
though, longer maturity times might be detrimental to investment appeal, longev-
ity bond’s always play an important role in the DC scheme’s risk management, 
dominating the portfolio during the late management period.

Fig. 6  1
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1
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4.2.4  Contribution rate

The minimum requirement for contribution rates for DC schemes in the UK is 8% , 
see DWP (2013) and OECD (2019). However, apart from the tax consideration, in 
principle, there is no upper limit on contribution rates. Figure 7 shows the optimal 
proportions when contribution rate c/w equals to 0.10, 0.20, 0.30 and 0.40. That is, 
the instantaneous contribution c equals to 1.5, 3, 4.5 and 6. In general, we observe 
that with increasing c/w, the total weight in risky assets increases while the weight 
in cash decreases. The intuition behind this observation is that with higher contribu-
tion rate, the present value of the scheme’s future income is higher. A high present 
value of the future income incentives the manager to increase the total investment 
into risky assets. Since there is guaranteed future income, the manager takes more 
risk in the hope of earning a higher risk premium. Moreover, the manager invests 
less in the longevity bond when the contribution rate is high. Although the manager 
reduces the longevity bond investment, it still remains an important element in the 
investment portfolio, eventually dominating the investments in other assets.

4.2.5  Wage replacement ratio

The wage replacement ratio is a good tool when estimating retirement income needs. 
A high wage replacement ratio implies that a high fraction of the pre-retirement 

Fig. 7  Average paths of optimal investment proportions varying contribution rate c/w 

Fig. 8  Average paths of optimal investment proportions varying wage replacement ratio �∕w
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income is needed to maintain living standard in retirement. OECD (2019) reveals 
that the net replacement ratio varies from 30 to 90% among OECD countries. 
Accordingly, we set �∕w equal to 0.30, 0.50, 0.70 and 0.90 to test the impact of 
wage replacement ratio. In Fig. 8, we observe that it is optimal to increase the frac-
tion of wealth invested into the longevity bond when the wage replacement ratio is 
high. It is clear that with a higher wage replacement ratio, both the annuity install-
ments � and the guarantee G(t) are higher. However, the wealth process F(t) and 
the discounted future contributions D(t) do not depend on the wage replacement 
ratio. Intuitively, a high wage replacement ratio implies that the members require 
high annuity installments (or, the minimum guarantee) and the scheme is exposed 
to greater longevity risk. As a consequence, the scheme manager invests a large pro-
portion of the scheme’s wealth into the longevity bond to hedge the longevity risk.

5  Conclusion

We studied the optimal investment problem underlying the management of a DC 
pension scheme in a framework where both interest rate risk and longevity risk are 
considered. Our theoretical results and subsequent numerical studies showed evi-
dence that the longevity bond plays an important role in DC scheme’s risk manage-
ment. We observed that a scheme manager with high risk aversion, invests a low 
proportion in the longevity bond. However, even for a highly risk-averse manager, 
we showed that it is still optimal to invest a significant proportion of the scheme’s 
wealth into the longevity bond. Also, compared with the investment ratio’s of the 
other risky assets, the investment proportion for the longevity bond is shown to be 
relatively high even in the case where the longevity risk premium is relatively low. 
Moreover, we observed that longer maturity times could reduce the attractiveness 
of longevity bonds, however even longevity bonds with longer maturity dominate 
the other assets in the investment portfolio during the later periods of the scheme. 
Although the manager reduces investment into longevity bonds when the contri-
bution rate is high, the longevity bond still remains an important element of the 
investment portfolio. Furthermore, we observed that a high wage replacement ratios 
incentivizes the scheme manager to invest a higher proportion of wealth into the lon-
gevity bond. We conclude that longevity bonds play an important role for DC pen-
sion schemes, in particular at times when the mortality risk is increased. They are 
very attractive to pension schemes and there is genuine potential in the development 
of mortality-linked derivatives and exchanges for longevity bonds.

There is scope for further research work. In this work, we assumed that the lon-
gevity bond’s reference population and the scheme members have the same mor-
tality behavior. However, population basis risk arises when there is a mismatch 
between the hedging instrument’s underlying mortality experience and the hedging 
population’s mortality behavior. We investigate the impact of longevity basis risk on 
the asset allocation and longevity risk hedge in further work Agarwal et al. (2020).
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Appendix

1: Proof of Proposition 1

Proof At ant time t ∈ [0, T] , by interchanging the order of integration, we can 
rewrite (12) as

From Leibniz’ integral rule, we get

Then, we obtain

Comparing the coefficients in (4) and (25), we obtain the holdings in rolling longev-
ity bond, rolling bond and money market:

  ◻
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2: Proof of Lemma 3

Proof It is clear from (19) that we need to verify the admissibility condition for the 
deterministic functions �D(t) and �G(t). Now for any fixed t ∈ [0, T] and any 
s ∈ [T ,∞) , f1(t, s) , h1(t, s) and L(t, s) are continuous functions. It is easy to see that 
�

[∫ T

0
|𝛼D(t)|2dt

]
< +∞.

Since r(t) > 0 , 𝜆(t) > 0 , f1(t, s) ≥ 0 , h1(t, s) ≥ 0 and h0(t, s) ≤ 0 , we have

Let

we have

Given 𝜂r > 0 , b̃r > 0 , b̃r − 𝜂r < 0 and 2ar
𝜎2
r

> 1 , it is easy to see that ∫ ∞

T
f̃ (t, s)ds is a 

constant. Moreover, ∫ ∞

T
L(t, s)ds is convergent. Since f1(t, s) is a monotonically 

increasing function and is bounded on [T ,∞) , Abel’s test shows that 
∫ ∞

T
f1(t, s)L(t, s)ds is convergent. Similarly, ∫ ∞

T
h1(t, s)L(t, s)ds also converges. Thus, 

�

[∫ T

0
|𝛼G(t)|2dt

]
< +∞.

Therefore, if �
[∫ T

0
|𝛼Y (t)|2dt

]
< +∞ , then �

[∫ T

0
|𝛼(t)|2dt

]
< +∞ . This means 

that if �Y (t) ∈ A  , then �(t) ∈ A  . We have D(T) = 0 , thus if Y(T) ≥ 0 a.s., then 
F(T) − G(T) ≥ 0 a.s.. Furthermore, since F(t) = Y(t) − D(t) + G(t) and (19) holds, 
𝛼Y⋆(t) leads to the optimal strategy 𝛼⋆(t) which concludes the argument.   ◻

3: Proof of Proposition 4

Proof For any t ∈ [0, T] , let g(t,  z) be a function of t and z(t). We make a sophis-
ticated guess that the solution of the second order non-linear partial differential 
Eq. (23) is of the following form

with terminal condition g(T , z) = 1 . Substituting (26) in (23) leads to

L(t, s) ≤ ef0(t,s) =

(
2𝜂re

1

2
(b̃r+𝜂r)(s−t)

(b̃r + 𝜂r)e
𝜂r(s−t) + (𝜂r − b̃r)

) 2ar

𝜎2r

.

f̃ (t, s) =

(
2𝜂re

1

2
(b̃r+𝜂r)(s−t)

(b̃r + 𝜂r)e
𝜂r(s−t)

) 2ar

𝜎2r

=

(
2𝜂re

−
1

2
(b̃r−𝜂r)t

b̃r + 𝜂r

) 2ar

𝜎2r

e
ar (b̃r−𝜂r )

𝜎2r
s
,

f̃ (t, s) > ef0(t,s) ≥ L(t, s) > 0 on [T ,∞).

(26)V(t, y, z) =
y1−�

1 − �
g(t, z),



1 3

Hedging longevity risk in defined contribution pension schemes  Page 31 of 34    11 

We further guess that g(t, z) is of the following form

with terminal conditions A0(T , T) = 0 , A1(T , T) = 0 and A2(T , T) = 0 . Substituting 
(28) in (27), we have

By collecting the r(t) and �(t) terms above, we obtain the following three ODEs:

Under the conditions Δ1 > 0 and Δ2 > 0 , the solutions A0(t, T) , A1(t, T) and A2(t, T) 
are given in Proposition 4. The first order condition (22) then becomes

  ◻

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
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you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
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(27)
0 = gt + (1 − �)rg +

1 − �

2�
M�(Σ�Σ)−1Mg +

1 − �

�
M�Σ−1�gz + ��gz

+
1

2
tr(���gzz) +

1 − �

2�g
gz

����gz.

(28)g(t, z) = eA0(t,T)+A(t,T)z(t) = eA0(t,T)+A1(t,T)r(t)+A2(t,T)�(t)

0 =
(
A�
0
+ A�

1
r + A�

2
�
)
+ (1 − �)r +

1 − �

2�

(
�2
r
r + �2

�
� + �2

S

)

+
1 − �

�

(
�r�rrA1 + �����A2

)

+
(
ar − brr

)
A1 +

(
a� − b��

)
A2 +

1

2�

(
�2
r
rA2

1
+ �2

�
�A2

2

)
.

0 = A�
1
(s,T) +

(1 − �)(2� + �2
r
)

2�
+

(1 − �)�r�r − br�

�
A1(s,T) +

�2
r

2�
A2
1
(s,T),

0 = A�
2
(s,T) +

(1 − �)�2
�

2�
+

(1 − �)���� − b��

�
A2(s,T) +

�2
�

2�
A2
2
(s,T),

0 = A�
0
(s,T) +

1 − �

2�
�2
S
+ arA1(s,T) + a�(s)A2(s,T).

𝛼Y⋆

=
1

𝛾
(Σ�Σ)−1My +

1

𝛾
Σ−1𝜉Ay

=

⎡⎢⎢⎢⎢⎣

𝜎𝜆
L
𝜎S𝜃r

√
r−𝜎r

L
𝜎S𝜃𝜆

√
𝜆−𝜎𝜆

L
𝜎r
S
𝜃S
√
r

𝜎B𝜎S𝜎
𝜆
L

+
𝜎r
√
r

𝜎B
A1 −

𝜎r
L
𝜎𝜆

√
𝜆

𝜎B𝜎
𝜆
L

A2

𝜃𝜆

√
𝜆

𝜎𝜆
L

+
𝜎𝜆

√
𝜆

𝜎𝜆
L

A2

𝜃S

𝜎S

⎤⎥⎥⎥⎥⎦

y

𝛾
.
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