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ABSTRACT WiFi sensing, an emerging sensing technology, has been widely used in vital sign monitoring.
However, most respiration monitoring studies have focused on single-person tasks. In this paper, we propose
a multi-person breathing sensing system based on WiFi signals. Specifically, we use radio frequency (RF)
switch to extend the antennas to form switching antenna array. A reference channel is introduced in the
receiver, which is connected to the transmitter by cable and attenuator. The phase offset introduced by
asynchronous transceiver devices can be eliminated by using the ratio of the channel frequency response
(CFR) between the antenna array and the reference channel. In order to realize multi-person breathing
perception, we use beamforming technology to conduct two-dimensional scanning of the whole scene. After
eliminating static clutter, we combine frequency domain and angle of arrival (AOA) domain analysis to
construct the AOA and frequency (AOA-FREQ) spectrogram. Finally, the respiratory frequency and position
of each target are obtained by clustering. Experimental results show that the proposed system can not only
estimate the direction and respiration rate of multi-person, but also monitor abnormal respiration in multi-
person scenarios. The proposed low-cost, non-contact, rapid multi-person respiratory detection technology
can meet the requirements of long-term home health monitoring.

INDEX TERMS Beamforming, multi-person respiration sensing, Wi-Fi sensing.
Clinical and Translational Impact statement-The methods and techniques described in this paper have ref-
erence significance for the monitoring of clinical respiratory symptoms, and can effectively avoid iatrogenic
cross infection caused by contact monitoring.

I. INTRODUCTION
Breathing is an important vital sign, which helps to under-
stand people’s sleep quality and health condition. Respiration
rate and respiration pattern are also considered good indica-
tors of an individual’s underlying health status [1]. Monitor-
ing respiratory activity can be used to diagnose respiratory
disorders and lung diseases, such as pneumonia, central or
obstructive sleep apnea [2]. As people are more and more

concerned about wellness, a robust and reliable method of
measuring breathing has become a hot topic for many years
and has attracted the attention of many researchers.

Traditional breathing detection methods require people to
wear special detection equipment, which limits home health
monitoring, especially the elderly, patients with skin aller-
gies and burns. In order to solve the shortcomings of tra-
ditional methods, RF sensing-based solutions can support
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non-invasive breathing sensing and are more suitable for
long-term monitoring. At the same time, the COVID-19 pan-
demic has also prompted the demand for contactless sensing
technology to reach its peak. Researchers have proposed and
experimented with different non-contact methods to detect
breathing such as continuous wave (CW) radar, frequency-
modulated continuous wave (FMCW) radar, WiFi and radio
frequency identification (RFID).

In order to apply the breath detection system in a
multi-resident environment, multi-target breath detection has
become an important research area. At present, there are three
main solutions to detect multi-person. One method is based
on the difference of the distance between the target and the
wireless device to complete the task of separating multiple
targets. Large-bandwidth wireless devices including Ultra-
Wide-Band (UWB) [3], [4], [5], [6], FMCW [7], [8], [9] and
stepped frequency continuous wave (SFCW) [10], [11] with
accurate distance measurement capabilities are one of the
solutions for multi-person breathing detection. Researches
based on this mechanism have achieved very good results,
but it is difficult to separate multiple targets when they are in
the same range bin.

The second method is blind signal separation (BSS). Its
essence is to reconstruct the source signal of each target
by using the statistical independence of different targets.
Zeng et al. proved that the channel state information (CSI)
of WiFi reflected by the breathing is linearly mixed on
each receiving antenna, and multi-person breathing can be
modeled as a BSS problem. They use independent compo-
nent analysis (ICA) to separate the mixed signal to obtain
the breathing signal of each person [12]. In [13], FMCW
equipped with an antenna array can capture indoor RF sig-
nals. The system can recover up to 5 subjects sitting side by
side using the ICA method. In [14], when multiple objects
located at the same distance from the SFCW radar, respiration
signals of multiple targets can be extracted by BSS method.
Although the BSS algorithms can separate the breathing of
multiple targets, it is difficult to correspond the order of the
separated signals to each target.

The third solution of separating multiple targets is based
on the idea of spatial multiplexing. Specifically, multiple
targets in the region of interest have different angles relative
to the system, and each target can be separated by obtaining
the angle information of the target. These works can be
further divided into AOA estimation, digital beamforming
and frequency scanning antennas. Gao et al. analyzed the
CSI in doppler domain and AOA domain, and constructed a
super-resolution two-dimensional AOA-Doppler spectrum to
estimate multi-person respiration [15]. The frequency scan-
ning antenna realizes regular and large-range beam scanning
by changing the working frequency of the RF signals [16],
[17], [18], [19]. These studies require the signal to have a
large bandwidth, that is, the change of the signal frequency
directs the radiation beam of the antenna to each target,
so as to achieve multi-target respiratory monitoring. For
the digital beamforming scheme, Xiong et al. proposed the

single-input–multiple-output (SIMO) CW radar system,
which uses adaptive digital beamforming technology to
simultaneously detect the breathing of multiple targets [20].
Chen et al. proposed a multiple-input-multiple-output
(MIMO) CW radar that can perform two-dimensional (2D)
digital beamforming. The radar scans the whole space with
2D beam and obtain the target’s vital sign signal by forming
an independent beam focusing on the target’s chest [21].
Ahmad et al. extend the number of antennas by con-
structing virtual arrays, and utilize range-azimuth resolution
point cloud to distinguish multiple targets using FMCW
radars [22]. In [28], a dual-beam phased array radar is
explored for multi-person breathing. However, these studies
either required expensive radar systems or the algorithmic
complexity made it difficult to deploy on limited hardware
resources. Therefore, it is difficult for these studies to be
widely applicable in the home.

The ubiquitous WiFi signal provides abundant illuminator
sources for sensing. Colone et al. analyzed the characteristics
of WiFi signal as radar waveform and data processing tech-
nology [29]. In [30], the authors adopt a batch cross ambigu-
ity function to obtain Doppler information of indoor targets
at low data rate beacon frames. the application of passive
WiFi radar for through-wall human sensing were studied and
verified [31], [32], [33], [34].Works in [35] present an end-to-
end deep learning framework to classify and estimate human
respiration activity. Li et al. integrated activity recognition
and breath sensing into one system, which provides new
opportunities for in-home healthcare [34].

We propose a novel low-cost SIMO WiFi sensing pro-
totype. The system uses commodity WiFi to transmit and
receive wireless signals. At the same time, we use RF
switches to increase the spatial resolution by expanding the
number of receiving antennas. In order to overcome the
time-varying phase offset caused by carrier frequency offset,
packet detection delay, sampling frequency offset and other
factors, we introduce a reference channel inspired by pas-
sive radar to eliminate the impact of phase offset on sens-
ing. This paper explores the observation and analysis of
the influence of multi-person breathing on wireless signals
from both the frequency domain and the spatial domain,
so as to realize multi-person breathing monitoring and signal
separation.

The main contributions of this paper can be summarized as
follows:

1. Compared with the traditional array based on multi-
sensor simultaneous sampling. This paper proposes an
antenna array based on a RF switch. It forms a switching
antenna array by rapidly switching antennas, which greatly
reduces the complexity and cost of the system.

2. We propose a method for joint spatial and frequency
domain estimation of multi-person respiration. That is, the
AOA-FREQ spectrogram is constructed by performing FFT
on the scanned beam, and the azimuth angle and breath-
ing frequency of each target are automatically obtained by
clustering.

24 VOLUME 11, 2023



L. Guan et al.: Multi-Person Breathing Detection With Switching Antenna Array Based on WiFi Signal

3. We built a low-cost prototype using commercial net-
work cards, RF switch and microcontroller hardware, and
conducted experiments to verify the proposed method.

The rest of this article is organized as follows. Section II
introduces the basic theories of WiFi sensing. Section III
presents the design and signal processing of the proposed sys-
tem. Section IV shows the experimental setup, measurement
results and discussion. Finally, Section V draws conclusions.

II. BACKGROUND KNOWLEDGE
In the indoor environment, the wireless signals propagate
throughmultiple paths, including the line-of-sight (LOS) path
and paths reflected by surrounding objects. The signals on
different paths have different attenuation and delay. The CSI
characterizes how the wireless signal propagates from the
transmitter to the receiver. However, the non-synchronization
between the transmitter and receiver results in a time-varying
phase offset θoffset [23]. If additive noise is ignored, the CFR
Rmon(k, t) affected by multipath can be expressed as [24]:

Rmon(k, t) = e−jθoffset
L∑
i=1

aie−j2π fkτi(t) (1)

where L represents the number of paths, k denotes the index
of subcarrier, fk is the frequency of the kth subcarrier, ai and
τi(t) are the attenuation coefficient and the propagation delay
from the ith path, respectively. If there are moving objects
in the environment, we split CFR into two parts: dynamic
CFR and static CFR. Thus, equation (1) can be expressed as
follows:

Rmon (k, t) = e−jθoffset
[
Hs (k, t)+ ae

−j2πd(t)
λk

]
(2)

where Hs(k, t) represents the static CFR, λk is the carrier
wavelength of the kth subcarrier, d(t) represents the length
of the dynamic path at time t . If we only consider breathing
detection, then d (t) = d0 + 2dbsin (2π fbt + ϕ), where d0
is the path length of the reflected signal when the subject is
stationary, db is the maximum displacement of the chest wall,
fb is the subject’s breathing frequency, and ϕ is the initial
phase of breathing.

III. METHOD
A. SYSTEM ARCHITECTURE
Due to the limitation of the number of antennas of the network
interface controller (NIC), it will be greatly limited in multi-
person breathing detection. We use low-cost hardware to
expand the number of antennas. The system architecture is
shown in Fig. 1(a). We can obtain a virtual phased array by
using single pole four throw (SP4T) to quickly switch among
the receiving antennas. The distance between antennas is
2.82 cm, which is a half wavelength with carrier frequency
of 5.32 GHz. The vertical distance between the Rx antennas
and the Tx antenna is 15 cm as shown in Fig. 1(b). The
SP4T switch used is HMC7992which provides fast switching
speed, i.e. 150 ns, low insertion loss, i.e. 1 dB and high
isolation at 5 GHz, i.e. 30dB.

FIGURE 1. System architecture. (a) System diagram. (b) Implemented
hardware.

The transmitter is connected to a one-to-two power splitter,
one port is connected to the receiver through a coaxial cable
and an attenuator, and the other port is connected to the Tx
antenna. The STM32F103ZET6 (STM32) controls SP4T to
complete the switching between antennas. Specifically, the
receiver sends the control signal to the STM32 through serial
communication to complete the channel switching of the RF
switch. For ease of description, the channel connected to the
RF switch is called the surveillance channel, and the channel
connected to the transmitter through the power divider is
called the reference channel. Based on (2), the received signal
of the mth antenna can be expressed as:

Rm
mon
(k, t + m1t)

= e−jθoffset
[
Hm
s (k, t + m1t)+ ame

−j2πdm(t+m1t)
λk

]
(3)

where the1t is the interval of switching channels,Hm
s and dm

are the static component and dynamic component received by
themth antenna, respectively. Then the signal of the reference
channel at same time can be expressed as:

Rref (k, t + m1t) = e−jθoffsetaref e−j2π fkτ (4)

where aref is the attenuation coefficient, and τ is the delay
introduced by the signal propagating through attenuators,
power splitters, and coaxial cables.

B. PHASE OFFSET CANCELLATION
Affected by the time-varying phase offset, the signal received
by each element of the switch array will be contaminated,
which makes beamforming and AOA estimation fail. Previ-
ous work has shown that the RF oscillator between different
antennas in the NIC is frequency locked, so that the e−jθoffset
at the same time for all the receiving ports of the NIC is
same [25]. Based on the above analysis, we apply quotient
of CFR between surveillance channel and reference channel
to remove the time-varying phase offset:

R̂mmon(k, t + m1t) =
Rmmon(k, t + m1t)
Rref (k, t + m1t)

=

e−jθoffset
[
Hm
s (k, t)+ ame

−j2πdm(t+m1t)
λk

]
e−jθoffsetaref e−j2π fkτ
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=
Hm
s (k, t)

aref e−j2π fkτ
+
ame
−j2π

(
dm(t+m1t)

λk
−fkτ

)
aref

= Ĥm
s︸︷︷︸

¬

+ âme
−j2π

(
dm(t+m1t)

λk
−fkτ

)
︸ ︷︷ ︸



(5)

We can find that the e−jθoffset is eliminated. The result is also
composed of static component ¬ and dynamic component .
When the RF switch switches rapidly between RF1, RF2,

RF3 and RF4 at an interval of 0.01 s and the frequency
of wireless signal is 5.32 GHz, we assume that the sub-
ject remained still and the measured CFR only changed
slowly with the subject’s breathing during data acquisition.
At the same time. At the same time, the respiratory ampli-
tude and frequency of the subject is 12 mm and 0.3 Hz,
respectively. The displacement caused by respiration dur-
ing RF switch switching between channels is db = 3.6 ×
10−6m (0.0012 m× 0.3 Hz× 0.01s), then phase change dur-
ing channel switching is 1ϕ = 2π f 2db

c = 8 × 10−4rad .
Therefore, the phase change during channel switching is so
small that it can be ignored. In other words, each chan-
nel receives the signal approximately simultaneously in one
round of switching. Equation (5) can be rewritten as:

R̂mmon(k, t) ≈
(
Ĥm
s + âme

−j2π
(
dm(t)
λk
−fkτ

))
(6)

C. SUBCARRIER SELECTION
As a multi-carrier modulation technology, orthogonal fre-
quency division multiplexing (OFDM) decomposes the data
stream into several sub-carriers for transmission. Therefore,
we will obtain the CFR of multiple carriers when performing
channel estimation. However, previous studies have shown
that different subcarriers have different sensitivity to chest
wall displacement caused by respiration [36]. If there are
no moving objects in the environment, the phase of CFR
remains constant. If there are moving objects in the environ-
ment, the amplitude of the CFR will fluctuate. Intuitively,
the carrier with more obvious amplitude change contains
rich environmental information. We use the variance of CFR
amplitude in a sliding window to quantify the sensitivity of
subcarriers to small-scale motion. The larger the variance, the
more sensitive it is to small-scale motion. However, there are
significant differences in the phases of different subcarriers
in the same antenna as shown in Fig.2.

If the subcarrier with the maximum variance of each ele-
ment is chosen, different antennas may choose different sub-
carriers, which will lead to beamforming failure. Selecting
the same subcarrier for each antenna will avoid the problem.
In summary, the process of subcarrier selection is given in
algorithm 1. The input parameter is theCFR ∈ CNant×Nsub×T ,
where Nant is the number of receiving antennas, Nsub is the
number of subcarriers and T is the length of the sliding
window. We calculate the variance matrix VM ∈ RNant×Nsub

of the CFR. We score each subcarrier based on the variance
and record it as Scores ∈ R1×Nsub , which is an index vector

FIGURE 2. CFR phase of 30 subcarriers.

Algorithm 1 Subcarrier Selection Algorithm

Input: CFR 2 CNantLNsubLT

Output : Selectsub
1: initialize:
2: Set V M = zeros(Nant; Nsub) ;
3: Set Scores = zeros(1; Nsub) ;
4: Set Sums = zeros(1; Nsub) ;
5: for i = 1; 2; :::; Nant do
6: for j = 1; 2;:::; Nsub do
7: VM [i, j]=var(CFR[i,j,:])
8: end for
9: //TheScores is a row index vectors describing the
rearrangement of each row of V M ;
10: Scores = argsort(VM [i;:]);
11: Sums = Sums + Scores;
12: end for
13: Selectsub = argmax(Sums);
14: Return Selectsub;

that describes the rearrangement of the variance of the sub-
carriers. That is to say, the larger the variance, the higher the
score. Finally, the subcarrier scores of all antennas are added.
The subcarrier with the highest score is used as the input of
beamformer.

D. BEAMFORMING
Beamforming is widely used in phased array radar and mod-
ern communication systems. The beamforming technology
performs phase shift and weighted superposition of the col-
lected signals, so as to realize the direction selectivity of
signal transmission/reception.

It can be found that the received signal contains target
signals and static clutter such as leakage signal from the
Tx antenna and wall reflection. Fortunately, the AOA of the
respiration signal and the interference signal are different,
so the spatial characteristics can be used to separate respi-
ratory signals. For the signal arrival of the target is θ and the
distance between elements is λ/2, the path difference between
the mth antenna and the first antenna is:

τm (θ) =
(m− 1) λ sin θ

2c
(7)
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Therefore, the steering vector a(θ ) is expressed as follows:

a (θ) =
[
e−j2π f τ1(θ), e−j2π f τ2(θ), . . . , e−j2π f τm(θ)

]
(8)

In the absence of a priori knowledge of the target number
and position, we use conventional beamforming algorithm
(CBF) to scan the space. The CBF performs phase compensa-
tion on the array signal in the desired direction. Specifically,
by calculating the weighted sum of the received signals at all
antennas, the beamformed signal at the desired direction θ is
as follows:

y (θ, t) = W (θ)R (ks, t)

=

M∑
m=1

wmR̂mmon(ks, t)

=

M∑
m=1

wm

(
Ĥm
s + âme

−j2π
(
dm(t)
λks
−fks τ

))

=

M∑
m=1

wmĤm
s︸ ︷︷ ︸

¬

+

M∑
m=1

wmâme
−j2π

(
dm(t)
λks
−fks

τ

)

︸ ︷︷ ︸


(9)

where ks is the subcarrier index selected by Algorithm,
W (θ ) ∈ C1×M is the weight vector, R (ks, t) =

[R̂1mon(ks, t), R̂
2
mon(ks, t), . . . R̂

M
mon(ks, t)]

T
and M is the num-

ber of the antennas. The term ¬ and the term  are the static
components and dynamic components of the beamformed
signal, respectively. When W (θ ) = a (θ), the output power
of the array in the direction θ is the maximum.

The 3 dB beamwidth of a uniform linear array is inversely
proportional to antenna aperture and the cosine of the steering
angle [26]:

BW3dB =
1

cosθs

50.8λ
Nd

(
◦
)

(10)

where θs is the steering angle, N denotes the elements num-
ber of the ULA, d is the distance of two adjacent antennas
and is set to λ/2 to avoid the grating lobe issue of lager
distance d . The larger the number of antennas, the narrower
the beamwidth, the stronger the capacity of the array resolu-
tion spatial signal. Considering the cost and complexity, the
number of elements in the switching antenna array is 4, so the
3 dB beamwidth is 25.4◦.

E. CONSTRUCT AOA-FREQ SPECTRUM
We use the beam to scan the room horizontally. If there is
no moving target in the scanning direction, the energy of
the beamformed signal is concentrated at zero frequency.
On the contrary, it will appear a corresponding peak in the
frequency spectrum if there is a moving target. The above
ideas inspired us to perform FFT on each beam. In order to
accurately estimate the respiratory rate of the subject, we need
to analyze the CFR of the respiratory signal. According to the
Section II, the dynamic component caused by respiration can

FIGURE 3. Experimental results with Subject at 1 m and 0◦. (a) The
spectrum with the static component removed. (b) The spectrum with the
static component.

be expressed as follows:

ae
−j2πd(t)
λk = ae

−j2π[d0+2d sin(2π fbt+ϕ)]
λk

= ae
−j2πd(0)

λk︸ ︷︷ ︸
¬

× e
−j4πd sin(2π fbt+ϕ)

λk︸ ︷︷ ︸


(11)

where the term ¬ can be regarded as a constant, and the term
 contains the respiratory signal of interest. According to the
Jacobi-Anger expansion [27], the term  can be decomposed
into infinite summation:

e
−j4πd sin(2π fbt+ϕ)

λk =

n=+∞∑
n=−∞

(−1)nJn (z) ej2πnfbtejnϕ (12)

where z = 4πd/λk , Jn(z) is mth order Bessel function with
arguments z. It can be found there are countless harmonics at
nfb in addition to the spectral lines at the breathing frequency
fb. Fortunately, Jn(z) will decay rapidly when |n| ≥ 2, so (12)
can be approximated as:

e
−j4πd sin(2π fbt+ϕ)

λk ≈

n=+1∑
n=−1

(−1)nJn (z) ej2πnfbtejnϕ (13)

which consists of two spectral lines at ±fb with respect to
n = ±1 as well as a direct current (DC) component with
respect to n = 0. We can find that the energy of the dynamic
components is concentrated at the frequency of ±fb.
In addition, the zero frequency components in the beam-

formed signal mainly come from the leakage signal, the
reflection of static objects and the decomposed DC signal.
However, the leakage power from the Tx antenna to the Rx
antenna may be greater than the power of the reflections
from targets of interest, so that the information of the targets
can not be found on the AOA-FREQ spectrum. In order to
obtain the breathing rate, the zero frequency components of
y(θ, t) need to be removed before the FFT is performed.
We compute the mean value of the beamformed signal in
the sliding window and take it as the static components.
These interference signals in the desired direction can be sup-
pressed by removing the mean value. Fig. 3(a) and Fig. 3(b)
show AOA-FREQ spectrum with and without mean removal,
respectively. It can clearly find the target’s breathing rate
and AOA after removing the mean. The experimental results
verify the effectiveness of the proposed method for removing
the static components.
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F. TARGET DETECTION
After the above processing, we can obtain an AOA-FREQ
spectrum. When detecting a single target, it is easy to find
the AOA and breathing rate of the target by looking for the
maximum value in the AOA-FREQ spectrum. However, the
sidelobe is easy to be identified as a false target, which makes
the peak detection method not suitable for multi-target detec-
tion. Therefore, we adopted a two-step detection scheme to
identify multi-target. In the first step, the AOA-FREQ matrix
is normalized to eliminate the influence of received signal
strength caused by the size of target, transmit power, distance
and other factors. Then, we set an empirical threshold (0.4)
to convert the AOA-FREQ spectrogram into a point cloud
with potential targets. In the second step, we use a clustering
algorithm to assign similar points to a cluster, and further
filter out the false target introduced by beamforming sidelobe.
We use Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm to cluster point clouds.
DBSCAN identifies arbitrarily shaped clusters and noise in
data. For a point to be assigned to a cluster, it must satisfy the
condition that its epsilon (ε) neighborhood contains at least
the minimum number of neighbors (minpts). Alternatively,
the point can be located in the ε neighborhood of another
point that satisfies the ε and minpts conditions. Through
extensive experiments, it is found that the size of the target
cluster is larger than that of the noise cluster and the angle
interval of an adult human target should be around 15◦. In this
study, we set ε = 5◦ and minpts is equal to the number
of points within a radius of 5◦ and a frequency range of
0.05 Hz. Finally, we use the number of clusters as the number
of targets, and the frequency corresponding to the maximum
value in the clusters is the target breathing frequency.

IV. RESULTS AND DISCUSSION
The proposed system is implemented on Ubuntu Desk-
top 14.04 LTS OS for both the transmitter and receiver,
each equipped with an Intel 5300 NIC operating in the
5.32 GHz. The transmitter is configured for injection mode.
Four microstrip Yagi antennas and a SP4T RF switch form
an antenna array. The switching frequency of the RF switch
is 400Hz, that is, the sampling rate of each channel is 100 Hz.

A total of 5 volunteers were recruited to evaluate the
performance of the proposed system. All the volunteers are
healthy and about 25 years old. For all the experiments, the
volunteers were asked to wear a piezoelectric respiratory belt
(HKH-11C) as the ground truth to verify the accuracy of
the proposed system in estimating respiratory rate and multi-
target separation results.

A. IMPACT OF DISTANCE ON RESPIRATORY ACCURACY
In this section, we evaluate the performance of the proposed
system under different distances between the volunteers and
transceiver. Respiratory rate detection accuracy is expressed
as:

accuracy = 1−
|Estimate result − ground turth|

ground turth
(14)

FIGURE 4. Breathing accuracy under different distances between the
targets and the transceiver.

FIGURE 5. (a) Experiment 1 setup. (b) Experiment 2 setup.
(c) Experiment 3 setup.

In this experiment, we explore the distance between sub-
jects and transceiver from 0.5 m to 2.5 m at a step size of
0.5 m. Fig. 4 shows that the average accuracy of respira-
tion rate estimation as the distance varies. In single-person
breathing experiments, we can find that the proposed system
can achieve high accuracy (97.5%) within 2 m. Moreover,
the proposed system can accurately separate and estimate
(97.04%) the breaths of each target within 1.5 m in multi-
person detection. However, as the distance increases, the
detection accuracy of multi-person breathing will drop sig-
nificantly. The above results demonstrate that our system is
competent for the task of home respiration monitoring.

B. RESPIRATORY DETECTION WITH AUTOMATIC ANGLE
LOCATION OF TWO PEOPLE
We performed three sets of experiments to evaluate the per-
formance of the proposed system. All experiments were per-
formed in a hall as shown in Fig. 5.

In experiment 1, we aim to explore the spatial resolution
of the proposed system when the respiratory rates of multiple
targets are similar. Two volunteers were located at angles of
−15◦ and 15◦ of the system with similar respiratory rate.
There are twomain highlighted parts in the AOA-FREQ spec-
trum, corresponding to subject A and subject B, respectively,
as shown in Fig. 6(a). The two subject angles estimated by
the system are 16◦ and 21◦, respectively. It is worth noting
that people cannot be seen as point targets. Considering that
the person is 1.5 m away from the sensing system and the
width of the person is about 40cm, the angle interval of
the person is about 15◦. Therefore, the measured angle may
deviate from the ideal angle. We can filter out the noise by
clustering as shown in Fig. 6(b). We further separated the
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FIGURE 6. The experimental results of detecting two people’s breathing at (−15◦, 15◦).

FIGURE 7. The experimental results of detecting two people’s breathing at (−15◦, 0◦).

FIGURE 8. The experimental results of detecting two people’s breathing at (−45◦, 45◦).

breathing signals of the two subjects by forming the beam
in the desired direction. Fig. 6(c) and Fig. 6(d) show the
respiration time-domain waveforms of subject A and subject
B after separation. The blue and red lines represent the results
measured by the CFR and respiratory belt, respectively. The
respiratory rates of both subjects A and B were 0.215 Hz and
are the same as the ground truth as shown in Fig. 6(e) and
Fig. 6(f). The above results show that the proposed method
has good consistency with the respiratory belt.

In experiment 2, we aim to explore the minimum angle
that distinguishes the two subjects. When two objects cannot
be separated in the spatial domain, it may be possible to
separate them in the frequency domain. We ask subject A
and subject B sit at −15◦ and 0◦, respectively. As shown
in Fig. 7(a), there are two highlighted parts corresponding
to (−16.5◦, 0.197 Hz), (0.5◦, 0.315 Hz) in the AOA-FREQ
spectrum. Due to the limitation of the resolution of the CBF,
the CFR amplitudes and respiratory belt do not have a good
consistency as shown in Fig. 7(c) and Fig. 7(d). At the same
time, it can be found that there are frequency components of
adjacent target breathing signals in the spectrum of the target

of interest, as shown in Fig. 7(e) and Fig. 7(f). In conclusion,
the method of joint spatial and frequency domain can make
up for the lack of single domain resolution and improve the
system performance.

In experiment 3, the maximum horizontal detection range
is explored. Fig. 8 shows the experiment results of two sub-
jects at (−45◦, 45◦). The abscissas of the two cluster centers
estimate that the two subjects are located at −41.5◦ and 39◦,
respectively. Further, we used two beams with steering angles
−41.5◦ and 39◦ to obtain the respiratory signals of each
target as shown in Fig. 8(c) and Fig. 8(d). In addition, the
estimated respiratory rates are consistent with the respiratory
belt measurements as shown in Fig.8 (e) and Fig. 8(f).

C. IMPACT OF DIFFERENT SUBCARRIER
In order to verify the proposed subcarrier selection scheme,
we calculated the accuracy of each subcarrier in all experi-
mental data as shown in the Fig. 9.

The results show that there are significant differences
between the different subcarriers. Subcarriers have a great
impact on the performance of the system. Among all

VOLUME 11, 2023 29



L. Guan et al.: Multi-Person Breathing Detection With Switching Antenna Array Based on WiFi Signal

FIGURE 9. Comparison of the subcarrier selection schemes.

FIGURE 10. Experiment of abnormal breathing.

subcarriers, the 14th subcarrier has the worst performance
and its estimation error is 27%, while the 4th subcarrier
has the smallest error with 11%. The detection accuracy of
the subcarrier selection method proposed in this paper can
reach 94.9%, which is at least 5.9% higher than the accuracy
of 4th subcarriers. In conclusion, the proposed subcarrier
selection method can effectively improve the performance of
the system.

D. IMPACT OF ABNORMAL BREATHING
In order to validate the system’s ability to detect abnormal
breathing, we considered two abnormal breathing patterns
including: apnea and respiratory rhythm changes. In the
apnea experiment, we asked subject B to breathe normally
and asked subject A to simulate two apnea events within
1 min. We can clearly see that subject A has two apneas from
22 s to 31 s and 47 s to 56 s as shown in Fig. 10(a). Subject B
maintained normal breathing as shown in Fig. 10(b).

In the time-varying respiration rate experiment, we asked
subject A to gradually increase the breathing rate while
the other subject’s respiration rate gradually decreased. The
short-time Fourier transform (STFT) is used to obtain the
instantaneous respiration rate of the subject as shown in
yellow lines in Fig. 10(c) and Fig. 10(d). It can be seen that
the respiration rate of subject A increased from 0.17 Hz to
1.07 Hz. Subject B’s respiration rate decreased from 0.95 Hz

TABLE 1. Comparison of this paper with state-of-the-art research.

to 0.53 Hz. In summary, the experimental results show that
our system has the ability to detect abnormal breathing.

E. COMPARISON WITH OTHER SENSING TECHNOLOGIES
FromTable 1, we can find different techniques for monitoring
multi-target respiration. Compared with radar, WiFi devices
have the advantages of low cost and easy acquisition. Further-
more, our proposed AOA-FREQmethod with fewer antennas
is comparable to [20] in spatial resolution. Compared to [15],
our proposed method with low algorithmic complexity can
be deployed on limited hardware resources and can monitor
multi-person respiration in real time.

V. CONCLUSION
In this paper, we propose a multi-person breath monitor sys-
tem. The RF switch is used to build the switch array. Through
beamforming technology and frequency domain analysis, the
AOA-FREQ spectrum is constructed by combining the spatial
domain and frequency domain to complete the automatic
angle location and the estimation of the breathing frequency.
In addition, through beamforming techniques, beams are
steered to monitor subjects of interest. We believe that the
proposed system can serve for long-term health monitoring
at home. In the future, we will further improve the system to
detect more people with higher accuracy and apply the system
tomore life-friendly applications such as activity recognition,
indoor positioning, and healthcare.
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