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Abstract: 

The underground high-voltage power transmission cables are high value engineering assets 

that suffer from multiple deteriorations through-out life cycles. Recent studies identified a new 

failure mode – the pitting corrosion deterioration on the layer of phosphor bronze reinforcing 

tape, which protects the oil-filled power transmission cables from oil leakage due to 

deterioration of the lead sheath. Two models estimating the phosphor bronze tape life were 

established separately in this study. The first model, based on mathematical fitting, is generated 

using a replacement priority model from the power supply industry. This is considered as an 

empirical-based model. The second model, based on the corrosion fatigue mechanism, utilizes 

the information of the pit depth distribution and the concept of pit-to-crack transfer probability. 

The Bayesian inference approach is the conjunction algorithm to update the existing probability 

of failure model with the newly identified failure modes. Through this algorithm, the integrated 

probability of failure model contains a more comprehensive background information while 

maintaining the empirical knowledge on the engineering assets’ performance. 
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Keywords: tin-bronze corrosion, underground power transmission cable, failure analysis, 

engineering asset management, Bayesian Inference, Markov Chain Monte Carlo, Metropolis 

Hastings algorithm   



1 

 

1. Introduction 

The estimation of the remaining useful life (RUL) for engineering assets is a valuable 

tool for decision making in the majority of engineering industries. The accuracy of RUL 

estimation, especially when interpreted as the probability of failure (PoF) of 

engineering assets, enhances the confidence to the decision-making process when 

performing maintenance and replacing assets at their end of life as it improves the 

understanding of the assets’ reliability. An engineering asset, at its design stage, the 

initial anticipated service life is estimated considering all the known failure modes. 

However, during the operation of the asset, new failure modes are at times discovered 

and identified due to better understanding of the assets and the deteriorations in 

different operational conditions. These new failure modes are new information and 

influence the established PoF model of the assets which is the existing empirical-based 

PoF model of the assets [1, 2]. This model generalises the PoF of all the assets in service. 

The advantage of an ‘one-model-fits-all’ solution is that the model can describe the 

reliability of the asset in general with a simple approach and is easy to be understood 

for deployment in the industry. The disadvantage, however, is also obvious: such a 

model cannot account for the variety of asset operational conditions. There is evidence 

that, as more assets approach the end of the designed life, the predictions fail to be 

convincing. The reason for the inadequate precision of the predictions has been 

identified in recent work, a new failure mode is discovered to be one of the major 

contribution of the research target’s deterioration, and new PoF model is developed 

based on the newly identified failure mode[3-5]. Since the new failure modes follow 

distinctive failure mechanisms, the new PoF models are therefore named as the 

mechanism-based model. There is currently a research gap on the updating of the 

empirical-based PoF model with the identification of new failure modes, where the 

failure modes generate novel PoF models towards key components of the asset system, 

but at the same time influences the assets’ reliability at a system level. This paper 

proposes a novel algorithm based on the Bayesian inference method which serves as a 

conjunction to update the empirical-based model with the mechanism-based model to 

achieve a more comprehensive asset performance evaluation. 

When discussing engineering asset management, there are two major approaches to 

assist decision making: the RUL estimation and the probability of failure estimation. 

The approach of RUL estimation has been researched widely in different engineering 

disciplines. Martin et.al. [6] studied the remaining life of the transformer insulation and 
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concluded that the remaining life is strictly related to paper insulation degradation. 

Khalifa et.al [7] developed a quantitative model for gas turbines on a risk-based 

maintenance and remaining life assessment. Segovia et.al [8] created a Cox model 

based on corrosion studies of power transmission tower remaining life estimation. 

Ahmadzadeh and Lundberg [9] applied an artificial neural network (ANN) method in 

the remaining useful life estimation of grinding mills. Animah and Shafiee [10] 

discussed the remaining life estimation for offshore oil and gas assets, with a proposal 

for the decision making of life extension. 

The other approach – the PoF estimation - is discussed by the following researchers. Su 

et al. [11] applied a one-dimensional integral approach to the probability of failure 

estimation for geotechnical structures. Wang et al. [12] discussed the failure probability 

for an ethylene cracking furnace tube, which is a key component in the petrochemical 

industry. Zhou et al. [13] analysed the probability of failure of multi-storied 

reinforcement-concrete structures based on the evaluation of seismic control effect. 

Liang et al. [14] evaluated the failure rate of a power transformers and proposed a 

decision strategy for replacement. Seo et al. [15] studied the probability of failure model 

based on the safety factor in a water supply network; the determination of safety factor 

was related to the fundamental mechanism of corrosion in water pipes. Furthermore, 

based on the same fundamental pitting corrosion studies, Kioumarsi et al. [16] 

discussed the failure probability of a reinforced concrete beam. 

Among the proposals of the RUL estimation and the PoF estimations, the following 

methods have proved to be the popular approaches. The Monte Carlo method is used in 

near-reality data simulations [12, 17], the neural network algorithm is applied to data 

processing [17, 18] and the Weiner process is used in remaining-life model building 

[19, 20]. Currently, the Bayesian Inference approach to update the old-information 

model with new-information model is not widely used, especially in engineering 

disciplines. Mosallam et.al [21] applied a Bayesian approach to the RUL estimation, 

but mainly focused on the algorithm of discrete Bayesian filtering. Wang et.al [20] 

applied the Bayesian Inference algorithm to model updating. However, with 

insufficient pre-processing of data, an over-simplified assumption, and the 

simplification in handling the Bayesian Inference function, the process of this algorithm 

is not suitable to provide the potential of general application in the engineering field. 

Further to the statistical approach of the PoF estimation, this research fully adapted the 
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characteristic of the targeted asset and further proposed a novel graph-based PoF 

evaluation for the assets.  

The structure of this paper is as follows: In the second section, the empirical-based PoF 

model is calculated from the existing model in the power supply industry [1, 22]. The 

new mechanism-based probability of failure is deduced from the life estimation model, 

which is concluded from previous research [3, 5]. After obtaining both probability of 

failure models, the Bayesian Inference method is introduced. Due to the complexity of 

the model, the conclusive results are obtained by the Markov Chain Monte Carlo 

(MCMC) algorithm, in which the independence sampling is done by the Metropolis-

Hastings algorithm.  Section three presented the results of the work and further proposes 

to establish a ‘tailored probability of failure model’ for each individual power 

transmission cable. This is a significant improvement comparing to the current 

industrial approach on the power cable management and risk assessment. All ‘tailored 

models’ are shown in the validation section of the paper. 

 

2. Methodology 

This section describes the main components of the proposed algorithm, shown as a 

flowchart in Figure 1. The algorithm is consisted of empirical model development, the new 

failure mode PoF model deduction, and the Bayesian inference method to conjunct the 

empirical PoF model with newly identified PoF models.  

2.1 Empirical-based PoF model 

The current PoF model in the power supply industry is based on the normal 

distribution which is shown in Figure 2a. Key assets of the industry - the power 

transmission cables are initially designed with an anticipated life. Due to the 

complexity of the operational environment, the anticipated life for underground 

power transmission cables is estimated with a normal distribution. The normal 

distribution approach is widely used in the power industry. The mean of the 

distribution represents the anticipated life for the majority of the cable population. 

The minimum anticipated life of the cable represents the earliest anticipated failure 

of cable.  An early failure of the cable is due to either a heavy usage or the cable 

being used in an unfavourable environmental condition or an early life failure mode. 

The maximum anticipated life of the cable can be achieved by the assets operated 

in ideal conditions and therefore last longer than the majority of the population. The 
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minimum anticipated life and the maximum anticipated life bonds the 95% 

confidence of cable life estimation distribution, which is four times the standard 

deviation of the distribution (4𝜎𝜎), as shown in Figure 2. 

In the current industrial definition, cable conditions are assessed periodically and 

then labelled with replacement priorities. This replacement priority can be regarded 

as an RUL estimation based on the condition of the cables. The RUL is provided 

with a time window, this time window varies in association with the criticality 

conditions of the investigated cables.  

Consider a normal distribution with the mean anticipated life of the power cable 

population as µ, with the probability density function as: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
1

√2𝜋𝜋𝜎𝜎2
𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2𝜎𝜎2 − − − − − (1) 

This is the foundation of the empirical based model, with µ (the mean life of cable 

population) as the main parameter that distinguishes the PoF estimation for cables 

in service at different geographical locations.  

 

2.2 A graphic-based PoF estimation 

A corrosion fatigue mechanism-based model for cable life estimation is the 

foundation to deduce the graphic based PoF model. The following procedure is a 

summary: 

2.2.1 Processing the cable section data 

The data available for power transmission cable provided by our industrial 

partner consist of two types: the geological data and the oil pressure within 

the cable, with mean stress and alternating stress. The geological data 

includes the number of cable sections, the length of each cable section and 

the elevation of each cable section. 

2.2.2 Obtaining the pit depth distribution  

Basically, to estimate the life of a target cable, a section of the tin bronze 

tape must be obtained in order to measure the corrosion pit depths on its 

surface. Then applying the Monte Carlo simulation and transfer the 

experimental pit depths distribution into a theoretical GEV distribution [3]. 

Generally, the pit depth distribution of the targeting cable at any calendar 

year 𝑌𝑌 (e.g. current year is 2020), can be written in the format as: 



5 

 

𝑃𝑃(𝑥𝑥) = �
1
𝜎𝜎

[1 + 𝜉𝜉(
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

)]−
𝜉𝜉+1
𝜉𝜉 𝑒𝑒−[1+𝜉𝜉(𝑥𝑥−𝜇𝜇𝜎𝜎 )]

−1𝜉𝜉
� ∙ (𝑌𝑌 − 𝑡𝑡𝑐𝑐)0.33 − − − −(2) 

Where 𝑡𝑡𝑐𝑐 is the commission calendar year of the cable (begins operation), 

and 𝜇𝜇,𝜎𝜎, 𝜉𝜉  are location, scale and shape parameter of the pit depth 

distribution respectively. Equation (2) is a factorized distribution function. 

2.2.3 Obtaining the pit-crack transfer pit depth 

Existing work [5] introduced a pit-crack transfer probability function which 

can be expressed in the form of the cumulative distribution function of the 

Weibull distribution: 

𝑃𝑃(𝑥𝑥) = 1 − 𝑒𝑒−(𝑥𝑥 109.3)⁄ 6.1
− − − − − (3) 

The pit depth distribution function (2) is then multiplied by this pit-crack 

transfer probability function (3). The pit depth with the highest probability 

from the asset function is considered as the transfer pit depth, naming it 

𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛.  

 

 

2.2.4 Calculation of service time 

From [5], the estimation of cable life can be obtained once the pit-crack 

transfer pit depth is known. The life estimation function is: 

𝑡𝑡𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 =
𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛0.774

0.108 × (𝜎𝜎𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛 + ∆𝜎𝜎)0.453 − − − −− (4) 

The advantage of this model is that, upon obtaining the transfer pit depth, 

the only additional information required for cable life estimation are the 

physics properties of the insulation oil pressure with mean stress 𝜎𝜎𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛 and 

the alternating stress ∆𝜎𝜎.   

 

2.2.5 Graphic-based PoF evaluation 

As the focus of this section is to propose a graphic-based PoF evaluation for 

the power cables, a demonstration is presented with the assistance of Figure 

3. The black solid curve plot is the estimated service life along the entire 

cable length based on the model of equation (4) with the natural spline 

algorithm for curve smoothing. The anticipated total length of failed cable 

at any service year is marked in red in Figure 3, as the anticipated life for 
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these sections fall below the threshold. Assume the entire cable length is L, 

the life estimation function with the spline algorithm is noted as 𝑙𝑙(𝑑𝑑), here 

d is the length of the cable section. The PoF of the cable at time t is expressed 

as: 

𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡) =
∑ 𝑙𝑙(𝑑𝑑)𝑛𝑛(𝑑𝑑)≤𝑡𝑡

𝐿𝐿
− − − − − (5) 

The solution of equation (5) relies on solving the equation at time t for 

𝑙𝑙(𝑑𝑑) = 𝑡𝑡, obtaining the solution of the variable d from the piecewise spline 

function, in order to assemble the sum of the failure cable length against the 

total cable length. 

2.3  PoF updating with Bayesian inference algorithm 

Two types of PoF models are introduced in this paper, the empirical-based 

model and the mechanism-based model. Both models are continuous functions. 

The Bayesian inference algorithm is proposed on the integration of the two 

types of PoFs, in order to form the comprehensive PoF model containing both 

the existing known knowledge of the engineering assets and the newly 

identified and learnt knowledge on such assets. The foundation of the model 

conjunction is the Bayes theorem. Consider one empirical PoF model 𝑃𝑃𝐸𝐸 and a 

number of new PoF estimations 𝑃𝑃𝑁𝑁𝑗𝑗  , ( 𝑗𝑗 = 1,2, … , 𝑛𝑛) , based on n newly 

identified failure modes and associated failure mechanisms. The Bayesian 

inference base model considering the continuous functions is expressed as [23]: 

𝑝𝑝(𝜃𝜃|𝑦𝑦) =
𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)

𝑝𝑝(𝑦𝑦)
−−−−−−(6) 

Where  

𝑝𝑝(𝑦𝑦) = �𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝜃𝜃 − − − − − (7) 

Substituting function (6) into (5), it can be concluded that under the condition 

of continuous function, the base Bayesian inference model is: 

𝑝𝑝(𝜃𝜃|𝑦𝑦) =
𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)

∫𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝜃𝜃
− − − −− (8) 

Further explanation of each term from equation (8) is given here: 
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• 𝑝𝑝(𝜃𝜃)  represents the probability density function derived from the 

probability of failure function, concluded from the empirical model in 

the industry. It is a prior probability where the evidence of data was not 

observed or not clear.  

• 𝑝𝑝(𝑦𝑦|𝜃𝜃) is the probability density function derived from the probability 

of failure function, concluded from the mechanism-based model. This 

conditional probability can be interpreted as follows: given the 

documented critical underground power cable information 𝜃𝜃, the novel 

probability with new observed information 𝑦𝑦 (specifically, the up to 

date research results in previous work [3, 5]). 

• The rest of the terms can be calculated, the difficulty being to calculate 

the marginal likelihood ∫𝑝𝑝(𝜃𝜃)𝑝𝑝(𝑦𝑦|𝜃𝜃)𝑑𝑑𝜃𝜃, where it is an integration of 

a complex function. This complicated integration requires a set of 

algorithms and will be stated in the ‘Results’ section. 

Extending the base model to n newly identified PoF model, the integrated PoF 

updating model is therefore: 

𝑃𝑃𝑢𝑢 =
∏ 𝑃𝑃𝐸𝐸 ∙ 𝑃𝑃𝑁𝑁𝑗𝑗
𝑛𝑛
𝑗𝑗=1

∫ ∏ 𝑃𝑃𝐸𝐸 ∙ 𝑃𝑃𝑁𝑁𝑗𝑗
𝑛𝑛
𝑗𝑗=1 𝑑𝑑𝜃𝜃Θ×Θ×…×Θ���������

𝑛𝑛

− − −−(9) 

2.4 Solution of the n-fold Bayesian inference model 

The solution of the model follows a looped Markov Chain Monte Carlo method, to 

simplify the expressions, from here, the PoF models are noted by:  

�
                 𝐸𝐸𝐸𝐸𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑙𝑙 − 𝑏𝑏𝐸𝐸𝑠𝑠𝑒𝑒𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝑃𝑃𝑑𝑑𝑒𝑒𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃(𝑡𝑡)                   

𝑀𝑀𝑒𝑒𝐸𝐸ℎ𝐸𝐸𝑛𝑛𝐸𝐸𝑠𝑠𝐸𝐸 − 𝑏𝑏𝐸𝐸𝑠𝑠𝑒𝑒𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑃𝑃𝑑𝑑𝑒𝑒𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐺𝐺(𝑡𝑡)
𝑈𝑈𝑝𝑝𝑑𝑑𝐸𝐸𝑡𝑡𝑒𝑒𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃 𝑀𝑀𝑃𝑃𝑑𝑑𝑒𝑒𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑈𝑈(𝑡𝑡)                        

 

The Bayesian inference base model stated in Section 2.3 therefore is written as: 

𝑈𝑈(𝑡𝑡) =
𝑃𝑃(𝑡𝑡)𝐺𝐺(𝑡𝑡)

∫𝑃𝑃(𝑡𝑡)𝐺𝐺(𝑡𝑡)𝑑𝑑𝑡𝑡
− − − − − (10) 

Model expressions 𝑃𝑃(𝑡𝑡)  and 𝐺𝐺(𝑡𝑡)  are known. The difficulty exists for the 

calculation of denominator in equation (1): with the multiplication of two functions, 

𝑃𝑃(𝑡𝑡) being an exponential Function and 𝐺𝐺(𝑡𝑡) a rational function, the analytical 

solution is hard to obtain. Instead, a numerical algorithm is applied to solve the 

problem stated in the following sub-sections. 

2.4.1 Markov Chain Monte Carlo (MCMC) method 
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In this section, the purpose of the algorithm is to calculate the value of the 

denominator in equation (10): 

𝑃𝑃 = �𝑃𝑃(𝑡𝑡)𝐺𝐺(𝑡𝑡)𝑑𝑑𝑡𝑡 − − − − − (11) 

Under the strong law of large numbers (LLN) and the central limit theorem 

(CLT), when the numbers of sampling from the domain of 𝑡𝑡 is very large 

and fulfils the requirement of independent sampling from function 𝑃𝑃(𝑡𝑡), 

then the value of the integration is approximately the expectation of function 

𝐺𝐺(𝑡𝑡), which can be expressed as: 

𝑃𝑃 = �𝑃𝑃(𝑡𝑡)𝐺𝐺(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝐸𝐸[𝐺𝐺(𝑡𝑡)] ≈
1
𝑁𝑁
∙�𝐺𝐺(𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

− − − − − (12) 

The algorithm applied here to withdraw independent sampling from the 

function 𝑃𝑃(𝑡𝑡)  is the random walk Metropolis Hastings algorithm [24]. 

These steps were followed to construct the sequential independent sampling: 

1) Initialise state 𝑋𝑋0 = [𝑡𝑡0] arbitrarily, the purpose is to construct a 

Markov chain containing states 𝑋𝑋0,𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑁𝑁 ∈ 𝒳𝒳. 

2) Let 𝑥𝑥, 𝑥𝑥′ ∈ 𝒳𝒳  be states in the Markov chain, propose an initial 

distribution 𝐸𝐸(𝑥𝑥′|𝑥𝑥), in order to construct the Markov chain. The 

proposed distribution must satisfy detailed balance, where a factor 

𝑙𝑙(𝑥𝑥′|𝑥𝑥) can enable that  

𝐸𝐸(𝑥𝑥′|𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑙𝑙(𝑥𝑥′|𝑥𝑥) = 𝐸𝐸(𝑥𝑥|𝑥𝑥′)𝑓𝑓(𝑥𝑥′) −−−−(13) 

In fact, this factor 𝑙𝑙(𝑥𝑥′|𝑥𝑥) can be solved as: 

𝑙𝑙(𝑥𝑥′|𝑥𝑥) = 𝐸𝐸𝐸𝐸𝑛𝑛 �1,
𝐸𝐸(𝑥𝑥|𝑥𝑥′)𝑓𝑓(𝑥𝑥′)
𝐸𝐸(𝑥𝑥′|𝑥𝑥)𝑓𝑓(𝑥𝑥) � − − − −(14) 

Define a factor in equation (14) as: 

𝛼𝛼 =
𝐸𝐸(𝑥𝑥|𝑥𝑥′)𝑓𝑓(𝑥𝑥′)
𝐸𝐸(𝑥𝑥′|𝑥𝑥)𝑓𝑓(𝑥𝑥) −−−−(15) 

𝛼𝛼 is the acceptance ratio for state transfer. The acceptance rate for a 

successful construction of Markov Chain is around 23.4% [25].  In 

this current algorithm, the proposed distribution 𝐸𝐸(𝑥𝑥′|𝑥𝑥) is set to be 

a Gaussian distribution which is a symmetric distribution, only with 

this condition the acceptance ratio 𝛼𝛼  from equation (15) can be 

simplified as: 
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𝛼𝛼 =
𝑓𝑓(𝑥𝑥′)
𝑓𝑓(𝑥𝑥)

−−−−(16) 

3) Simulate a random number 𝑈𝑈 from a uniform distribution 𝑈𝑈(0,1), if 

𝑈𝑈 <  𝑙𝑙(𝑥𝑥′|𝑥𝑥) = 𝐸𝐸𝐸𝐸𝑛𝑛 �1, 𝑡𝑡(𝑥𝑥′)
𝑡𝑡(𝑥𝑥)

� = 𝐸𝐸𝐸𝐸𝑛𝑛{1,𝛼𝛼}, then transfer state 𝑥𝑥 to 

state 𝑥𝑥′, otherwise state 𝑥𝑥 stays at 𝑥𝑥 for the next round. 

4) Repeat the steps from initial state 𝑋𝑋0 = [𝑡𝑡0] in Step 1) to Step 3) for 

𝑁𝑁 rounds, until the samplings become stable and convergent, these 

states 𝑋𝑋0,𝑋𝑋1,𝑋𝑋2,⋯ ,𝑋𝑋𝑁𝑁  form a Markov chain independent 

sequential sampling from function 𝑃𝑃(𝑡𝑡). 

With the above independent sequential samplings from 𝑃𝑃(𝑡𝑡), the integration 

result in equation (11) can be obtained. The algorithm provides a universal 

solution for the output on the n-fold conjuncted PoF model. 

 

3. Results 

Two working examples are provided in the results section. The two demonstration 

cable are subject to two different levels of criticality. Cable 1 is a critical cable with a 

relatively good condition, the timescale for replacing this cable is 5~10 years. Cable 2 is a 

critical cable with severe corrosion and requires immediate replacement, the timescale for 

replacing this cable is 0~2 years. These two assumed timescales for cable replacement will 

be used in the results section as numerical examples for the method and algorithms 

introduced in this research. The details of Cable 1 and Cable 2 with their assumed 

conditions are shown in Table 1. 

The anticipated life of underground power transmission cable is estimated of 

between 30 to 70 years depending on the estimation of different power providers and 

research institutes [26-29]. To demonstrate the algorithm in this paper, the median of the 

anticipated life is taken as 50 years and the 4𝜎𝜎 is bounded by 30 years and 70 years, as seen 

in Figure 2b. Two sets of geological profile data are assumed for both Cable 1 and Cable 2 

to simulate the real situations. For Cable 1, the set of geological profile data is plotted in 

Figure 4, there are 57 sections of cable in Cable 1, the elevation and horizontal coordinates 

of the cables are hypothetical to simulate the field work scenario. From the plotted data, 

the length of each individual section of cable is calculated. All the sections of this cable 

service under a uniform alternating stress of 𝜎𝜎𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛 = 0.69 𝑀𝑀𝑃𝑃𝐸𝐸 , but each individual 
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section is different in operating mean stress 𝜎𝜎𝑛𝑛𝑡𝑡𝑛𝑛𝑛𝑛𝑖𝑖 , 𝐸𝐸 = 1~57. The data of mean stress 

against the length of cable is plotted in Figure 5. The discrete points in Figure 5 are the 

average mean stress values, the continuous function describing the relationship between 

mean stresses and cable length coordinates is simulated by natural cubic splines algorithm. 

For 57 sections of cable it requires 56 continuous piecewise cubic functions with a 

smoothing factor of 𝑝𝑝 = 6 × 10−4, covering the entire length of the power cable. 

Table 2 shows the information of all the key parameters that controls the corrosion 

pit depth distributions, the pit-crack transfer pit depths and the alternating stresses of the 2 

critical cables. Following the plot in Figure 5, the continuous mean stresses functions are 

substituted in the life estimation model of equation (4), this iteration creates a further group 

of 56 piecewise life estimation functions and is plotted in Figure 6.  

As discussed in the methodology section on the empirical-based model, the existing 

model in the industry extracted from [1, 22], is known to follow a normal distribution. 

Furthermore, the 2 cables being researched, Cable 1 and Cable 2, are assumed to be with a 

light and severe criticality respectively. When defining the PoF of the empirical-based 

model used in the industry, it can be explained with the assistance of Figure 2b as: with the 

increase of cable life, there is an increasing percentage of cable population entering the 

condition that a replacement is required, the amount is the shaded area in red in Figure 2b. 

This leads to the conclusion that the older the cables get, the fewer stays in the ‘safe zone’ 

which is the unshaded area under the normal distribution bell-shaped curve. Apply the 

graphic-based PoF estimation in the methodology section, the PoF at each year after the 

cable commission is defined as the percentage of the length of the estimated failed cable 

occupying the total length of the cable. In Figure 6, this definition is further explained with 

the assistance of 40 years and 50 years after cable commission to practically showing the 

results of the graphic-based PoF estimation on the real datasets. Draw a dashed line at year 

40 in Figure 4, it cuts the estimated life plot into two parts, the plot above represents the 

cable with an estimated life of over 40 years. While the plot below represents the cable with 

an estimated life of less than 40 years, this part is within the shaded blue area. The 

projection of the estimated life plot on the horizontal line at 40 years is the length of the 

cable predicted of failure. The probability of failure at year 40 is then calculated as the total 

length of blue straight line over the length of the entire power cable. 
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𝑃𝑃𝑃𝑃𝑃𝑃40 =
∑ 𝑙𝑙𝑐𝑐𝑛𝑛𝑢𝑢𝑡𝑡

𝐿𝐿𝐿𝐿𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 1
− − − − − (24) 

Here the 𝑙𝑙𝑐𝑐𝑛𝑛𝑢𝑢𝑡𝑡 represent of the length of all predicted failed cable parts at year 40, and 

𝐿𝐿𝐿𝐿𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 1 is the entire length of the cable at Cable 1. 

With the same definition, at year 50, the predicted failed cable is below the horizontal 

dashed line at 50 years, under the shaded red areas. The total length of failed cable is 

the combination of horizontal red straight lines. The probability of failure is then 

calculated as: 

𝑃𝑃𝑃𝑃𝑃𝑃50 =
∑ 𝑙𝑙𝑛𝑛𝑡𝑡𝑑𝑑

𝐿𝐿𝐿𝐿𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡𝑖𝑖𝑛𝑛𝑛𝑛 1
− − − − − (25) 

𝑙𝑙𝑛𝑛𝑡𝑡𝑑𝑑 would be all the length of all predicted failed cable parts at year 50. It is easy to 

observe that, under this definition, the probability of failure for the cable increases from 

0 at the minimum estimated life point of the plot until reaching 100% at the maximum 

estimated life point of the plot. 

The graphic method outputs a set of discrete values representing the PoF value with the 

increase of service time t, the set of output values is noted as 𝒑𝒑𝒕𝒕. It can be seen in Table 

1 that, if the evaluated cable is showing obvious sign of deterioration, the cables with 

an assumed light criticality is with 5~10 years of replacement priority range. While the 

cables with an assumed severe criticality is with 0~2 years of replacement priority range. 

The replacement priority range can be interpreted as the upper and lower boundaries 

for the confidence of remaining life estimation. The lower boundary within the range 

is considered as a conservative estimation of the cable condition, while the upper 

boundary within the range is considered as a liberal estimation of the cable condition. 

With the above definitions, the PoF functions for Cable 1 and Cable 2 in both 

conservative and liberal estimations are given below. A representation of the PoF 

functions is shown in Figure 7. 

Cable 1 is further taken as the working example to explain the detailed steps for 

posterior probability of failure calculation. The other location of cable used the same 

procedure of algorithm, these results are shown in the validation. 

 

3.1 Probability density function of an empirical model 



12 

 

The conservative probability density function for severe criticality of cable evaluation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡 𝐶𝐶𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡
=

1

�2𝜋𝜋𝜎𝜎𝑡𝑡𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛2
𝑒𝑒
−

(𝑥𝑥−𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡)2

 2𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
2

− − − − − (17) 

The liberal probability density function for severe criticality of cable evaluation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑡𝑡𝑆𝑆𝑡𝑡𝑛𝑛𝑡𝑡 𝐶𝐶𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝐶𝐶𝑛𝑛𝑖𝑖𝑐𝑐𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
=

1

�2𝜋𝜋𝜎𝜎𝑡𝑡𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛2
𝑒𝑒
−
�(𝑥𝑥−2)−𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡�

2

 2𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
2

 −−−−− (18) 

The conservative probability density function for light criticality of cable evaluation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝑖𝑖𝐿𝐿ℎ𝑡𝑡 𝐶𝐶𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝐶𝐶𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡
=

1

�2𝜋𝜋𝜎𝜎𝑡𝑡𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛2
𝑒𝑒
−
�(𝑥𝑥−5)−𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡�

2

 2𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
2

− − − −(19) 

The liberal probability density function for light criticality of cable evaluation: 

𝑃𝑃𝑃𝑃𝑃𝑃𝐿𝐿𝑖𝑖𝐿𝐿ℎ𝑡𝑡 𝐶𝐶𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑖𝑖𝑡𝑡𝐶𝐶𝑛𝑛𝑖𝑖𝑐𝑐𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛
=

1

�2𝜋𝜋𝜎𝜎𝑡𝑡𝐶𝐶𝑡𝑡𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛2
𝑒𝑒
−
�(𝑥𝑥−10)−𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡�

2

 2𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡
2

− − − − − (20) 

The conservative PoF density function is the lower limit of the RUL estimation, while 

the liberal PoF density function is the upper limit of the RUL estimation. 

 

3.2 Probability density function of mechanism-based model 

Following the methodology section with the definition of the mechanism -based model 

PoF estimation, a curve fitting procedure is used for the discrete set of PoF values 𝒑𝒑𝒕𝒕 

on obtaining one reasonable function that can describe the data while achieving a close 

fit. The fact that Weibull distribution is known for its application in failure analysis [30-

33] (including mechanical failure analysis), it is also used to fit the probability of failure 

in this study.  

Regarding the two locations as examples in this paper, with the data taken from 

previous work [3, 5].The fitted function is plotted in Figure 8 with red dashed line in 

comparison with the actual result. The statistical similarity between the actual result 

and the fitted function is provided in Table 3. The function for Cable 1 with service life 

𝑡𝑡 as variable is: 
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𝑓𝑓𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 1(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑡𝑡

53.52�
10

− − − − − (21) 

This procedure to deduct the probability of failure is also applied exactly to Cable 2, 

the result is: 

𝑓𝑓𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 2(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑡𝑡

46.24�
15

− − − − − (22) 

The fitted function for probability of failure in Cable 1 is compared with both the 

conservative and liberal probability of failure function, also shown in Figure 8. 

Both functions have the format of the cumulative distribution function of the 

Weibull distribution. Furthermore, the PDF for both locations by mechanism-based 

model are: 

⎩
⎨

⎧𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 1 = 0.187 × �
𝑡𝑡

53.52
�

  9
× 𝑒𝑒−�

𝑡𝑡
53.52�

10

𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 2 = 0.325 × �
𝑡𝑡

46.24
�
14

× 𝑒𝑒−�
𝑡𝑡

46.24�
15 − − −−(23) 

Supplied with the working example from values of parameters in Cable 1, the pit-

crack transfer pit depth is  𝑥𝑥𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛 = 115 𝜇𝜇𝐸𝐸. The sequential samplings in the 

above steps corresponding to 𝑃𝑃(𝑡𝑡) is shown in Figure 9, which is an example of the 

samplings with 10,000 values, the red points are the accepted samplings for 1 trial. 

They are then all taken out and form one sequence of independent sampling which 

is also plotted in Figure 9. Because the independent samplings has a burn-in stage 

to achieve a stationary stage, it is hard to determine after which amount of values 

this stage will start [34]. This study takes a conservative approach: the first 10% of 

the accepted values of samplings are ignored, and the rest of the are imported to 

Function (21) as the values of 𝑡𝑡𝑖𝑖. The values of 𝐺𝐺(𝑡𝑡𝑖𝑖) determine the final results of 

the denominator 𝑃𝑃. Corresponding to the independent samplings 𝑡𝑡𝑖𝑖 in Figure 9, the 

results of 𝐺𝐺(𝑡𝑡𝑖𝑖) are shown in Figure 10.  

Due to the randomness of the Monte Carlo algorithm, the results appear to be 

different at small scale with each array of sequential samplings. To balance this 

randomness and achieve convincing and stable results, the above steps of samplings 

are carried out 1000 times in order to obtain an average value for the expectation 

value of 𝐺𝐺(𝑡𝑡𝑖𝑖); the result is: 𝑃𝑃 ≈ 0.0287. 
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3.3 Expression of the Bayesian inference updated model 

Taking the result of the denominator, substitute the value of 𝑃𝑃 into equation (10), the result is 

the Bayesian inference PDF. Shown as an example in Figure 11 is the plot of the Bayesian 

Inferenced probability density function for the liberal estimation. Apply another curve fitting 

which the result is a Gaussian distribution, the probability density function is written as: 

𝑈𝑈(𝑡𝑡)𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 1 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡 ≈ 0.0559 × 𝑒𝑒−
(𝑡𝑡−55)
2×7.162

2

− − − − − (26) 

This leads to the updated probability of failure function as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑡𝑡𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡 𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 1 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡

≈ �0.0559 × 𝑒𝑒−
(𝑡𝑡−55)
2×7.162

2

𝑑𝑑𝑡𝑡 − − − − − (27) 

The calculation of the updated PoF function for liberal estimation in Cable 1, both the 

conservative and liberal updated PoF function for Cable 2 are shown in Table 4. 

 

3.4 Discussion on the output result 

The two plots shown here, Figure 12 and Figure 13, provide a comparison among the original 

conservative/liberal estimation and the updated conservative/liberal estimation for both Cable 

1 and Cable 2. Take the service age of 65 years as an example, for both locations, with the 

cable reaching higher service life, the probability of failure increases rapidly and are reaching 

higher probability values compared to the existing model. While for the relatively short service 

age, these are of lower probability of failure compared to the existing model. This result shows 

the updated model after one round of new research-based information being input into the 

original model and it shows the development trend of such a statistical evaluation model with 

the learning process. The purpose to introduce this learning model is that, with new research 

carried out on such engineering assets, better understanding on newly  identified failure 

mechanism are being developed. The new knowledge of the assets focus on specific 

components of a complex system, creating a PoF model of the specific component while 

influencing the reliability of the entire system. The method proposed in this research provides 

a blueprint to a route on integrating all the component PoF model into a complex system PoF 

model, by maintaining the existing knowledge on failure and reliability and introducing the 

new influential factors when new knowledge comes into the knowledgebase.  
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4. Conclusion 

This paper introduced the Bayesian inference method in combining two probability of failure 

models for underground power transmission cables, one being the empirical model used in the 

power supply industry. Based on prior experience and knowledge, the other one being the 

mechanism-based model which was recently developed [3, 5] based on the corrosion fatigue 

mechanism on phosphor bronze reinforcing layers in cables. This combination enables a 

‘Tailored probability of failure’ model for each cable locations. The ‘Tailored probability of 

failure model’ is of higher accuracy in estimating the probability of failure for two reasons: 

• The updated model has a more complete background information compared to the 

previous model. With a deeper understanding of the failure mechanism, this model 

fits the phenomenon of failure cases better. 

• The updated model is ‘tailored’ to separate locations. Instead of using a universal 

model for all locations, this model enables the distinction of the divergent 

conditions at the different cable locations and is thus more suitable for estimations. 

The Bayesian inference method applied in this paper to solve engineering problems 

creates the concept of ‘Intelligent Assets’. This concept is based on the philosophy that 

the aging and failure control is dynamic with the continuous updating of knowledge 

and information from the asset itself. This is the assets’ ‘self-learning’. With each input 

of the new information, the decisions on asset management become more accurate. 
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Table 1: Summary of existing cable data for this research 

 

Location Criticality Estimated Remaining Life  

Cable 1 Light 5~10 

Cable 2 Severe 0~2 
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Table 2: Location parameter 𝜇𝜇 for cables and corresponding transfer pit depths 

 

Location Pit depth distribution parameters Transfer pit depth (𝝁𝝁𝝁𝝁) Alternating Stress (MPa) 

Cable 1 σ = 0.5, μ = 1.0, k = 0.5 115 0.69 

Cable 2 σ = 0.5, μ = 2.2, k = 0.5 115 1 

 



24 

 

Table 3: Statistical evaluation of similarity between the actual probability of failure and the 

fitted function describing the probability of failure for the mechanical-based model 

 

Location Evaluation Function 

Cable 1 
𝑅𝑅2 = 0.9948 

𝑓𝑓(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑥𝑥

53.52�
10

 𝑆𝑆𝑆𝑆𝐸𝐸 = 0.3271 

Cable 2 
𝑅𝑅2 = 0.9947 

𝑓𝑓(𝑡𝑡) = 1 − 𝑒𝑒−�
𝑥𝑥

46.24�
15

 𝑆𝑆𝑆𝑆𝐸𝐸 = 0.2298 
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Table 4: ‘Tailored probability of failure function’ for all critical locations 

Location ‘Tailored probability of failure function’ 

Cable 1 (Conservative) 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑡𝑡𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡 𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 1 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡 ≈ �0.0559 × 𝑒𝑒−
(𝑡𝑡−55)
2×7.162

2

𝑑𝑑𝑡𝑡 

Cable 1 (Liberal) 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑡𝑡𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡 𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 1 𝑛𝑛𝑖𝑖𝑐𝑐𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 ≈ � 0.0616 × 𝑒𝑒−
(𝑡𝑡−60)
2×6.492

2

𝑑𝑑𝑡𝑡           

Cable 2 (Conservative) 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑡𝑡𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡 𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 2 𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑛𝑛𝑆𝑆𝑛𝑛𝑡𝑡𝑖𝑖𝑆𝑆𝑡𝑡 ≈ � 0.0548 × 𝑒𝑒−
(𝑡𝑡−50)
2×7.32

2

𝑑𝑑𝑡𝑡 

Cable 2(Liberal) 𝑃𝑃𝑃𝑃𝑃𝑃𝑈𝑈𝑡𝑡𝑑𝑑𝑛𝑛𝑡𝑡𝑡𝑡 𝐶𝐶𝑛𝑛𝑐𝑐𝑛𝑛𝑡𝑡 2 𝑛𝑛𝑖𝑖𝑐𝑐𝑡𝑡𝑛𝑛𝑛𝑛𝑛𝑛 ≈ �0.0571 × 𝑒𝑒−
(𝑡𝑡−52)
2×72

2

𝑑𝑑𝑡𝑡           
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Figure 1: Flowchart of Bayesian inference algorithm for PoF model updating 

 

 



28 

 

 

Figure 2a: Pictorial representation of the cable replacement model in the power supplement 

industry  

 

 

Figure 2b: Assumed most endangered cable with the life anticipation distribution 
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Figure 3: Demonstration graphic-based PoF estimation for power cables  
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Figure 4: Geological data for Cable 1 
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Figure 5: Mean stress vs Length of cable for Cable 1 (curves connecting mean stresses are 

simulated by natural cubic splines algorithm) 
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Figure 6: Estimated life vs Length of cable for Cable 1 with representation for the definition 

of the probability of failure 
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Figure 7: Empirical model on probability of failure for cables with light and severe criticality 

evaluation interpreted from industry 
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Figure 8: The probability of failure for Cable 1 under the definition from the mechanism-

based model (Left)  

The fitted function comparing to the conservative and liberal probability of failure function 

by empirical-based model (Right) 
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Figure 9: One trial of Markov Chain construction by Metropolis Hastings algorithm 

sampling with trial elements of 10000, among which only the accepted values are plotted 

(upper) 

Fluctuation of all the accepted values (bottom) 
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Figure 10: Values of 𝐺𝐺(𝑡𝑡𝑖𝑖) corresponding to the samplings shown in Figure 7 
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Figure 11: The plot of the Bayesian Inferenced probability density function of the liberal 

estimated model of Cable 1 
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Figure 12: Comparison of Bayesian Inferenced model and original industrial replacement 

priority model for probability of failure estimation (both conservative and liberal of Cable 

1) 
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Figure 13: Comparison of Bayesian Inferenced model and original industrial replacement 

priority model for probability of failure estimation (both conservative and liberal of Cable 

2) 
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