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Abstract—We present a review of how reinforcement learning
(RL) is helping to tackle some of the most challenging problems
in the Internet-of-underwater-things (IoUTs). Scientists estimate
that 50–80% of atmospheric oxygen comes from the ocean,
implying that life on earth depends heavily on clean and healthy
oceans. This huge significance of the ocean in supporting life
on earth is motivating the use of artificial intelligence (AI) and
machine learning (ML) tools to create a sustainable marine
ecosystem. We briefly review the RL paradigm, its categorisations
and RL algorithms developed to solve important problems in
IoUTs. New literature keeps emerging that show innovative ap-
plications of RL in underwater communications and networking
that far outperform conventional solutions and other ML-based
methods. Due to its online learning nature, RL is particularly
useful for decision making in dynamic environments such as
underwater where the communication channel is stochastic and
rapidly varying. We explore the applications of RL in IoUTs,
showing different classes of IoUTs problems and highlighting
RL algorithms that are tailored to solving them. Despite the
significant progress that has made in the RL field, there are still
many challenges and open research problems in the use of RL in
IoUTs. We conclude the paper with an outline of some of these
challenges and suggest some ways forward.

Index Terms—internet of underwater things, IoUT, underwa-
ter sensor networks, reinforcement learning, machine learning,
autonomous underwater vehicles, wireless sensor networks, AUV

I. INTRODUCTION

More than 70% of the earth surface is covered by water,
yet less than 10% of the oceans have been explored. Indeed,
scientists know more about the deep space than the oceans
surrounding our world. The oceans are the primary source of
oxygen, energy and food that sustains and supports life on
earth, as well as the main source for evacuating excess heat
from the earth. Due to the earth’s increasing dependence on
the ocean, there is need to explore and exploit its resources
sustainably through the networking of smart objects in the
internet-of-underwater-things (IoUTs).

However, the ocean is also a highly challenging environment
for wireless networking. The major technologies used for
transmitting information underwater have short range (radio
waves and magnetic induction), require line-of-sight alignment
between transceivers and are susceptible to fouling (optical
communication) or are prone to noise, slow and have low
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bandwidth (acoustic waves). Acoustic waves are by far the
most popular due to their long range. However, the slow
speed and the rapidly changing underwater channel lead to
Doppler effect complications such as low coherence times
and frequency spreading due to motion of underwater sen-
sor nodes, causing severe inter-symbol interferences. It is
also plagued by multi-path propagation, absorption, scattering
and geometric spreading losses, making acoustic underwater
networks bandwidth-, interference- and energy-limited. The
highly dynamic nature of the underwater environment implies
that heuristics-based and static machine learning methods that
map observations to rules or labels often struggle to properly
address challenges encountered in IoUTs networking.

Reinforcement learning (RL) uses a reward signal to guide
a piece of software (called an agent) to to act in a desired
manner in dynamic environments to achieve a desired goal.
As a result, it has a rich diversity of applications in the IoUTs
and is gaining popularity as a tool of choice for addressing
some of the toughest challenges in IoUTs networking. More
importantly, learning in most RL methods happens in an
online fashion, making it suitable for solving dynamic and
sequential decision problems under uncertainty. RL makes
underwater networks adaptive, adjusting to changing network
parameters in near real time. RL plays a crucial role in keeping
underwater networks connected, prolonging network lifetime
and maintaining a high quality of service (QoS). It also
finds vast applications in manufacturing, gaming, education,
marketing, robotics, image processing, healthcare, etc. In this
article, we review the most important RL algorithms used in
solving IoUTs-related problems.

An overview of IoUTs can be found in [1] while a review
of IoUTs was presented in [2], including how ML algorithms
are used to enable data analytics at very large scales that
cannot be handled by conventional non-ML algorithms. A
survey of different applications of deep RL in the IoT industry
is provided in [3]. However, the applications captured in [3]
do not extend to underwater environments and the peculiar
challenges encountered in IoUTs. A summary of recent studies
focused on the application of RL techniques in IoUTs is pre-
sented in Figure 2. The key applications of different techniques
are highlighted while outlining their main contributions and
limitations. We note that the bulk of these studies focus on
the use of neural networks-based deep learning (supervised
ML) techniques in IoUTs. However, surveys/reviews on the
use of RL techniques for solving different problems in IoUTs
is practically non-existent in the published literature. This
article seeks to address this gap by highlighting the advances
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in IoUTs applications where RL has been the key driver. For
further reading on other applications of RL, the reader is
referred to the surveys in the references.

Objectives and contributions: This article provides a
review of how RL is used to tackle IoUTs challenges and
birth new underwater applications. It highlights state-of-the-art
developments in RL that are applicable to IoUTs and provides
an overview of different RL algorithms applied in IoUTs,
explaining how the algorithms work and the types of problems
they address. Finally, the paper reviews current challenges
in the implementation of RL in IoUTs and highlights open
research problems. A major contribution of this paper is that it
connects RL algorithms to problem domains in IoUTs, thereby
providing a guide to both new and experienced researchers to
understand the relevant RL tools available to them based on
the type of problems they are trying to solve. To the best
of the authors’ knowledge, this is the first review on the
applications of RL in IoUTs covering different applications
such as routing, energy management, autonomous underwater
vehicles (AUV) control and navigation, localisation, etc. The
closest other reviews focus only on single applications such
as routing [4], AUV navigation and control [5], etc.

II. OVERVIEW OF REINFORCEMENT LEARNING

RL involves learning through interaction to achieve some
desired behaviour. This usually involves taking trial-and-error
actions in an environment, with a numerical reward used to
evaluate the desirability of each action taken towards achieving
a given objective. If the action taken is the desired one, a high
reward is obtained; if the action is an undesired one, a low or
negative reward is obtained. An important concept in RL is
that time plays a crucial role in RL and feedback is delayed.
Current actions can also have long-term impact on the future
state (and by extension future rewards) of the system being
controlled, so it is sometimes useful to give up actions that
yield immediate high rewards for higher future rewards (i.e.,
to not be greedy). Formally, RL can be described using a
Markov Decision Process (MDP), which consists of a tuple
M = (S,A, P,Rt, γ), where S represents the state space,
A represents the action space, P represents the environment
dynamics and transition probabilities, Rt represents the reward
function and γ represents a discount factor that indicates the
weights assigned to immediate rewards compared to the one
assigned to future rewards.

A. Key RL Concepts
An agent is a piece of software or algorithm trained to

perform a given task. It works in an environment, which is
everything external to the agent. A state represents all the
information used (by the agent) to select the action to take
at a given time. Each action leads to a reward, a numerical
feedback signal that indicates the suitability of the agent’s
actions in the given state, and progresses the agent to the next
state. The terms exploration and exploitation are often used to
describe the trade-off between exploiting current knowledge
to take actions that yield high rewards as against trying new
actions to potentially discover those with higher long-term
rewards.

B. RL Functions

An RL agent can learn three major types of functions, viz:
• Policy/policy function: This is a set of rules showing

which actions an agent can take in every state. It can
be deterministic (every state has an associated action) or
stochastic (possible actions in each state is derived from
a probability distribution).

• Value function: This is a numerical measure of the (long-
term) expected total rewards that can be achieved from
a given state if a particular policy is followed. Value
functions relate to future actions as rewards relate to
present actions; a low reward does not necessarily imply
a low value function, and vice versa. The value function
can either be state value function, which depicts how
desirable or undesirable a state is, or state-action value
functions which measures the desirability of a state-action
pair.

• Model (Transition function): A model is the agent’s
representation of the environment. It is an ensemble of
the environmental knowledge available to the agent which
is used to guide its behaviour. A model enables the agent
to predict future states of the environment and imagine
the outcome of its actions without interacting with the
environment.

Fig. 1. Broad categorisations of RL algorithms. Model-based methods require
a model of the environment for learning whereas model-free methods learn
through interaction with the environment. A more in-depth coverage of
classifications of RL techniques and the algorithms under each technique can
be found in [6].

C. RL Algorithms

RL algorithms can be classified into two broad categories.
The first is model-based methods, where the agent directly
learns the model or transition function (dynamics) of the
environment. The second category is model-free methods,
where the agent learns either a policy or value function. We
explore each category and their algorithms below.

Model-based methods: These methods combine planning
and learning (ref. [7]). In these methods, an agent either
uses a known model of the environment to plan or learns
the transition dynamics of the environment (e.g. in a game,
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an agent can use a map of the environment to decide the
next move). If the agent knows the transition dynamics of the
given environment, it can compute an optimal policy without
interacting with the environment. These methods require less
training time and data samples, thereby improving learning ef-
ficiency. However, most real environments are stochastic with
unknown transition dynamics, so model-based methods would
perform poorly in such environments, especially those with
large state and action spaces. Model-based methods include
tree-based schemes such as Monte Carlo Tree Search (MCTS)
used to solve problems with discrete state spaces and known
transition probabilities, analytic gradient computation models
such as iterative Linear Quadratic Regulators (iLQR) or Model
Predictive Control (MPC), used in learning transition dynam-
ics through repeated interaction with the environment, Dyna,
Embed2Control and AlphaZero algorithms.

Model-free methods: Here, the dynamics (transition proba-
bility distributions and associated rewards) of the environment
is not known to the agent and learning takes place through
interaction to directly learn an optimal policy (policy gradient
methods) or indirectly learn a value function (value iteration
methods), which is used to extract the underlying policy. As
a result, algorithms in this category are divided into value-
based and policy-based implementations. Model-free methods
are simpler to implement since the agent learns through
interaction, but they are not always practical, especially in
safety-critical applications. They are particularly suitable for
dynamic environments where the optimal action is constantly
changing.

Value-based methods: These methods target the optimi-
sation of a state-value function vπ(s), or state-action value
function Qπ(s, a), from which an optimal policy (argmax of
the optimal value function) is obtained. They have high sample
efficiency and low variance in estimating value functions but
perform poorly in problems with continuous action spaces and
suffer from the curse of dimensionality problem. Examples
of value-based algorithms include Q-learning, state-action-
reward-state-action (SARSA), multi-armed bandits (MAB),
etc. and Q learning derivatives such as Q-networks (DQN),
double DQN, Dueling DQN, Retrace, Noisy DQN, Max Q, etc.
Value-based methods can be on-policy or off-policy, depending
on whether the policy that is updated during learning or not.

Policy-based methods: Policy-based algorithms optimise
a policy directly through policy iteration and hence, are
guaranteed to converge to an optimal policy. In essence, these
methods directly learn the policy required to take good actions
in an environment. They converge faster, require simpler
parameters and can be applied to discrete and continuous
action problems or both. However, they suffer from high
variance and sample inefficiency. Examples of policy-based
methods include the REINFORCE, asynchronous advantage
actor-critic (A3C), trust region policy optimization (TRPO)
and proximal policy optimization (PPO) algorithms. Policy-
based RL approaches are covered in [8].

Hybrid methods: These methods learn two or more RL
functions such as a combination of model-based and model-
free methods, or policy-based and value-based methods. An
example is actor-critic methods, which learn a value function

and uses it to find an optimal policy. Such methods inherit
the advantages (and limitations) of the methods they combine.
Examples of actor-critic algorithms include TRPO, PPO, de-
terministic policy gradient (DPG), deep dDPG (DDPG), twin
delayed DDPG (TD3), soft actor–critic (SAC), a derivative
of A3C termed advantage actor–critic (A2C), etc [9]. Some
algorithms that learn a model of the environment and a value
and/or policy function. For example, AlphaGo was developed
by DeepMind using MCTS, a value-based method (linear
SARSA (λ)), and a policy-based method (REINFORCE) [9].

D. General Applications of RL

RL algorithms are used to solve dynamic problems where
hard-coded solutions fail. They are used in decision making,
process planning and control operations in gaming, robotics,
healthcare, intelligent transport, smart grid, autonomous vehi-
cles, internet of things, etc.

Robotics: RL helps robots develop self-learning capabilities
to perform complex operations such as remote surgery, weld-
ing, drilling, hold meaningful conversations, navigate crowded
spaces, unload heavy goods in confined spaces, etc.

Manufacturing: RL is the brain in many automated ma-
chines used to handle large production volumes, improving
safety, lowering time and cost.

Advertising: RL can be used to build personalized rec-
ommendation systems which learns from the preferences or
historical demands of users to improve user experience and
lower marketing costs.

Healthcare: RL is used in healthcare for medical diagnosis,
drug discovery and development, development of treatment
policies, health management, etc. It has already proven suc-
cessful in the treatment of cancer, HIV, etc., thereby improving
health facilities and personnel assignment.

Finance: RL is used in the highly dynamic and unpre-
dictable stock market to build automated trade execution
systems by monitoring trends in order to predict future changes
in prices, tasks that are nearly impossible for humans.

E. Latest developments in RL

The field of RL is constantly evolving as new research opens
up new application prospects. Some of the burning issues at
the moment include:

Machine teaching: This involves exploiting domain knowl-
edge of a human expert to design what to learn for an RL
agent and speed up the learning process, which can potentially
enable robots to perform household chores or engage in
meaningful conversations [10]. Machine teaching improves
sample efficiency and facilitates generalization of machine
learning models.

Transfer learning: Involves applying knowledge gained
from previous tasks to new related tasks to speed up con-
vergence and achieve optimal or near-optimal performance,
which is crucial in safety-critical systems such as self-driving
cars and bio-informatics where wrong decisions could have
disastrous consequences.

Federated reinforcement learning deals with problems
with highly limited data sets and feature state spaces. To
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preserve privacy, encrypted output from Q-networks of other
agents is shared to enable each agent optimize their individual
Q-network, which is useful in manufacturing where various
parts of a product are produced by different factories with
private decision policies [11].

Explainable AI/RL: This is a move to demystify the
decisions and actions of artificially intelligent agents to make
them more understandable to their human users, including any
expected impact and biases.

III. APPLICATIONS OF RL IN IOUTS

RL techniques are effective in dealing with the highly dy-
namic nature of the underwater environment to overcome the
challenges highlighted in Section I. They also provide safety
in dangerous and unpredictable aqueous environments where
pre-trained supervised learning algorithms would typically fail.

The major application areas are summarised in Fig. 2 and
include but are not limited to:

• Routing: Multi-hop communication and routing are re-
quired in IoUTs applications where direct transmission
is not feasible between sensor nodes and the sink. IoUTs
networks are resource-constrained; therefore, their rout-
ing protocols must possess high resource economy and
be able to respond to rapid changes in the environ-
ment. Energy efficiency is the primary consideration for
long-term applications in the IoUTs. Routing in IoUTs
networks is challenging due to frequent link outages,
topology changes and partitioning due to node mobility,
limited data rates, water motion, turbulence, blockages
and the 3D nature of the ocean. The proactive routing
protocols used in terrestrial networking have high sig-
naling overheads and are unsuitable for IoUTs networks
where frequent topology changes are common. Similarly,
geographical-based routing schemes such as vector-based
forwarding (VBF), which are popular for underwater net-
working, struggle when accurate localisation information
is not available.
RL offers advantages of selecting optimal routing policies
online, low communication overhead and support for
distributed implementation, making it amenable to the
dynamic nature of the underwater environment. It has
widespread applications underwater, but we illustrate with
few examples. To adapt to the constantly-changing link
quality, varying traffic and environmental changes, Q
learning adaptively selects the best route to the sink,
with the link quality worked into the reward function to
optimise both energy efficiency and reliability. Making
energy efficiency the optimisation goal can address the
energy consumption problem in an adaptive manner [12],
using single agent or multi-agent RL to achieve net-
work load balancing [9]. Kinematics information or back
propagation of Q-values can be used to improve the
convergence of such networks and lower transmission
failures.

• Energy management: Energy efficiency is the most
critical consideration for IoUTs networks that are de-
ployed long-term. Energy depletion of nodes leads to

network partitioning, causing routing problems and loss
of data. Different RL techniques are adopted to optimise
energy efficiency in the IoUTs, including energy used
by autonomous underwater vehicles (AUVs) in IoUTs
networks. For instance, it was shown in [12] that using
Q learning to intelligently select cluster heads and imple-
ment routing decisions leads to over 42% improvement
in energy efficiency compared to popular conventional
algorithms. Another Q learning-based algorithm termed
QELAR was shown to significantly enhance packet de-
livery ratio, leading to fewer retransmissions and energy
savings [4]. RL is also used for adaptive power man-
agement decisions such as duty-cycling, trasmit power
allocation, etc. In IoUTs networks with energy harvesting
capabilities, RL is employed to deal with the stochastic
nature of harvesting routines and traffic demands [13].

• QoS provisioning: Some IoUTs applications demand
reliable data transfer while others have strict latency
or throughput requirements (e.g. military reconnaissance
and disaster warning systems). RL is a natural candidate
for addressing sequential decision making problems such
as QoS provisioning. This is traditionally modelled in
service systems using queueing theory, which does not
scale well to large networks and perform poorly under
realistic network conditions. RL implements an adaptive
service-rate controller with probabilistic upper bounds for
end-to-end delays in IoUTs systems, thereby providing a
guaranteed QoS. The ability to manage and differentiate
service requirements while adapting to dynamic changes
in the network makes RL particularly appealing for
meeting QoS requirements in IoUTs networks.
Reliability can be achieved on a hop-by-hop (chiefly
using ARQ mechanisms) or end-to-end basis (via TCP
protocols). ARQ causes poor channel utilisation whereas
TCP struggles underwater due to high error rates and
long propagation delays. Hybrid techniques such as the
segmented data reliable transport (SDRT) combine ARQ
and FEC techniques to achieve high reliability, but are
still plagued by high overheads. RL responds to net-
work changes in real-time, guaranteeing high reliability
irrespective of network conditions. For instance, it can
adaptively adjust the data forwarding set of a sensing
node according to the network conditions [4]. In good
channel conditions, such a neighbour list is shrinked to
improve energy consumption and expanded under poor
channel conditions to improve packet delivery ratio.

• Localisation: For most IoUTs applications, collected data
can only be interpreted meaningfully if their locations
are known e.g. underwater disaster warning systems.
However, GPS is unavailable underwater, so IoUTs nodes
use other reference nodes to localise. Traditional locali-
sation estimators such the least squares method (LSM) or
convex optimisation methods fail underwater due to the
3D nature of the ocean, node mobility and the physical
layer limitations highlighted in Section I.
A motivating example of how RL addresses underwater
localisation challenges can be found in [14]). In addition,
Q learning improves the accuracy and energy efficiency of
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TABLE I
TABLE OF CHALLENGES, OPEN PROBLEMS AND FUTURE DIRECTIONS

Challenges Existing Solutions Future Directions
Lack of suitable prototyping environment Open AI gym, Stable baselines, Acme More intuitive environments are desired
Scalability and curse of dimensionality Deep RL, Federated RL Hybrid algorithms that combine heuristics with ML
Catastrophic forgetting Meta learning, Online sample selection, Elastic weight consolidation Topology-aware weight preservation
Lack of robust algorithms Multi-agent RL Stable algorithms that scale with state-action spaces

Fig. 2. Representative figure of RL applications in IoUTs, showing challenges in different thematic areas, the RL solutions and specific algorithms proposed
in the existing literature for addressing the challenges, the strengths and shortcomings of the solutions and relevant references for further reading.

LSM methods by optimising the reference node selection
policy without requiring the underlying channel model.
Actor-critic networks, Monte Carlo methods, probabilistic
collocation, sampling methods remove the need for accu-
rate time clock synchronisation in localisation algorithms
by incorporating model uncertainties and external distur-
bances into the reward function. Function approximation-
based dynamic programming solves the local optimum
problem in LSM methods by relaxing the linearisation
requirement of traditional alternatives to the LSM meth-
ods. A privacy-preserving localisation algorithm based on
deep RL has also been used to protect reference and target
nodes data exchange through information hiding.

• AUV control, navigation and obstacle avoidance:
AUVs have gained widespread adoption in the IoUTs
due to their rapid deployment, reconfigurability, and
versatility of applications. They operate in inhospitable
environments such as in nuclear storage ponds, deep
thermal vents and under polar ice caps and are used
in IoUTs for sensing, seabed imaging, mapping, data
collection, topology control, etc. However, the endurance
and capability of most UAVs are severely limited. RL
makes AUVs autonomous and adaptable to complex

environments and the open nature of the ocean. It is used
for AUV motion planning (path planning/re-planning, ob-
stacle avoidance, cooperative path selection for multiple
AUVs, vehicle tracking), docking control, localisation,
etc. In the motion planning problem, the AUV interacts
with the environment to maximise the reward signal,
while respecting the limitations imposed by the physics
of the vehicle and avoiding collisions with obstacles and
other AUVs. RL solutions are superior to graph search,
sampling-based and evolutionary approaches (such as
genetic algorithm) in enabling AUVs to independently
find optimal paths from one point to another.
RL agents used with AUVs must understand the operating
environment and its dynamics. For example, deep RL
overcomes the state-space problems of some algorithms
and is popular in motion planning applications to reach
target points while avoiding obstacles. Model-free RL
guides AUVs towards target waypoints by adapting to
model uncertainties and external perturbations. Q learn-
ing, deep deterministic policy gradient (DDPG) frame-
work (with experience replay to break sample corre-
lations), proximal policy optimisation, actor-critic net-
works, etc. are some of the common RL algorithms
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used in AUV-aided IoUTs [15]. Such RL systems make
the AUV adaptive to changing network conditions or
external disturbances, input non-linearities and model
uncertainties.

• Resource Allocation: RL has been employed to achieve
optimal power allocation in an IoUTs application by
adaptively adjusting the transmit power according to the
instantaneous channel conditions, energy and interference
levels. It has also been used to manage relay mobility
and improve signal transmission under jamming, whereby
relay nodes use historical contextual information to select
a suitable transmission power that satisfies the required
network metrics. RL techniques helps to manage re-
source allocation in competition-based and handshake-
based protocols, as well as MAC control protocols for
densely deployed IoUTs nodes. Such protocols must take
into account energy consumption (which makes protocols
used in delay-tolerant satellite applications unsuitable),
long propagation delays, node mobility and poor band-
width available in underwater acoustic systems. Given
these constraints, RL dynamiccally responds to changes
in the network conditions and user requirements.

IV. CHALLENGES AND OPEN RESEARCH PROBLEMS

Some of the challenges facing the practical deployment
of RL algorithms in the IoUTs include the exploration-
exploitation dilemma, slow convergence of RL algorithms,
curse of dimensionality, appropriate design and shaping of the
reward function. In IoUTs, one challenge is building a realistic
simulation environment and transferring an agent trained in
such an environment into the real world to practicalise relevant
applications. In addition, there is a dearth of robust algorithms
with real-world applicability and adoption. Many current al-
gorithms only work within the framework of simulation envi-
ronments. Scalability and the curse of dimensionality are also
other open problems that extend to nearly all RL algorithms
and applications. While deep learning is useful for addressing
these class of problems, they require high computational
powers and large memories. Some problems with very high-
dimensional state and action spaces cannot be handled by
current deep learning algorithms. Most past implementations
of RL in IoUTs have been limited to problems with low dimen-
sionality. For deep learning-based RL algorithms, scalability
is still an issue because to communicate with the agent is
realised only through rewards, instead of tuning the network
neurons to achieve better predictions, which may sometimes
lead to catastrophic forgetting as new knowledge erases pre-
vious learning. A summary of some of the challenges, current
solutions towards addressing them and recommended future
efforts are presented in Table I. Addressing these challenges
will move RL in IoUTs from the current conceptual stage
to practical implementations, thereby creating an explosion
in IoUTs and underwater possibilities such as underwater 3D
virtual reality, cleaner and smarter oceans, cleaner and efficient
maritime and transportation, reliable and rapid early warning
systems, safer harbours and oceans, as well as an overall
sustainable exploitation of offshore energy resources.

V. CONCLUSION

This article reviewed areas of IoUTs in which RL al-
gorithms find special applications. Important RL algorithms
were presented, along with a discussion of the types of
problems they are used to solve and examples of specific
applications. A detailed analysis of IoUTs applications that
rely on RL techniques was made, with specific algorithms
used in different IoUTs contexts highlighted. To the best
of the authors’ knowledge, this is the first review in which
different RL applications in the domain of IoUTs are presented
in one paper. Finally, some open research problems in the
applications of RL in the IoUTs were outlined and potential
solutions explored.
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