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Predicting transmission loss in underwater acoustics using
convolutional recurrent autoencoder network

Wrik Mallik, Rajeev K. Jaiman,a) and Jasmin Jelovica
Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V5T 1Z4, Canada

ABSTRACT:
Underwater noise transmission in the ocean environment is a complex physical phenomenon involving not only

widely varying physical parameters and dynamical scales but also uncertainties in the ocean parameters. It is

challenging to construct generalized physical models that can predict transmission loss in a broad range of

situations. In this regard, we propose a convolutional recurrent autoencoder network (CRAN) architecture, which is

a data-driven deep learning model for learning far-field acoustic propagation. Being data-driven, the CRAN model

relies only on the quality of the data and is agnostic to how the data are obtained. The CRAN model can learn a

reduced-dimensional representation of physical data and can predict the far-field acoustic signal transmission loss

distribution in the ocean environment. We demonstrate the ability of the CRAN model to learn far-field transmission

loss distribution in a two-dimensional ocean domain with depth-dependent sources. Results show that the CRAN can

learn the essential physical elements of acoustic signal transmission loss generated due to geometric spreading,

refraction, and reflection from the ocean surface and bottom. Such ability of the CRAN to learn complex ocean

acoustics transmission has the potential for real-time far-field underwater noise prediction for marine vessel

decision-making and online control. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0013894
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I. INTRODUCTION

Underwater acoustic propagation in the ocean is a com-

plex wave propagation phenomenon relying on several envi-

ronmental parameters and complex interaction of acoustic

wavefronts with the ocean surface and bottom. Underwater

acoustic propagation in the ocean is also a matter of signifi-

cant concern for both environmentalists and the shipbuilding

industry as underwater radiated noise (URN) propagation

from marine vessel operations acts as a stressor for under-

water marine animals (Duarte et al., 2021; Erbe et al.,
2019). Thus, the physical understanding and prediction

capability of far-field URN propagation are extremely

important for both environmentalists and marine engineers.

Underwater ocean acoustic propagation is analyzed via

techniques of varying fidelity according to the nature of the

physical problem investigated. As a result, experimental

measurements, high-fidelity numerical techniques like the

finite-element method, or hybrid numerical techniques like

ray tracing all have their necessities according to specific

situations. While the physics-based acoustic models can pro-

vide useful insight, they are poorly suited to combine differ-

ent sources and different levels of resolutions. Hence, it

would be highly beneficial to obtain a generalized model

that could incorporate ocean acoustics information from var-

ious sources of data and unify various analysis techniques

over a wide range of parameters and physical conditions.

Such a generalized model could be employed to analyze

underwater ocean acoustic propagation for the development

of underwater noise reduction strategies and guidelines.

However, it is difficult to develop generalized physical mod-

els for underwater ocean acoustics owing to complex multi-

physics phenomena, widely varying physical scales, and the

uncertainties in several environmental parameters involved

(James and Dowling, 2005, 2011).

We propose the application of a deep learning (DL)-

based data-driven method for developing a generalized

model of underwater ocean acoustic propagation. Being

data-driven, such methods rely only on the observed data

and remain agnostic to the data generation technique.

Therefore, they can approximate the underlying ocean

acoustic environment across various scales and environmen-

tal conditions and parameters for which data can be obtained

from either experiments or computational solvers.

Furthermore, these data-driven models can learn a much

lower-dimensional representation of the system from high-

dimensional physical data. This potentially enhances their

scalability and facilitates real-time predictions. Such data-

driven models would generally be developed via an offline-

online application strategy. The offline phase consists of

training the models to learn the problem physics. During the

online phase, the data-driven model can provide real-time

solutions for various applications, including decision-

making, control, and optimization.

A wide range of data-driven techniques has been histor-

ically employed for learning complex physical systems

exhibiting nonlinear and multi-scale behavior. In recent

years, DL architectures based on neural networks have beena)Electronic mail: rjaiman@mech.ubc.ca
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increasingly used as data-driven models for mechanistic

problems (Hsieh, 2009). Recent numerical experiments

(Mansour, 2019) indicate that DL models tend to prioritize

the learning of inherent simpler features of the data over the

complex data patterns. Such learning of simple laws govern-

ing the data aligns perfectly with data of mechanistic origin,

which are governed by a few fundamental physical princi-

ples (e.g., Newton’s laws of motion). This underscores the

motivation for approximating mechanistic systems with

data-driven DL models.

Recent results have shown that the nonlinear mapping

developed in DL models via a composition of nonlinear acti-

vation functions in multi-layer deep neural networks makes

them extremely efficient in learning low-dimensional repre-

sentations of high-dimensional physical data, especially for

wave propagation phenomena (Mallik et al., 2022).

Moreover, unlike conventional regression models, certain

deep neural network architectures provide geometric priors

to their approximation, which can endow specific general-

ized learning properties (Bronstein et al., 2017). These prop-

erties allow them to approximate many complex functions,

which has been theoretically demonstrated by various uni-

versal approximation theorems (Hornik, 1991; Leshno et al.,
1993). This has led to the employment of various DL mod-

els like autoencoder networks and recurrent neural networks

(RNNs) for accurately learning various nonlinear and com-

plex physical problems in a much lower dimension and with

real-time online prediction capability (Bukka et al., 2021;

Lee and Carlberg, 2020; Sorteberg et al., 2019).

Recently, various data-driven models, including DL

models, have been applied in underwater acoustics for the

classification and localization of ship-generated sound sour-

ces based on their acoustic signatures in both shallow and

deep ocean (Chi et al., 2019; Ferguson, 2021; Huang et al.,
2018; Niu et al., 2017). Various DL models have also been

recently employed for studying the propagation of shallow

water waves (Deo and Jaiman, 2022; Fotiadis et al., 2020).

Recent applications of DL models in other areas of acoustic

include learning low-dimensional representations of seismic

waves (Moseley et al., 2020) and predicting the approach

time of seismic waves (Smith et al., 2021). Hybrid physics-

based DL approaches are also available (Borrel-Jensen

et al., 2021; Mallik et al., 2021). However, such research is

still in the developmental stage (Mallik et al., 2021), or the

explicit application of partial differential equations (Borrel-

Jensen et al., 2021) makes them unsuitable for operating on

high-dimensional physical data and for complex systems,

where the exact governing equations and the underlying

physical process may not be known. The application of DL

models for learning various problems in wave propagation

is an emerging area of research, especially for predicting

far-field URN transmission.

In this research, we develop a convolutional recurrent

autoencoder network (CRAN) as our DL architecture

for learning far-field underwater acoustic transmission.

The CRAN model is a composite encoder-propagator-

decoder framework (Bukka et al., 2021), which applies a

sequence-to-sequence learning mechanism for autoregres-

sive prediction of far-field propagation of acoustic signals.

The learning is performed on a significantly reduced-

dimensional subspace, which approximates high-

dimensional physical data. The CRAN is employed for

learning the spatial distribution of far-field transmission loss

from a point source in a two-dimensional underwater ocean

environment. We consider a wide range of source depth

locations to demonstrate the generalized learning capacity

of the CRAN model.

This paper discusses the application of the CRAN

model for data-driven learning of far-field URN propagation

in an underwater ocean environment. The training strategy

of the CRAN model and the generalized learning capacity

of underwater acoustic transmission are discussed. Such

application of the CRAN model for learning far-field URN

propagation is presented here for the first time. Successful

application of the CRAN promises future application of

such data-driven models to predict far-field underwater

noise transmission with a wide range of parameters, based

on combined experimental and multi-fidelity computational

data sets.

II. DATA-DRIVEN FORMULATION OF ACOUSTIC
TRANSMISSION LOSS

Underwater noise transmission is governed by the prop-

agation of acoustic pressure generated from sound sources.

In a two-dimensional idealization of the ocean domain, such

acoustic pressure can be presented in Cartesian coordinates

as pðz;R; xÞ. Here, pðz;R; xÞ is a function of the depth z and

range R and also relies on the frequency of emitted signal x.

There is a significant loss in the energy, or intensity I(z, R)

(where I / p2), of the acoustic pressure signal, known as

transmission loss (TL). Such TL is a combination of losses

due to geometric spreading, losses due to volume attenua-

tion through the medium, and losses due to interaction with

the ocean bottom and surface. The losses due to interaction

with boundaries include losses due to reflection from the

surface and reflection and scattering from the bottom. Such

TL can be computed in decibels from the acoustic pressure,

p(z, R), at some receiver location (z, R) with respect to the

reference signal p0 at the source as

TLðz;RÞ ¼ �10 log
Iðz;RÞ

I0

¼ �20 log
pðz;RÞ

p0

: (1)

Hence, the TL is a measure of the drop in far-field sound

pressure level from various sources of URN.

For most practical situations in ocean acoustics, the

ocean range considered for far-field URN measurement is

usually 1–2 orders larger than the ocean depth. Thus, we

will assume the data-driven far-field TL prediction as a situ-

ation where we autoregressively compute the far-field TL

along the ocean range in a sequential manner starting from

known near-field observations. This will ensure that very lit-

tle initial information is required for the data-driven predic-

tion. For a full-order (high-dimensional) acoustic modeling,
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this can be represented by a partial differential equation

governing the evolution of an observable U, which depends

on spatial coordinates x 2 Riði ¼ 1; 2; 3Þ, time t, and a set

of real-valued parameter / � 0 as

@

@t
U x; t; /ð Þ ¼ F U x; t; /ð Þ; /ð Þ: (2)

Equation (2) can be subject to any general initial and bound-

ary conditions. F is any general nonlinear operator govern-

ing the dynamics of the system and provides a forward map

from the causality (initial and boundary conditions, system

properties, and dynamics) to the effects (final solution). On

the other hand, the data-driven prediction is performed as

UM;kþ1 xM; tKþ1; /ð Þ ¼ G UM;k xM; tK; Hð Þ; /
� �

; (3)

for k ¼ 0; 1;…;K � 1. Here, UM;k 2 RM is the discrete

solution with M spatial discretizations, and K represents the

discrete time steps. The data-driven operator G relies on

trainable parameters H, which must be learned based on

available data UM;k for a known set of parameters /. On suc-

cessfully learning G, it provides an inverse map of the sys-

tem, i.e., learning causality from the effects. G can then be

used to predict the solution at the kþ 1th range-wise loca-

tion if the solution at the kth range-wise location is provided.

Furthermore, the data-driven operator G can be learned on a

low-dimensional representation of the high-dimensional

physical observable U, to improve the scalability of the

data-driven prediction.

Without any loss of generality, we can rewrite Eq. (2)

for TL propagation along the ocean range as

@

@R
TL z;R; /ð Þ ¼ F TL z;R; /ð Þ; /ð Þ; z;R 2 R; (4)

where / represents the set of parameters including boundary

conditions and domain and source properties. Similarly, fol-

lowing Eq. (3), the discrete TL, TLM;k, can be predicted in a

data-driven manner as

TL z;Rkþ1; /ð Þ ¼ G TL z;Rk; /ð Þ; Hð Þ; (5)

once the inverse operator G is learned in a data-driven man-

ner. Autoregressive application of G can thus predict the far-

field TL from a point source over K iterations. We present

the data-driven learning methodology of the system evolu-

tion in low dimensions in Sec. III.

III. DATA-DRIVEN LEARNING METHODOLOGY

As discussed in Sec. II, the objective of data-driven

learning is to obtain the operator G such that any physically

observed field variable (pressure, velocity, etc.) can be prop-

agated in either time or along a spatial direction.

Furthermore, we want to learn G on a reduced dimension for

scalability. For any general high-dimensional observed vari-

able of interest UM;k 2 RM, obtained at propagation step k,

the data-driven learning problem can be formulated as the

learning of three operators, E; P, and D,

An;k xM; tk;/ð Þ ¼ E UM;k xM; tk; /ð Þ; hE
� �

;

An;kþ1 xM; tkþ1;/ð Þ ¼ P An;k xM; tk; /ð Þ; hP
� �

;

~UM;kþ1 xM; tkþ1; /ð Þ ¼ D An;kþ1 xM; tkþ1;/ð Þ;hD
� �

: (6)

Here, ~UM;kþ1 2 RM and An;k 2 Rn, for all k ¼ 0; 1;…;
K � 1. On successfully learning the inverse map in low

dimensions, we assume ~UM;kþ1 � UM;kþ1 for n� M. Here,

the operator E compresses the high-dimensional system to a

low-dimensional spatial subspace, P propagates the low-

dimensional system, and D expands the low-dimensional

evolved solution to the original high dimension. Thus, G can

be considered a composition of these three operators,

G ¼ E � P � D; Hð Þ; (7)

where H ¼ ðhE ; hP ; hDÞ. Here, we will consider learning the

low-dimensional spatial representation and the evolution of

the low-dimensional system as separate learning problems.

These are subsequently discussed in this section in detail.

A. Learning low-dimensional spatial representation

DL models, composed of deep neural networks, attempt

to find the best low-dimensional nonlinear subspace, which

can represent the high-dimensional system. According to the

manifold hypothesis, low-dimensional subspaces remain

embedded within high-dimensional physical space.

Therefore, identifying such low-dimensional subspaces via

data-driven models is possible with the correct choice of the

data-driven model. Here, we employ a DL autoencoder

model for obtaining the low-dimensional spatial representa-

tion. The autoencoder consists of an encoder, which

compresses high-dimensional spatial data to a much lower-

dimensional set of latent states. The latent states can be sub-

sequently expanded to their high-dimensional representation

by the decoder. The autoencoder is a combination of the

encoder and the decoder and is learned in a semi-supervised

manner, as we specify the input and output to the autoen-

coder but do not supervise how the latent states are learned.

The DL architecture considered here for both the

encoder and the decoder is a convolutional neural network

(CNN). CNN is specifically selected as its convolution and

pooling operations can provide translational equivariance

and translational invariance, respectively, to the mapping

from high-dimensional physical space to low-dimensional

latent states. Thus, unlike regular regression models, the

CNN can employ various geometric priors (Bronstein et al.,
2017).

The dimension-reduction objective is to find the lowest-

dimensional subspace of dimension n such that
~UM;K � UM;K . It is important to note that the choice of con-

volutional autoencoder is based on its efficiency for learning

low-dimensional subspaces, especially in the presence of

discontinuities and convection-dominated problems. Results
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shown in Mallik et al. (2022) comparing the efficiency of

convolutional autoencoders to popular projection-based

methods like proper orthogonal decomposition corroborate

this choice.

B. Learning system evolution

The data-driven learning of the system evolution pre-

sented in Eq. (6) is posed as a sequence-to-sequence learn-

ing problem. To achieve this, we employ a deeply stacked

single-shot long short-term memory (SS-LSTM) network.

LSTMs are gated RNNs routinely used for accurately learn-

ing sequences with a long-term data dependency. The gating

mechanism of LSTMs provides them invariance to time

warping. Thus, they are significantly less affected by vanish-

ing gradients compared to non-gated RNNs.

A single LSTM cell consists of the input gate, the out-

put gate, and the forget gate. The cell input, the cell state,

and the cell output are denoted by a, c, and h, respectively.

The cell output is then passed to a fully connected layer

with a linear activation to keep the input and output (y)

dimensions consistent. The operation of the LSTM cell can

be explained via the following equations:

f t ¼ r Wf � ht�1; at½ � þ bf

� �
;

it ¼ r Wi � ht�1; at½ � þ bið Þ;
~ct ¼ tanh Wc � ht�1; at½ � þ bcð Þ;
ct ¼ f t 	 ct�1 þ it 	 ~ct;

ot ¼ r Wo � ht�1; at½ � þ boð Þ;
ht ¼ ot 	 tanh ctð Þ; (8)

where i, f, and ~c represent the input gate, the forget gate, and

the updated cell state, respectively. W and b represent the

weights and biases for each of the gates, respectively. r repre-

sents the sigmoid function. An illustration of the LSTM cell

structure can be obtained in Bukka et al. (2021). On successful

learning, we assume yt � atþ1. LSTM cells can be stacked

together to learn how a present sequence of observables

evolves into a future sequence of observables. In the SS-

LSTM network, a single-shot learning mechanism is evoked

as the network memorizes all the states of the current sequence

length and predicts the complete output sequence at one shot.

An illustration of the SS-LSTM network is shown in Fig. 1.

C. Convolutional recurrent autoencoder architecture

The two separate data-driven learning tasks discussed

previously are performed via the composite CRAN, as shown

in Fig. 2. Here, we present a three-layer convolutional encoder

E and decoder D. The encoder and decoder presented here are

generated with one-dimensional (1D) convolutional kernels,

which operate on 1D inputs. All convolution layers except the

last one are followed by a max-pooling kernel. The max-

pooling layer calculates the maximum value from patches of

the convolution layer feature map. Both the convolution and

max-pooling operation in the encoder setting result in dimen-

sion reduction of the data set, while providing translation

equivariance and invariance properties, respectively, to the

encoder mapping (Bronstein et al., 2017). The deconvolution

and upsampling operation expand the data set in an exact

reverse manner to the convolution and max-pooling layers,

respectively. The convolution encoding and decoding can also

be performed in an analogous manner for higher-dimensional

Euclidean data sets. The LSTM propagator P presented here

can be any general LSTM model, although we will employ

the SS-LSTM in the present study.

We have separated the data-driven learning task into a

lower-dimensional spatial representation learning task and a

system evolution learning task. The convolutional autoencoder

learns the low-dimensional representation of the high-

dimensional physical data, and the LSTM network learns the

system evolution. These are trained separately. On successful

training of these individual components, the CRAN model is

employed during the prediction phase on cases not considered

for training, in a sequence-to-sequence manner while operat-

ing on a low-dimensional subspace. For a sequence containing

S units, we employ Eq. (6) with our initial sequence UM;S0
to

obtain ~UM;S1
, where UM;S0

2 RM
S. Feeding back ~UM;S1
, we

can obtain ~UM;S2
as the output. Autoregressive application of

CRAN over a large number of iterations r can enable us to

obtain ~U ¼ ½~UM;S1
; ~UM;S2

;…; ~UM;Sr
�; ~U 2 RM
rS. Thus, start-

ing with S initial propagation steps, autoregressive application

of the CRAN model can evolve the system to rS propagation

steps into the horizon. The accuracy of the prediction ~U will

indicate CRAN’s data-driven learning capability.

For data-driven learning of TL as a propagation problem

along the range, we can simply substitute UM;kðxM; tk; /Þ and

An;kðxM; tk; /Þ with TLM;kðzM;Rk; /Þ and An;kðzM;Rk; /Þ,
respectively, without any loss of generality. Similarly, for

autoregressive prediction of TL propagation along the range

for cases not considered for training, we can replace

UM;S0
ðxM;tS0

;/Þ and An;S0
ðxM; tS0

;/Þ with TLM;S0
ðzM;RS0

;/Þ
and An;S0

ðzM;RS0
;/Þ, respectively, without any loss of

generality.

IV. TEST SCENARIO FOR CRAN-BASED LEARNING

A. Test problem

To demonstrate the learning of ocean acoustic TL with

the CRAN, we consider the ocean domain with depth-

FIG. 1. (Color online) Illustration of sequence-to-sequence learning via SS-

LSTM.
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dependent sound speed following Munk’s sound speed pro-

file (Jensen et al., 2011) and representative ocean density

profile (McDougall et al., 2003). The computational ocean

domain is shown in Fig. 3. For the case considered here, the

domain has a range of 100 km and a depth of 5000 m, with a

level bathymetry profile. Since all properties and boundary

conditions remain uniform with the range, we consider this

as a depth-dependent scenario. Here, we are interested in

data-driven learning of the TL from depth-varying point

sources of 50 Hz., under the prescribed domain and bound-

ary conditions. We consider TLs of the acoustic signal pri-

marily due to geometric spreading and reflection from the

top and bottom surfaces. Losses due to volume attenuation

are not considered in this study. The ocean bottom is consid-

ered as a smooth rigid boundary, and the ocean surface is

considered as a fully reflective pressure release boundary

(Jensen et al., 2011). Thus, although there are reflections

from the ocean surface and ocean bottom, losses due to scat-

tering from the ocean bottom are negligible.

B. Generation of ground truth for far-field TL

For the physical conditions assumed in this study, URN

transmission can be considered a linear wave propagation phe-

nomenon. It can be thus modeled in the frequency domain via

the Helmholtz equation in Cartesian coordinates x,

r2 þ k2 xð Þ
� �

p x;xð Þ ¼ q x;x; x0ð Þ; x 2 X; (9)

subject to the boundary conditions. Here, p represents the

far-field acoustic pressure propagated from the source q, sit-

uated at a source location x0. For a two-dimensional ocean

domain X, we can assume x ¼ ðR; zÞ and r2 ¼ ð@2=@R2Þ
þð@2=@z2Þ, without any loss of generality. kðxÞ is the wave-

number of the medium at a radial frequency of x. Here, R
can be considered as the direction along the range of the

ocean domain from some reference point, and z is the depth

from the ocean surface. Equation (9) can be solved approxi-

mately via ray tracing for a wide range of both depth and

range-dependent variations in sound source location and

ocean environment parameters (e.g., sound speed, bathyme-

try, etc.). Although ray tracing techniques ignore lower fre-

quency solutions of Helmholtz equation (Jensen et al.,
2011), well-known computational techniques for ray tracing

(Porter and Bucker, 1987; Porter and Liu, 1994) have shown

that reasonably accurate results can be obtained even at fre-

quencies of 50 Hz (Porter, 2010). Ray tracing methods can

also show anomalies in the form of sharp caustic and

shadow zones in the ray amplitude computation. However,

FIG. 2. (Color online) Illustration of 1D CRAN model for data-driven learning.

FIG. 3. (Color online) Illustration of ocean domain with depth-dependent

properties.
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the application of geometric beams in well-known ray/beam

tracing solvers can limit the occurrence of caustics to

acceptable levels as reported in Porter and Liu (1994).

Although ray tracing techniques lack the high physical reso-

lution of the higher-fidelity finite-element method, they are

employed here for generating training data over a range of

parameters at a reasonable computational cost.

Here, we compute the far-field acoustic pressure levels

in the presence of geometric spreading and ocean surface

and bottom reflections via BELLHOP, a ray/beam tracing soft-

ware (Porter, 2010). For a given point source depth (zs),

BELLHOP is employed to compute the acoustic pressure at

uniformly distributed receiver locations along the depth (z)

throughout the prescribed ocean domain range at uniformly

distributed range locations. Such acoustic pressure ampli-

tudes are utilized to obtain their TL. We extract a snapshot

of the TL distribution on a uniformly discretized z – R plane

for the ocean domain shown in Fig. 3. Such TL distribution

is computed for several point source locations zs distributed

throughout the depth. We aim to develop a generalized

learning of far-field TL for depth-varying point sources via

the CRAN model. This would be achieved by training the

model for a few source locations and demonstrating the TL

predictions for any general source location not included in

the training set.

It is important to note that although BELLHOP actually

computes acoustic pressure, we train the CRAN on the TL

data obtained by post-processing the pressure signal inten-

sity [according to Eq. (1)]. The reason for such a choice is

that acoustic pressure varies over several orders of magni-

tude in such a large domain, and DL networks cannot be

trained properly on such data. On the other hand, the TL of

acoustic pressure is both easy to interpret and more suitable

for training the network.

V. RESULTS

In this section, we will present the results for learning

far-field URN TL in a depth-dependent ocean environment

with the CRAN. The training of the CRAN model and its

prediction capability for the test cases will be discussed.

Various components of the CRAN architecture were trained

with TensorFlow 2.5.0 (Abadi, 2015) libraries.

A. Training of the CRAN architecture

As stated earlier, the TL of acoustic pressure from the

depth-varying point sources was used for training the DL

models. The acoustic pressure computed via BELLHOP is not

directly employed for training the DL models as it varies

over orders of magnitude in the two-dimensional domain.

Thus, the TL of the acoustic pressure is a more suitable

choice of training data for the DL network.

The TL distribution computed over the domain via

BELLHOP for a source at a depth zs ¼ 950 m is shown in Fig.

4. The TL distribution was obtained by applying 2500

Gaussian beams over an angular fan spanning from �45� to

45�. The number of Gaussian beams was selected here to

obtain converged ray-tracing solutions. BELLHOP and most

other routine ray/beam tracing solvers lead to spurious

results when the pressure level decreases many orders of

magnitude (Jensen et al., 2011; Porter, 2010). Such a rapid

drop in pressure levels usually occurs at the boundary of the

shadow zones where no ray traces enter. We observed spuri-

ous results as the pressure levels dropped beyond 10 orders

of magnitude. Thus, pressure levels beyond 10 orders of

magnitude were filtered away, leading to a flat region in the

TL contour beyond 200 dB in Fig. 4. For obtaining the data

sets, we considered Munk’s sound speed profile sampled

with 26 depth-wise velocities. Therefore, the ocean depth

was divided into 25 depth-wise divisions with uniform fluid

properties during BELLHOP’s numerical ray trajectory

computations.

Since we consider a depth-dependent ocean environ-

ment with depth-varying sound speed and source locations,

a sufficiently high resolution of the data along the depth is

preferred. Thus, the ray-tracing solutions were observed at

2049 uniform depth-wise locations. This led to an extremely

accurate resolution of beam tracing solution along the depth.

We expect that our data-driven autoencoders will still be

able to learn a sufficiently low-dimensional representation

along the depth even for a very high depth-wise resolution.

Similarly, a range-wise discretization was also performed,

but a lower resolution was considered for the range. To

select the optimal resolution that will lead to sufficiently

accurate sampling, a convergence study was performed for

various range-wise discretizations. 176, 352, 704, and 1408

uniform range-wise stations were considered, and the L1 and

L2 error for sampling on all the coarser discretizations com-

pared to 1408 range-wise stations were computed. The

results showed that 352 range-wise sampling points are suf-

ficiently accurate with an L1 error of 1% and an L2 error of

2.5%.

To train the CRAN with TL distribution for various

depth-varying source locations, BELLHOP was employed to

obtain data for 21 source depths. Data were also obtained

for three validation depths and 12 test depths. These 36

source depth locations were randomly sampled from the

FIG. 4. (Color online) Transmission loss distribution obtained via BELLHOP

for a source depth of 950 m.
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domain and then corrected so that their location coincided

with the nearest depth-wise sampling point. The CRAN

training was separated into a convolutional autoencoder

training on high-dimensional physical data and an LSTM

training on the reduced-dimensional latent states obtained

from the trained convolutional autoencoder’s encoder.

First, we discuss the convolutional autoencoder train-

ing. The training was performed via the ADAM optimizer

(Kingma and Ba, 2014) with the standard objective of mini-

mizing the mean square error between the target TL results

and those obtained via the convolutional encoding and

decoding operations. A hyperparameter tuning was per-

formed for optimal convolutional autoencoder training and

generalization. Several network parameters like CNN filter

size, number of filters, etc., were considered for optimal tun-

ing of the network. However, the most important hyperpara-

meters considered here are the dimension of the latent

states, n, and the number of training epochs. Since the true

and predicted solutions considered here can be represented

in a pixelated format on a Cartesian grid, the accuracy of the

predicted solutions was measured via the structural similar-

ity index measure (SSIM). SSIM is a statistical measure

used for comparing two images or two same-dimensional

data sets with pixelated representation. Readers can explore

Wang et al. (2004) for further details on SSIM. A SSIM of

1.0 between two images indicates that the two images are

identical, whereas 0 implies no similarity.

The convolutional autoencoder was trained for 320

epochs with n¼ 16, 32, 64, and 128, resulting in SSIM

¼ 0.95, 0.973, 0.99, and 0.995, respectively, between the

training ground truth and the decoder outputs. The SSIM

values presented here are mean SSIM values over all the 21

training sets combined. We select n¼ 64 as the optimal

dimension of the latent states and SSIM ¼ 0:99 as sufficient

accuracy for training sets. The dimension of the latent states

will determine the capacity of the CNN autoencoder to

obtain a low-dimensional representation. It is sufficient to

tune this hyperparameter based on its effect on the training

predictions only. However, the training epoch can affect

both the training and validation, as training beyond optimal

duration can cause an overfitting of the network, leading to

a decay in the validation accuracy. This can be observed in

Fig. 5, showing the mean training SSIM for all the 21 train-

ing sets combined and also the mean SSIM for the three val-

idation sets, with varying training epochs. We can observe

that mild effects of overfitting are observed beyond 320

epochs as the validation accuracy decreases after this point.

Thus, we consider the convolutional autoencoder to be opti-

mally trained with 320 epochs as further training would

adversely affect the generalized prediction capacity of the

network.

Next, we discuss the SS-LSTM training. Since we plan

to train the SS-LSTM on the reduced-dimensional latent

states obtained from the trained convolutional encoder, there

are no specific target latent data sets. We instead inspect the

accuracy of the SS-LSTM training and validation sets on the

reconstructed CRAN predictions and the target, for both

training and validation data sets. While the convolutional

autoencoder network remains fixed, any change in the errors

will solely be due to the SS-LSTM network.

During the LSTM training, the total propagated distance

of the ray traces along the range, �R, is first divided into rþ 1

sequences, where R ¼ �R=ðr þ 1Þ is the span of each

sequence. The LSTM training is performed over r sequences

for all the training source depths, with sequences 1 to r
being the input data sets and sequences 2 to rþ 1 being their

corresponding output sets. During the LSTM validation

stage, we use the CRAN in an autoregressive prediction

phase initiated with the first sequence for each validation

source depth. Thus, r would represent the maximum number

of sequences into which we can possibly divide the com-

plete domain data. Here, r is another hyperparameter specifi-

cally required for LSTM validation to ensure the CRAN

could be employed for autoregressive prediction of source

depths not considered in the training data set.

Figure 6(a) shows how the validation and training pre-

diction SSIM varies with r for the SS-LSTM trained for

3200 epochs. The results show that r does not have much

influence on the training accuracy but significantly influen-

ces the validation accuracy. We do not expect the sequence

number r to affect training the accuracy as we will be train-

ing the SS-LSTM on all the sequences. However, during the

prediction phase (validation and testing), the number of

sequences r would determine the initiation sequence size,

which would eventually affect the autoregressive prediction

accuracy. Thus, r indicates the near-field dependency of the

CRAN for an accurate far-field prediction, with a higher r
indicating lower near-field dependency. From Fig. 6(a), we

consider r¼ 10 to be an optimally tuned hyperparameter,

with a cut-off tolerance of 5% in SSIM accuracy. While fur-

ther improvement beyond this value is possible, it comes at

the cost of a huge initiation data requirement. The larger ini-

tiation sequence size required for accurate autoregressive

far-field propagation can be attributed to the significantly

varying near-field TL distribution pattern with source depth.

FIG. 5. (Color online) Variation of SSIM on training epoch the network

training and validation. SSIM is computed between convolutional autoen-

coder predictions and ground truth.
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The CRAN is therefore required to observe the near-field

TL evolution longer before it could properly predict the far-

field TL distribution for source depths different from the

training source depths. Thus, r also indicates the data effi-

ciency of the CRAN during prediction phase. A high r indi-

cates that for cases outside the training range one would

need to provide very little near-field TL data to the CRAN

network to obtain accurate far-field TL prediction.

Figure 6(b) shows the validation and training SSIM of

the CRAN predictions for both the training and validation

sets with r¼ 10. Similar to the convolutional autoencoder

training, we observe mild effects of overfitting during the

SS-LSTM training. The validation set indicates optimal

training epochs to be 3200 as the validation error begins to

increase slowly beyond this stage. It is often difficult to pre-

dict a priori how many training cases are required to ensure

sufficient generalization capacity for DL models. Here, by

inspecting the validation SSIM in conjunction with the train-

ing SSIM and using early stopping, we have shown that

CRAN generalization can be improved even when training

data are limited.

The trained CRAN parameters for r¼ 10 and n¼ 64 are

presented in Fig. 7. Starting with an input dimension of (32,

2049, 1), the dimension of the feature space from each layer

of the various networks is shown in round brackets. The

layer parameters are shown in square brackets. The encoder

FIG. 6. (Color online) Dependence of SSIM on LSTM hyperparameter tuning: (a) 1=r and (b) training epochs. Here, SSIM measures the difference between

the CRAN predictions and ground truth during training and validation.

FIG. 7. (Color online) Trained CRAN parameters for SS-LSTM sequence length of 32 snapshots and convolutional autoencoder latent state dimension of 64.
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has three 1D convolutional layers of filter sizes 14, 10, and 6

and two 1D max-pooling layers, each having a filter size of

4. The number of filters increases by 16 for each convolu-

tional 1D layer of the encoder. The decoder has three 1D

transpose convolution and two 1D upsampling layers, which

perform just the reverse operations of the 1D convolutional

and 1D max-pooling layers. Here, we use 1D convolution

and pooling operations since we are only reducing the spa-

tial dimension along the ocean depth. Thus, instead of using

the whole depth discretization dimension of 2049, we are

propagating along the range with a reduced dimension of 64

via the SS-LSTM. Figure 7 also shows how the autoregres-

sive CRAN predictions are performed to obtain the TL dis-

tribution along the range, starting from the near-field TL

data for zs ¼ 1802 m.

It is important to note here that we intentionally do not

consider an end-to-end learning mechanism by directly

training the whole CRAN architecture with the high-

dimensional input and output TL data. Such a decision was

taken to improve the flexibility of the network and the inter-

pretability of the learning mechanism. Improved flexibility

enabled us to assess the performance of individual compo-

nents and only tune the necessary hyperparameters for

improved performance. This was evident as we could iden-

tify the CRAN validation error was arising due to the SS-

LSTM and not the CNN autoencoder. Furthermore, we

could observe how the near-field TL data for validation

cases affected the far-field TL propagation.

B. Far-field TL prediction for test cases

The CRAN network with the trained convolutional

autoencoder and the SS-LSTM was next employed on the

test source depths to predict the far-field propagation of the

TL along the range. Figure 8 shows the SSIM for the various

validation and test cases along the domain. It can be

observed that the test cases cover most of the domain and

thus can properly indicate the CRAN’s generalization

capacity. The CRAN predictions show a SSIM of 85% con-

sidering all the cases, and a prediction SSIM rises close to

90% or above for most of the validation and test cases.

To further investigate the CRAN predictions, we com-

pare the fully propagated predictions and the target solutions

in Figs. 9–11, for source depths zs ¼ 161 m, zs ¼ 1802 m,

and zs ¼ 3550 m, respectively. Thus, they represent three

completely different TL distribution patterns. The predicted

solutions are obtained by initiating the CRAN with the first

set of snapshots from the target solution and completing the

rest of the prediction autoregressively (see Fig. 7). We can

see an excellent similarity between the predicted and target

solutions for zs ¼ 161 m (Fig. 9), with only minor differences

in magnitude near the upper limit of the TL values. This

is also corroborated by a SSIM of 0.97. For zs ¼ 1802 m

(Fig. 10), the TL distribution pattern of the predictions closely

matches the target solutions. However, some differences in

the magnitude are observed far into the propagated range at

both high and low depths. However, overall, the prediction

shows high accuracy with a SSIM of 0.953.

We further compare the TL predictions along the range

and the ground truth for zs ¼ 1802 m at fixed receiver

depths. These receivers are placed at depths of 1200 and

3200 m, as shown by dotted lines in Fig. 10. The TL com-

parisons are shown in Figs. 12(a) and 12(b) for receiver

depths of 1200 and 3200 m, respectively. As observed ear-

lier, we see a close match between the CRAN predictions

and ground truth throughout the domain for both the cases,

except for the shadow zone observed from 60 to 70 km for a

FIG. 8. (Color online) Structural similarity index measure of predicted

transmission loss for all validation and test source depths.

FIG. 9. (Color online) Comparison of (a) CRAN predictions and (b) true solutions of transmission loss distribution for source depth of 161 m.
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receiver depth of 3200 m. The relative difference between

the predicted and true TL usually lies within 10%, except at

the shadow zones far from the source locations. For the

shadow zones, the CRAN predictions do not exactly match

the TL ceiling of 200 dB set in the ground truth for shadow

zones or regions with very weak relative signal intensity.

However, the locations of the shadow zones are detected

accurately by the CRAN predictions.

The CRAN predictions at zs ¼ 3550 m (Fig. 11) show

the lowest SSIM of 0.85. The nearest training source to this

test source was at zs ¼ 3250 m. The 300 m difference in

source depth between test and training for this case is the

farthest among all the test cases and is the primary reason

for a somewhat lower prediction SSIM. Notably, the outer

structure of the predicted TL distribution for zs ¼ 3550 m

matches the target solution closely. However, some differ-

ences in the magnitude and also the TL patterns can be

observed throughout the domain, especially for the lower

TL values. These differences increase as the predicted TL is

propagated farther away from the source. These differences

in both magnitude and structure of the TL patterns lead to a

somewhat lower value of SSIM for this case.

Overall, generalized prediction capabilities of far-

field TL propagation via CRAN were demonstrated for

any general source depth over the domain. It must be

noted that the data obtained from BELLHOP show a sharp

change in TL patterns traveling from the ensonified zone

to the shadow zone. As shown in Fig. 10, for certain test

source depths that were not considered for training, the

CRAN may not be able to fully capture the sharp change

in TL patterns at certain regions of the domain. However,

overall, the CRAN predictions closely matched the TL

distribution patterns of the target solutions in most cases.

This is demonstrated by the mean SSIM accuracy of 94%

over all the 15 source depths that were not considered for

training (Fig. 8). Even for the source depth almost 300 m

away from a training source depth over a domain depth of

5000 m, we could predict the solution with 85% overall

accuracy.

The TL distribution over the whole domain was

obtained within 4–6 central processing unit (CPU) seconds

with the CRAN model for each of the source depths. On the

other hand, similar predictions for each source depth via

BELLHOP required 400–450 CPU seconds. This demonstrates

the potential application of the CRAN model for real-time

decision-making and control. Here, we have considered the

data-driven CRAN model for TL prediction with depth-

varying sound sources. Future studies will include a wider

range of parameters (e.g., varying ocean medium or ocean

bottom properties) to demonstrate the scalability of the

CRAN model in a more complicated and realistic underwa-

ter ocean environment.

FIG. 10. (Color online) Comparison of (a) CRAN predictions and (b) true solutions of transmission loss distribution for source depth of 1802 m.

FIG. 11. (Color online) Comparison of (a) CRAN predictions and (b) true solutions of transmission loss distribution for source depth of 3550 m.
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VI. CONCLUSIONS

In this article, the authors have presented the CRAN for

data-driven learning of far-field acoustic transmission from

depth-dependent point sources in the underwater ocean

environment. The CRAN model consisted of a convolu-

tional autoencoder for learning a low-dimensional represen-

tation of high-dimensional physical data and a LSTM

propagator for learning the TL propagation in low

dimensions.

When trained with full-domain snapshots of TL distri-

bution for a few distributed source depths, the CRAN model

showed generalized prediction capacity of far-field TL for

other source depths outside the training set. Furthermore,

such predictions were obtained in a physically consistent

manner. Specifically, the CRAN model trained with TL dis-

tribution obtained via ray/beam tracing solver BELLHOP for

21 sources distributed along the ocean depth could predict

the transmission loss distributions for another 15 source

depths outside the training set with a mean SSIM accuracy

of 94%. Even for the source depth almost 300 m away from

the closest training source depth over a domain depth span-

ning 5000 m, the CRAN could predict the solution with

85% overall accuracy. It was observed that the CRAN pre-

dictions were within a relative error bound of 10% to the

true solutions except for the sharp changes in transmission

loss at the shadow zones. However, even though the relative

error of CRAN predictions was larger at the shadow zones,

it could still detect the existence of shadow zones accu-

rately. This indicated the physical consistency of the CRAN

predictions. Overall, the CRAN was able to achieve general-

ized learning of the underlying physics of underwater ocean

acoustic transmission phenomena. It was also observed that

for a limited number of training cases (21 training source

depths), the generalization capacity of the CRAN could be

improved via careful inspection of validation errors, ade-

quate hyperparameter tuning, and early stopping of CRAN

training.

Here, we have considered medium-fidelity ray-tracing

solvers for obtaining the ocean acoustic transmission loss

ground truth for CRAN training and testing. The CRAN is a

data-driven model agnostic to how the data are acquired.

Thus, the CRAN model is equally applicable if the present

data are augmented with data obtained from higher-fidelity

solvers or experimental measurements. This shows the

potential of data-driven DL models like CRAN to obtain a

digital twin of ocean acoustic transmission over a wide

range of parameters and physical phenomena of varying

complexity. The real-time online prediction of such a digital

twin can be applied for fast and physics-informed decision-

making in marine vessel operations.
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