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Abstract—This paper presents an extension to the original
Frenet-Serret and Bishop frame target models used in the
invariant extended Kalman filter (IEKF) to account for tangential
accelerations for highly-manoeuvrable targets. State error propa-
gation matrices are derived for both IEKFs and used to build the
accelerating Frenet-Serret (FSa-LIEKF) and Bishop (Ba-LIEKF)
algorithms. The filters are compared to the original Frenet-Serret
and Bishop algorithms in a tracking scenario featuring a target
performing a series of complex manoeuvres. The accelerating
forms of the LIEKF are shown to improve velocity estimation
during non-constant velocity trajectory segments at the expense
of increased noise during simpler manoeuvres.

Index Terms—Frenet-Serret, Bishop frame, Kalman filter, Lie
groups

I. INTRODUCTION

Target tracking is the problem of estimating rigid body
motions in 3D space that a target undergoes during motion.
Traditional nonlinear state estimation algorithms such as the
extended (EKF), Unscented (UKF) [1] and cubature Kalman
filters (CKF) [2] use models with changes in velocity or ac-
celeration modelled as Gaussian white noise to track manoeu-
vring targets. Other models such as the Singer acceleration
model [3] are common in industrial radar systems with [4]
providing a comprehensive review. For manoeuvring targets,
a bank of filters are run in a multiple model algorithm such
as the interacting multiple model IMM [5] with a Kalman
filter running each model before fusing the results. Simpler
dynamic models incorporating the kinematics of 3D curves
have been proposed to provide a more general dynamic model
for target tracking. The Frenet-Serret left-invariant extended
Kalman filter (FS-LIEKF) first presented in [6] estimates the
pose χt ∈ SE(3) of a target along with scalar parameters
describing the shape and motion of the trajectory. The Frenet-
Serret formulae are used to propagate the target pose since they
provide a concise means of characterising smooth curves γ, in

this case the target trajectory, in 3D space (γ ∈ R3) through the
formulae in equation (1). The Frenet-Serret equations are an
elegant framework for tracking as they, by definition, describe
the motion of curves. This is beneficial for tracking scenarios
where the observer is attempting to reconstruct or predict a
curved trajectory by propagating a set of equations. With a
set of scalar Frenet parameters, a wide range of curves can
be extrapolated, from simple straight segments to helices and
spirals. ṪṄ

Ḃ

 = u

 0 κ 0
−κ 0 τ
0 −τ 0

TN
B

 (1)

Bishop showed that the Frenet-Serret frame is the not the only
frame that can be readily applied to curves, extending the
Frenet equations to be globally defined [7] with two signed
curvatures rather than a single curvature and torsion. While
the Frenet frame defines the true geometry of the space curve,
with the unit normal vector N pointing towards the centre of
curvature in the osculating plane, the Bishop formulae, shown
in (2), enable us to initialise any starting attitude with the
development equations valid for any frame. This is the case
as the Bishop frame is not unique for a given curve [7]. Ṫ
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 T
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The Bishop or parallel transport frame has previously been
used to define tracking problems and has been implemented
within an invariant extended Kalman filter for tracking a
manoeuvring target with radar measurements [8], using the
framework laid out by Pilte et al. [6], [9]. Both approaches
are well suited to tracking problems given the ability to
define complex curves using slow changing or even constant



parameters. While the curvature κ̂t and torsion τ̂t parameters
of the Frenet-Serret apparatus in the FS-LIEKF of [6] are able
to account for the twisting motion of trajectories, tangential
accelerations cannot be estimated and the filter relies upon
process noise on the norm velocity ût and unit tangent vector
T to estimate the magnitude and direction. The same is true
for the Bishop frame implementation or B-LIEKF, albeit with
the replacement of curvature and torsion with the two Bishop
curvatures κ̂1, κ̂2. This extension was originally noted by Pilte
[10] with the warning that the acceleration would degrade
performance on trajectories with constant velocity segments,
similar to the results seen when comparing simple CV and CA
EKFs.

With more modern targets able to manoeuvre with high
accelerations it is critical to have a kinematic model that can
adapt well to large changes in velocity. This paper presents the
extension to the Frenet-Serret and Bishop IEKF algorithms to
account for accelerating targets. The state error propagation
matrix for the Bishop implementation is derived and a short
simulation is produced to highlight the improved performance
during components of trajectories with non-constant velocity.

II. FRENET-SERRET AND BISHOP ACCELERATION LIEKFS

The invariant extended Kalman filter (IEKF) is a recent
extension to the Kalman filter that enables the definition of
state spaces on matrix Lie groups [11]. The key advantage of
the IEKF is that by defining a left or right-invariant estimation
error, the linearisation is performed on independent error
dynamics. This ensures that the computed Kalman gain is
not dependent on the accuracy of the current state estimate
and hence convergence can be guaranteed for a wider range
of trajectories [12]. Barrau and Bonnabel present a complete
introduction to the IEKF in [13] with the Unscented variant
covered in [14]. The non-accelerating form of the Frenet-Serret
process model can be found in [6], [9]. Here, the attitude
of the target is expressed as the Frenet-Serret or Bishop
rotation matrix Rt as in [6]. The only change is to assume
that an acceleration at acts on the target to update the norm
velocity ut. Changes in this acceleration, referred to as jerk,
are modelled as Gaussian white noise. The equivalent Bishop
frame dynamics are written as (3), substituting the curvature
and torsion for the first and second Bishop curvatures κ1, κ2

d
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The target velocity vt acts only in the tangential direction
vt =

[
ut 0 0

]T
and the Bishop Darboux vector is written

as ωb,t =
[
0 −κ2 κ1

]T
. Note that since the filter estimates

the target attitude, process noise for the position is only added
in the tangential direction, that is wx

t =
[
wx

t 0 0
]T

. The
state space is defined as SE(3) × R4 which we will refer to

as the manifold, noting that, since only part of the state is
an element of the special Euclidean Lie group of 3D rigid
body motion SE(3), one cannot fully implement the IEKF
[6]. The convergence guarantees presented in [12] are not
valid for filters defined on mixed Lie group states however
the IEKF still provides an elegant method for incorporating
group constraints associated with common matrix Lie groups
such as SE(3). Additionally, the nature of the Frenet and
Bishop formulae means that, in situations where the filter
runs at frequency exceeding the measurement availability, the
propagation is better suited to a wider range of trajectories.

A. IEKF Algorithm

This paper provides the key stages in deriving the state error
propagation matrix for the Ba-LIEKF, but the same method
can be easily applied to the Frenet-Serret case. To propagate
the state error covariance we must first linearise the error
dynamics. From [6], the state errors are defined as (4), a
combination of left-invariant state error and linear vector error.

η =

{
χ−1
t χ̂

ζ̂ − ζt
=


ηRt
ηxt
ηκ1
t

ηκ2
t

ηut
ηat

 =


RT

t R̂t

RT
t (x̂t − xt)
κ̂1t − κ1t

κ̂2t − κ2t
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With the true trajectory formed from the Bishop formulae in
(3) and the noise-free filter models we can derive the error
dynamics. Since Pilte et al. present this process for the Frenet-
Serret formulae in [6] we proceed with the Bishop case. The
time derivative of the error dynamics can be shown to be

d
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This can then be linearised using a first-order approximation
which is shown by Barrau and Bonnabel to be exact [12]. The
position and R4 states are assumed to follow ξt = ηt while the
rotation matrix Rt, an element of the special orthogonal group
of 3D rotations SO(3), follows a first order approximation of
the exponential map for SO(3), that is ηRt ≈ I3 + [ξRt ]×.
Substituting our linearised error definitions into equation (5)
gives the linearised error equations shown in (6).

d
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By rearranging into the form ξ̇t = Aξt + wt with wt =[
wω

t wx
t wκ1

t wκ2
t wu

t wa
t

]T
, the state error propaga-



tion matrix At for the accelerating Bishop equations can be
derived as (7).

At = −



0 −κ̂1 −κ̂2 0 0 0 0 0 0 0
κ̂1 0 0 0 0 0 0 1 0 0
κ̂2 0 0 0 0 0 −1 0 0 0
0 0 0 0 −κ̂1 −κ̂2 0 0 −1 0
0 0 −ût κ̂1 0 0 0 0 0 0
0 ût 0 κ̂2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 0


(7)

It can be seen that for the state error propagation matrix in
equation (7), the only change from the non-accelerating case
in [6] is the addition of −1 in the final column. This can be
repeated for the equivalent Frenet-Serret model by taking the
A matrix from [6] and adding the final row and column from
equation (7).

1) Propagation

With the state error propagation matrix derived, the com-
plete IEKF algorithm can be implemented by first propagating
the state using the Frenet-Serret and Bishop equations in [6]
and equation (3). The error covariance can then be propagated
using equation (8)

Pk|k−1 = ΦkPk−1|k−1Φ
T
k + Q̌k (8)

where Φk = expm(At∆t) and Q̌k ≈ ΦkQΦT
k∆t.

2) Update Equations

The FSa-LIEKF and Ba-LIEKF update step follows as
equations (9) to (10)

Kk = Pk|k−1H̃
T
k (H̃kPk|k−1H̃

T
k +NR

k )−1 (9)

where H̃k is the measurement Jacobian of the spherical to
Cartesian transformation rotated into the target frame as per
[8], [10]. The error covariance is updated using the standard
Kalman equation, although the Joseph form is recommended
to avoid numerical issues associated with round-off errors.

Pk|k = (I10 −KkH̃k)Pk|k−1 (10)

Due to the composition of the state as a mixed manifold, the
state update uses the boxplus ⊕ operator to correct the state.

x̂k|k = x̂k|k−1 ⊕Kk(Yn − h(x̂k|k−1)) (11)

This box-plus operator refers to the composition of a tangent-
space element onto the manifold, with the ⊖ performing the
opposite operation. These retain the left or right bias and as
such we use the left ⊕ to update the state. This results in two
separate operations for the SE(3) Lie group and R4 vector
components as shown in equation (12).{

χ̂k|k = χ̂k|k−1 expSE(3)(K
χ
k (Yn − h(χ̂k|k−1)))

ζ̂k|k = ζ̂k|k−1 +Kζ
k(Yn − h(χ̂k|k−1))

(12)

Here the Lie group state is updated using the exponential map
of SE(3) and a linear vector addition can be used for the R4

state.

III. EXPERIMENTAL RESULTS

The IEKFs with the accelerating form of the Frenet-Serret
and Bishop dynamic models are implemented in a radar
tracking scenario with a target performing a trajectory com-
prising constant velocity, accelerating and spiralling segments.
The scenario used is presented in Figure 1. The observer is

Fig. 1. Sample trajectory for a manoeuvring target used as the tracking
scenario.

kept stationary for simplicity and receives range and bearing
measurements at 5Hz with uncertainties of 0.01rad and 5m
respectively. The filters update at 25Hz, propagating using the
kinematic models when a measurement is not available. The
process noises for all filters have been tuned manually.

A. Single Simulation

The FSa-LIEKF, Ba-LIEKF are implemented and compared
to the FS-LIEKF and B-LIEKF. For comparison to typical
algorithms used in industry, a variety of Cartesian CV and CA
filters are implemented, along with the CA-CV IMM2. Figure
1 depicts a single simulation comparing the FSa-LIEKF and
Ba-LIEKF to their constant velocity counterparts.. All four
algorithms perform well on this trajectory but the accelerating
forms show slightly reduced tracking error during the decel-
erating components immediately before and after the spiral
manoeuvre. As expected, the FSa-LIEKF and Ba-LIEKF are
able to adapt to the changing velocities faster than the constant
velocity counterparts but exhibit inferior performance on zero
acceleration segments. Performance on accelerating segments
could be further improved at the expense of increased noise
during constant velocity trajectories. In a multiple-model al-
gorithm the accelerating model could be tuned aggressively
to maximise tracking during the accelerating segment before
allowing the filter to switch to a FS-LIEKF or B-LIEKF filter.
Since the filters are run independently for this simulation a
balance is made. Figure 3 shows the FSa-LIEKF and Ba-
LIEKF responding to changes in velocity slightly faster than
the filters without the norm acceleration state. As the Bishop



Fig. 2. Position Estimation of the Frenet-Serret and Bishop LIEKFs.

Fig. 3. Norm Velocity Estimation of the Frenet-Serret and Bishop LIEKFs.

frame to a curve is not unique, it is hard to verify the
accuracy of the estimation process for the two curvatures.
This is because the Bishop formulae parallel transport the
frame through a minimum rotation and will therefore change
dependent on the initial frame. We plot the equivalent absolute
Frenet curvature κ through κ =

√
κ2
1 + κ2

2. This is presented
in Figure 4. It should be noted that we have chosen to define
the Frenet-Serret curvature as a signed scalar, with clockwise
turns assigned a positive curvature. Additionally, since the
filters estimate κ̂ = uκ, the state estimate is divided by
the estimated norm velocity for plotting. Both Bishop filters
track the equivalent Frenet-Serret curvature well and, since the
tracking of the curvature is dependent on accurate estimation
of both curvatures, it suggests that the Bishop frame is able
to estimate both scalars more effectively than the Frenet-
Serret counterparts. Norm acceleration estimation of the Ba-

Fig. 4. Frenet-Serret Curvature Estimation of the Frenet-Serret and Bishop
LIEKFs.

LIEKF and FSa-LIEKF is depicted in Figure 5 with both filters
performing well, although results could be improved with
more aggressive process noise at the expensive of smoother
velocity estimation.

Fig. 5. Norm Tangential Acceleration Estimation of the Frenet-Serret and
Bishop LIEKFs.

B. Monte Carlo Simulation

The results from a Monte Carlo analysis with 50 simulations
provide a performance comparison for the IEKFs along with
some basic but common industry algorithms. The root-mean-
squared-errors (RMSE) of the position and norm velocity for
each filter during the simulation are presented below in Tables
I and II. The largest improvement in performance comes

TABLE I
LIEKF RMSES FOR SIMULATION

State B-LIEKF Ba-LIEKF FS-LIEKF FSa-LIEKF
x 34.71 34.52 34.02 33.50
y 42.23 39.43 43.31 40.60
z 38.95 36.71 39.64 43.04
u 9.82 9.09 10.09 9.42

during manoeuvres not currently defined by the Frenet-Serret
scalars, that is non-constant velocities, and it is here where
both the Ba-LIEKF and FSa-LIEKF show their merits. The



TABLE II
EKF RMSES FOR SIMULATION

State CV-EKF CA-EKF IMM2-EKF
x 36.48 33.66 35.02
y 60.17 43.09 42.34
z 52.93 43.77 43.35
u 15.72 14.29 13.34

FSa-LIEKF and Ba-LIEKF show marginally improved norm
velocity estimation, shown in Table I, although the trajectory
presented has six segments with non-zero acceleration, so it
is purposely well-suited to the FSa-LIEKF and Ba-LIEKF.
Increased noise is seen during trajectory elements that do
not require an acceleration term. Since the Frenet-Serret and
Bishop formulae already allow for a broad range of motion, the
use cases for the FSa-LIEKF and Ba-LIEKF are diminished. It
is therefore recommended that the accelerating forms should
only be used over the B-LIEKF and FS-LIEKF when a
target is known to perform a large number of accelerating
manoeuvres. The CV and CA filters are not ideally suited to
some of the trajectory segments that would be best tracked by a
coordinated-turn (CT) model, but Table II shows the CA-EKF
performing better which, given the number of manoeuvres is
reasonable. The IMM2 algorithm provides robust performance
using simple Cartesian models but would benefit from an
additional CT or Frenet-based model.

IV. CONCLUSION

This paper has presented an extension to the Frenet-Serret
and Bishop target models to account for tangential acceler-
ations in the target kinematics. The left-invariant state error
propagation matrices have been derived and implemented in
LIEKF algorithms to track a manoeuvring target. The FSa-
LIEKF and Ba-LIEKF are shown to be more accommodating
to trajectories with accelerating components, closely tracking
the changes in velocity with the detriment of increased noise
during non-accelerating segments. This demonstrates that the
addition of the acceleration term only improves small parts
of the trajectory and the improvement on the original filters
is marginal as the FS-LIEKF and B-LIEKF provide robust,
single-model performance. The acceleration term also adds
complexity in the tuning process and additional care is re-
quired to optimise the filter performance. Based on the sim-
ulation undertaken, the original B-LIEKF and FS-LIEKF are
more than well equipped to estimate complex trajectories, and
the accelerating forms would be complementary extensions in
a multiple-model algorithm.

A. Future Work

With two kinematic models available for each filter, we plan
on developing an invariant-IMM based on [15] or multiple-
model particle filter to embed the geometric models into more
complex tracking algorithms.
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