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Summary
We propose a surrogate model for two-scale computational homogenization of
elastostatics at finite strains. The macroscopic constitutive law is made numeri-
cally available via an explicit formulation of the associated macroenergy density.
This energy density is constructed by using a neural network architecture
that mimics a high-dimensional model representation. The database for train-
ing this network is assembled through solving a set of microscopic boundary
value problems with the prescribed macroscopic deformation gradients (input
data) and subsequently retrieving the corresponding averaged energies (output
data). Therefore, the two-scale computational procedure for nonlinear elasticity
can be broken down into two solvers for microscopic and macroscopic equi-
librium equations that work separately in two stages, called the offline and
online stages. The finite element method is employed to solve the equilibrium
equation at the macroscale. As for microscopic problems, an FFT-based collo-
cation method is applied in tandem with the Newton-Raphson iteration and
the conjugate-gradient method. Particularly, we solve the microscopic equi-
librium equation in the Lippmann-Schwinger form without resorting to the
reference medium. In this manner, the fixed-point iteration that might require
quite strict numerical stability conditions in the nonlinear regime is avoided. In
addition, we derive the projection operator used in the FFT-based method for
homogenization of elasticity at finite strain.

K E Y W O R D S

computational homogenization, data-driven, FFT-based methods, nonlinear elasticity

1 INTRODUCTION
Multiscale techniques are important for man-made and natural materials; one such approach is homogenization. Roughly
speaking, homogenization is a rigorous version of what is known as averaging. It is a powerful tool to study the het-
erogeneous materials and composites. Based on the knowledge of the microstructure of materials, the objective is to

Abbreviations: HDMR, high-dimensional model representation; FFT, fast Fourier transform; FEM, finite element method; NN, neural network.
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understand the response of materials at the macroscale. Homogenization techniques are basically multiscale methods
applied to problems where the separation of scales are visible. In the field of homogenization theory for heterogeneous
materials, the microscopic length-scale characterizes the fast variation of material properties throughout the continuum
while the macroscopic length-scale characterizes dimensions of responses of the entire structure as if the material was
homogeneous.

In solid mechanics, analytical homogenization methods have grown fruitfully in the last half century. They include the
Hashin-Shtrikman variational principles, which were used to estimate the upper and lower bounds of effective modulus
tensor of linear elastic composites for quite general class of microstructures; see, for example, Hashin and Shtrikman,1,2

Willis,3,4 Avellaneda,5 Milton and Kohn,6 Ponte Castañeda.7 These works aimed at describing the effective response of
the materials of rather random structure whose information is only available through statistical relationship among the
composite phases. An extension of the Hashin-Shtrikman (HS) variational principles to nonlinearity was introduced
by Willis8 and subsequently applied to predict the first bounds for nonlinear composites by Talbot and Willis9 and for
viscous composites by Ponte Castañeda et al.10 The contribution by Ponte Castañeda and Suquet11 and the monograph
by Milton12 excellently reviewed the variational techniques of homogenization for heterogeneous materials and various
topics of composite materials.

Although the fully and semianalytical methods are powerful and able to deliver exact effective response for simple
microstructures, they fail to provide good bounds when either the microstructure is complicated or the correlation infor-
mation between phases is not available. So, computational homogenization methods emerge as promising candidates in
the theory of homogenization. One such approach decouples the multiscale problems into two nested problems, namely,
the microscopic and macroscopic boundary value problems; see Hughes et al,13 Miehe et al,14 Feyel.15 This approach
is called two-scale computational homogenization and normally realized in an FE2 procedure. Concretely, the original
multiscale problem is resolved in a bottom-up fashion in that the macroscopic boundary value problem (BVP) is solved
and the effective quantities inquired at the macroscale are supplied after resolving many associated microscopic BVPs;
both micro- and macroscopic BVPs are solved by the finite element method (FEM). The microscopic BVP (RVE problem)
is solved within a small region of the entire continuum body which is chosen to statistically represent the microstruc-
ture of material. Therefore, it is called representative volume element (RVE). The two-scale computational method was
made possible, thanks to the crucial theoretical contribution of Mandel16 and Hill17 who established a micro-macro tran-
sition condition. The latter was coined Hill-Mandel condition or macrohomogeneity condition. It gave rise to appropriate
boundary conditions on the RVE problem. A recent review of the state of the art including challenges in the field of
computational homogenization was given by Geers et al.18

The implementation of the two-scale computational procedure is based on the works by Allaire19 and Fish et al,20 who
established the appropriate BVPs at the microscale and the macroscale by exploiting asymptotic expansions of the dis-
placements, the strains and the stresses at different length scales. The asymptotic homogenization approach in Fish et al20

is a generalization of the periodic homogenization theory. They also proposed a numerical implicit integration scheme
to deal with plasticity at small strains. With appropriate boundary conditions applied to the RVE, the macrohomogeneity
condition can be derived. The two-scale computational procedure can be interpreted as a simple model derived by the
asymptotic method because only the solution up to the first-order approximation is considered and all the higher order
terms are neglected in the computation (see Fish et al21).

As computational cost for meshing in FEM was high for complex microstructure, Moulinec and Suquet22 pub-
lished a paper discussing treatment of microscopic BVPs by using the discrete Fourier transform (DFT) spectral method.
This paper was a follow-up of an earlier work by the same authors Moulinec and Suquet.23 An example of a com-
plex microstructure for studying polycrystalline ferroelectric ceramics can be found in Vidyasagar et al.24 The digital
image obtained by scanning electron microscopy can be directly used by resorting to the DFT-based methods as the
solution is globally interpolated at the voxels. Therefore, meshing is not necessary. The key idea was to recast a dif-
ferential equation in terms of the gradient field (such as linearized strain and deformation gradient) into an integral
equation resorting to a periodic Green’s function. As the DFT can be implemented in a fast algorithm proposed by
Cooley and Tukey,25 it is widely referred to as the fast Fourier transform (FFT). The FFT-based method is a good alter-
native to the FEM due to several efforts on improving its speed (see Zeman et al26) and extensions to microstructures
involving high phase contrast and nonlinear materials (see Michel et al27 and Brisard and Dormieux28). Recently, de
Geus et al29 provided a new perspective on the FFT-based collocation method as a Galerkin-based method. Accord-
ingly, the solution method for the equilibrium equation at the microscale combined the Newton-Raphson method
and the conjugate-gradient solver. More importantly, the method did not require a set of reference mediums. It has
been lately applied to computational homogenization for electroelastically and magnetoelastically coupled materials
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NGUYEN-THANH et al. 4813

in Göküzüm et al30 and Rambausek et al,31 respectively. These contributions employed a technique of computing
the constitutive tangent introduced by Göküzüm and Keip32 based on the fluctuation sensitivities. A quantitative
comparison between some numerical results obtained by the FFT-based method and the FEM can be found in
Zeman et al.33

A two-scale approach computes the gradient and the hessian of macroenergy density numerically at all quadrature
points used in the domain of the macroscopic BVP. In principle, the two-scale method makes the macroenergy density
numerically available and supplies the macroscopic solver with derivatives of the energy density by solving the associated
microscopic BVPs. On the other hand, it is possible to make the macroenergy density available either in an analytical for-
mulation for simple microstructures or in a numerical approximation such as interpolations, regressions or reduced-order
models (ROMs). In the latter case, Yvonnet and He34 suggested a reduced-order model of multiscale method for studying
elastostatics at finite strains. The ROM therein was based on the proper orthogonal decomposition. This work can be clas-
sified as data-driven method because it generated the data by solving a sequence of microscopic BVPs and exploited these
data to speed up the solution process for the macroscopic BVP. In this manner, the solver for dealing with microscopic
BVPs was run concurrently with the macrosolver for the macroscopic BVP. The data of macroscopic strains in their work
were assembled in a uniform pattern, but it is generally not a good choice for microstructures exhibiting anisotropicity.
To overcome this disadvantage, Fritzen and Kunc35 suggested a specific data sampling strategy. This model was proved
to be practically better than the former one by Yvonnet and He34 because it could handle the composite materials with
isotropic and anisotropic microstructures almost equally well. When the two-scale problem consists of the evolution of
physical quantities over time in an incremental fashion, the ROMs show tremendous computational benefits (see Oskay
and Fish36).

Although a two-scale computational homogenization reduces the computational cost of a direct numerical simu-
lation, it can still be significantly improved in some cases. For example, when the composites are made of phases of
hyperelastic materials, the effective properties of the homogenized material can be described by a homogenized energy
density, or macroscopic free energy density (also called macroenergy density above). In fact, in contrast to Yvonnet and
He,34 Fritzen and Kunc35 proposed a surrogate model in which the macroscopic free energy density was numerically
constructed with the aid of the radial basis functions. A surrogate model replaces the concurrent procedure by separat-
ing the series of microscopic BVPs that should be solved in the overall process from the macroscopic BVP. Therefore,
it bypasses the repeated process of solving many microscopic BVPs and retrieves the constitutive law. With the surro-
gate model, the homogenization problem will be solved only at the macroscopic level. In addition, Le et al37 proposed
to construct the macroenergy density numerically by a neural network architecture that mimics a high-dimensional
model representation and reformulated a two-scale computational problem into a surrogate computational model.
Note that this work was inspired by a technique of building numerically a potential energy surface, which is an impor-
tant entity in the community of computational chemistry. As the latter exploited advantages of a high-dimensional
model representation, the surrogate model can naturally handle the energy function of high-dimensional
variables.

We aim at speeding up the computation for a homogenization problem of elasticity at finite strains by combining the
FFT-based collocation method for the microscopic BVPs and a surrogate model based on a neural network architecture
proposed by Manzhos and Carrington.38 Herein, we employed the open-source code provided in accompany with the book
by de Borst et al39 to solve the macroscopic BVPs. In addition to reduction of computational cost, the explicit macroen-
ergy density can be reused and also improved by enriching the data samples later. Two contributions of the present
work are:

(i) We point out a connection between the approaches presented in Moulinec and Suquet22 and in de Geus et al.29 In
doing so, we derive compatibility projection operators used in the FFT-based methods.

(ii) We extend the computational framework in Le et al37 to handle the elastostatics at finite strains.

First, the theory of computational homogenization in the context of continuum mechanics is summarized in the
following section. The aforementioned highlights (i) and (ii) are presented in Sections 3 and 4, respectively. Also, we
discuss some implementation details, which were not addressed in Le et al.37 Section 5 is devoted to numerical vali-
dation of the computational framework via various representative examples. Those include the mathematical problems
that admit the analytical solutions as well as the real-world applications. Some concluding remarks are given in the last
section.
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4814 NGUYEN-THANH et al.

2 COMPUTATIONAL HOMOGENIZATION FOR FINITE STRAIN
PROBLEMS

2.1 Fundamental equations

We summarize the theory of first-order computational homogenization for nonlinear elasticity. The starting point is the
variational formulation describing the response of a continuum body of elastic heterogeneous materials. In addition,
we briefly go through the fundamentals of continuum mechanics. In this work, we partially adopt the notation and
presentation of Miehe et al.40

2.1.1 Deformation of continuum body of heterogeneous materials

Deformation of a continuum body  can be characterized by the primary field

𝝋 =

{ ×  → R3

(X, t) → 𝝋(X, t)

that maps reference coordinates X ∈  onto points x=𝝋(X,t) of the current configuration𝝋(, t). When the initial time is
fixed, this field is called the deformation mapping and the deformation gradient F is defined as its gradient, that is, F=∇𝝋.

For practical considerations, when the work done by the inertial force is negligible compared with that done by the
total stress stored in the system, a static analysis can be used. In this work, we assume that the external force is gradually
applied and therefore a classic first-order homogenization theory can be adopted.

We start with the variational formulation: The true motion 𝝋 ∈ H1
ΓD
() of the continuum body  is the stationary

point of the following potential

Π(𝝋) = ∫
𝜓(X,F) dV − ∫

f ⋅ 𝝋 dV − ∫ΓN

t ⋅ 𝝋 dA, (1)

where ΓD is a part of the boundary of  at which the deformation mapping is prescribed, 𝜓(X,F) is the strain energy
density, f is the external force per unit volume, and t is the traction force exerted on the body at the boundary ΓN. In this
formulation, the dependence of the energy density on the spatial coordinate X indicates heterogeneity of the considered
material. The function space

H1
ΓD
() = {𝝋 ∈ H1() | 𝝋(X) = 𝝋(X) ∀X ∈ ΓD}

is the space of all vector-valued functions in the Sobolev space H1() that are prescribed on the boundary ΓD by the given
function𝝋(x). The variational equation derived from the stationary statement 𝛿Π = 0 is the equilibrium equation and the
natural boundary conditions

∇ ⋅ PT = f in , 𝜕𝜓

𝜕F
⋅ N = t on ΓN,

where P = 𝜕𝜓∕𝜕F is called the first Piola-Kirchhoff stress and N=N(X) is the outward unit vector normal to ΓN measured
in the reference coordinates. The essential boundary condition is

𝝋(X) = 𝝋 on ΓD.

2.1.2 First-order computational homogenization

Following the theory of first-order computational homogenization, the variational problem defined by (1) can be effec-
tively replaced by a sequence of nested boundary value problems: many microscopic problems and one macroscopic
problem.
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NGUYEN-THANH et al. 4815

F I G U R E 1 A continuum body of heterogeneous materials. The heterogeneities in the body around the material point X can be
“averaged out” to understand the mechanical response of the body at X as if it was a homogeneous body by looking at a representative
volume element enclosing the material point X. In this way, we could realize the entire heterogeneous body as the homogeneous one by
looking at infinite number of RVEs surrounding all material points [Colour figure can be viewed at wileyonlinelibrary.com]

One of the most fundamental assumptions in this theory is the decomposition of the primary field𝝋 about one certain
coordinate X imitating a Taylor expansion as follows:

𝝋(X, t) = 𝝋|X(t) + ∇(𝝋|X)(t) ⋅ (X − X) + �̃�(X, t), 𝝋|X ∈ (𝜖0),∇(𝝋|X) ∈ (𝜖0), �̃� ∈ (𝜖1),

where the subscript X indicates that the macroscopic field 𝝋 is associated with such “macroscopic” coordinate and ∇
denotes the differentiation with respect to X and  denotes the standard big-O used in the approximation theory (see
Trefethen41). In a static analysis, the term 𝝋X(t) can be removed in the subsequent derivation as this term does not
contribute to the macroscopic variational problem. We obtain

𝝋(X, t) = F(t) ⋅ (X − X) + �̃�(X, t), F = ∇𝝋. (2)

This expansion is valid in a neighborhood of X called the representative volume element and denoted by (X) (see
Figure 1). Without ambiguity, we suppress the writing of macroscopic coordinate X associated with the corresponding
RVE. Equation (2) implies that

F ∶= ∇𝝋 = F + ∇�̃� ⇒
1||∫

F dV = F + 1||∫
∇�̃� dV . (3)

In a two-scale computational homogenization, the macroscopic constitutive law is obtained by an appropriate upscale
of the microscopic quantities resulting from the RVE calculation. This is usually achieved by enforcing the so-called
Hill-Mandel or macrohomogeneity condition. The condition states that the volume average of the variation of work per-
formed on the RVE (X) is equal to the local variation of work at X on the microscale. This condition essentially
guarantees energetic consistency in the first-order homogenization theory. It can be derived from the definition of the
macroscopic energy density (macroenergy density)

𝜓(F) = inf
𝝋∈(F)

1||∫
𝜓(X,∇𝝋) dV , (4)

where (F) is the function space of all vector fields that satisfy the decomposition (2) and certain boundary conditions
on the RVE boundary 𝜕. This macroenergy density is not well defined unless a boundary condition for𝝋 is determined,
which in turn leaves possibilities for various averaging operators. Let us assume that 𝝋 is a stationary point of the above
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4816 NGUYEN-THANH et al.

minimization problem. Then, we can write

𝜓(F) = 1||∫
𝜓 dV =∶ ⟨𝜓⟩

and derive the macrohomogeneity condition, or the Hill-Mandel condition, as follows

𝜕𝜓

𝜕F
∶ 𝛿F =

⟨
𝜕𝜓

𝜕F
∶ 𝛿F

⟩

. (5)

Substitution of Equation (2) into the right-hand side of the above relation leads to⟨
𝜕𝜓

𝜕F
∶ 𝛿F

⟩

= 1||∫

𝜕𝜓

𝜕F
∶ 𝛿F dV = 1||∫

P dV ∶ 𝛿F + 1||∫
P ∶ 𝛿F̃ dV , (6)

where we have used the notation

F̃ = ∇�̃� ⇒ 𝛿F̃ = ∇𝛿�̃�.

Using the Gauss theorem, the last term of Equation (6) can be transformed to the area integral as follows:

1||∫
P ∶ 𝛿F̃ dV = 1||∫𝜕(P ⋅ N)𝛿�̃� dV − 1||∫

(∇ ⋅ PT)𝛿�̃� dV = 1||∫𝜕(P ⋅ N)𝛿�̃� dV . (7)

In this derivation, we have used the assumption that 𝝋 is the solution of the minimization problem (4) such that the
microscopic equilibrium equation ∇⋅PT = 0 holds. Combining three Equations (5) to (7), we arrive at

P ∶ 𝛿F =
(

1||∫
P dV

)
∶ 𝛿F + 1||∫𝜕(P ⋅ N) 𝛿�̃� dV ,

where the macroscopic stress is defined as P = 𝜕𝜓∕𝜕F. If we choose the boundary condition on 𝝋 such that the area
integral in the latter condition vanishes, the latter equation will lead to the relation

P = 1||∫
P dV ⇔

𝜕𝜓

𝜕F
= 1||∫

𝜕𝜓

𝜕F
dV . (8)

The macrohomogeneity condition reduces to the following condition

1||∫
(P ⋅ N)𝛿�̃� dV = 0,

which can be fulfilled in various ways. Among them, the following three are normally chosen

• Dirichlet boundary condition: �̃� = 0 on 𝜕.
• Neumann boundary condition: P ⋅ N = P ⋅ N on 𝜕.
• Periodic boundary condition: �̃� is periodic on 𝜕. The periodic condition also implies that P⋅N is antiperiodic on 𝜕.

It was numerically verified in Terada et al42 that the periodic condition provided better prediction of the macroscopic
response. In addition, we will use the FFT-based collocation method for solving the microscopic problems. Therefore,
we adopt in the present work the periodic boundary condition for microscopic problems. The use of weakly periodic
boundary conditions is discussed by Fish and Kuznetsov.43

To this end, the function space (F) is now defined as

(F) = {𝝋 = F ⋅ (X − X) + �̃� ∈ H1() | �̃� is periodic on 𝜕}.
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NGUYEN-THANH et al. 4817

The fluctuation fields �̃� belong to the function space# consisting of all vector-valued functions in H1() that are periodic
on 𝜕. Accordingly, Equation (3) implies that

F = 1||∫
F dV ⇔

1||∫
F̃ dV = 0. (9)

Up to the first approximation in the ratio 𝜖 of microscopic and macroscopic length-scales, the macroenergy density
will be used as a replacement in the original variational problem (1). In this way, the rapidly varying properties of the
heterogeneous materials are “averaged out,” leaving a homogenized elastic body that is characterized by the homogenized
free energy density 𝜓 defined in Equation (4). Thus, the presented theory can be transferred to a two-scale computational
framework as follows:

• With the macroscopic input F, we solve the microscopic boundary value problem

𝜓(F) = inf
�̃�∈#

1||∫
𝜓(X,F + ∇�̃�) dV (10)

for the fluctuation field �̃�with the periodic boundary condition. Then, we can determine𝜓 by substituting �̃� back into
Equation (10).

• With the macroenergy density obtained above, we solve the macroscopic boundary value problem: Find the macro-
scopic deformation mapping 𝝋 ∈ H1

ΓD
() that minimizes the following potential

Π(𝝋) = ∫
𝜓(F) dV − ∫

f ⋅ 𝝋 dV − ∫ΓN

t ⋅ 𝝋 dA. (11)

3 METHODOLOGY FOR MICROSCOPIC BOUNDARY VALUE PROBLEM

3.1 Multidimensional discrete Fourier transform and circular convolution

To present the FFT-based collocation method for multidimensional boundary value problems, we use herein two sets of
running indices. The roman letters indicate the indices associated with the collocation nodes used in the discrete Fourier
transform, while the greek letters indicate those associated with the problem dimension.

3.1.1 Discrete Fourier transform and its inverse

Let us consider a periodic function V defined on domain 𝔇h = Πd
𝛼=1(−L𝛼,L𝛼) of d-dimension. A uniform mesh of grid

points

Xj = ((X1)j1 , … , (Xd)jd), j = (j1, … , jd),

with (X𝛼)j𝛼 for 𝛼 = 1, … , d is defined by

(X𝛼)j𝛼 = −L𝛼 + h𝛼
(

j𝛼 −
1
2

)
, j𝛼 = 1, … ,N𝛼, h𝛼 =

2L𝛼
N𝛼

.

We define a periodic grid function v as a restriction of the periodic function on this uniform mesh. The value of V at
node Xj is denoted as vj =V(Xj). In this work, we restrict ourselves to the odd numbers of grid points. This means
that all N𝛼 for 𝛼 = 1, … , d are odd numbers. Hereby, the notation ⌊N𝛼⌋ = (N𝛼 − 1)∕2 indicates the floor rounding
of N𝛼∕2.
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4818 NGUYEN-THANH et al.

Multidimensional discrete Fourier transform (DFT) of a multidimensional array vj1 … jd , which is a grid function of d
discrete variables Xj𝛼 , 𝛼 = 1, … , d, is defined by

v̂k1 … kd =
N1∑

j1=1
exp[−i 𝜉1(k1)(X1)j1] × · · · ×

Nd∑
jd=1

exp[−i 𝜉d(kd)(Xd)jd]vj1 … jd , −⌊N𝛼∕2⌋ ≤ k𝛼 ≤ ⌊N𝛼∕2⌋, (12)

where i =
√
−1 is the purely complex unit. In this definition, the scaled wavenumbers 𝜉𝛼 = (𝜋∕L𝛼) k𝛼 , 𝛼 = 1, … , d,

are defined by scaling the integer wavenumbers −⌊N𝛼∕2⌋ ≤ k𝛼 ∈ Z ≤ ⌊N𝛼∕2⌋ by the wavelength ratio 𝜋∕L𝛼 . Using the
notations

k = (k1, … , kd), 𝝃(k) =
(
𝜋

L1
k1, … ,

𝜋

Ld
kd

)
, j = (j1, … , jd), N = (N1, … ,Nd),

we will write the full expression of Equation (12) formally as

v̂k =
N∑

j=1
exp[−i 𝝃(k) ⋅ Xj]vj, −⌊N∕2⌋ ≤ k ≤ ⌊N∕2⌋, (13)

in which the summation signifies that all the indices j𝛼 run from 1 to N𝛼 . The inverse multidimensional discrete Fourier
transform is per definition given by

vj =
1|N| ⌊N∕2⌋∑

k=−⌊N∕2⌋ exp[i 𝝃(k) ⋅ Xj]v̂k, where |N| = d∏
𝛼=1

N𝛼. (14)

It can be proved that the above definition leads to the true inverse formula of the “forward” discrete Fourier transform
(13). It is important to keep in mind that the interpolations accounting for the discrete Fourier transform are derived from
the sum of trigonometric functions (see Stein and Shakarchi44).

3.1.2 Circular convolution

Let V and W be two periodic functions defined on the RVE domain . Then, the convolution of V and W is defined as

(V ∗ W)(X) = ∫
V(X − Y)W(Y)dY ∀X ∈ ,

where V must be extended in a periodic way so that the term V(X−Y) is well defined in the above integral. The discrete
counterpart of this transformation is then defined by replacing the integral by the summation over all the grid points in
. Let v and w be the grid functions derived from V and W , respectively. It was proven in Stein and Shakarchi44 that

 [v ∗ w] =  [v]  [w] and v ∗ w = −1{ [v]  [w]}. (15)

3.2 Microscopic boundary value problem

It was mentioned in Michel et al27 that the equilibrium equation in the Lippmann-Schwinger form can be derived by
using the Green operator defined in terms of a priori chosen reference medium tensor. On the other hand, the equilibrium
of the same form for heterogeneous materials undergoing large deformation was derived in de Geus et al29 by using the
Green operator defined independent from a reference medium. Although the outcome of our formulation is in line with
the results obtained in Moulinec and Suquet22 and de Geus et al,29 we pursue a different track of presentation. Particularly,
we show that their results are connected.
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NGUYEN-THANH et al. 4819

3.2.1 Derivation of microequilibrium with the polarization field

We make a remark regarding the index notation used in the present work. First, all the formulations using index notation
adopt the Einstein convention in which the doubly duplicated index implies the summation over it. Second, we use lower
case Roman index, such as i, j, … to the mean “with respect to the reference coordinate Xi.” This practice is different
from some literature in that capital letters might be used. Such writing will be beneficial here and there is no ambiguity in
doing so. Finally, the index after comma indicates the differentiation with respect to the spatial coordinates. Furthermore,
we adopt the terminology “polarization field” from Moulinec and Suquet.22

The starting point is the balance equation at the microscale

∇ ⋅ PT = 0 ⇔ Pij,j = 0.

Now, the reference medium C0 and the polarization field 𝝉 are introduced according to

Pij = C0
ijklFkl − 𝜏ij ⇒ P̂ij = C0

ijklF̂kl − 𝜏 ij, (16)

In the latter equation, C0 is only a constant fourth-order tensor that is chosen a priori. Applying the Fourier transform
to the balance equation and using the definition F=∇𝝋, we obtain

i P̂ij𝜉j = 0 ⇔ i (C0
ijkli �̂�k𝜉l − 𝜏 ij)𝜉j = 0 ⇔ C0

ijkl�̂�k𝜉l𝜉j = −i 𝜏 ij𝜉j,

where we recall that i2 = 1 and ̂(⊙) denotes the discrete Fourier transform of (⊙) and 𝝃 is the coordinate in the Fourier
space (see Section 3.1). We define the acoustic tensor Aik(𝝃) = C0

ijkl𝜉l𝜉j and resolve the last equation for �̂� to obtain

�̂�k = −i A−1
ki 𝜏 ij𝜉j ∀𝝃 ≠ 0.

Note that the compatibility condition∇×F=∇×∇𝝋=0 has been fulfilled in such derivation. By using the above equation,
we can relate F to the polarization tensor 𝝉 as follows

F̂ij = i �̂�i𝜉j = Γ̂0
ijkl𝜏kl, with Γ̂0

ijkl = −A−1
ik 𝜉l𝜉j ∀𝝃 ≠ 0. (17)

This relation provides a tool for computing F̂ at all nonzero wavenumbers in the Fourier space. At zero wavenumbers,
we have from the definition of the Fourier transform that

F̂(𝝃 = 0) = 1||∫
F dV = F. (18)

According to Equations (17), (18), and (15), we define the Green operator 𝚪0 in the Fourier space as

Γ̂0
ijkl =

{
−A−1

ik 𝜉l𝜉j ∀𝝃 ≠ 0,
0 𝝃 = 0,

and arrive at

F = F + 𝚪0 ∗ 𝝉(F) ⇒ F = F + 𝚪0 ∗ (C0 ∶ F − P). (19)

If the entire derivation is repeated for the zero-valued stress field P0 ≡ 0, or equivalently from the obviously true
equation P0

ij,j = 0, we obtain

F = F + 𝚪0 ∗ (C0 ∶ F). (20)

Combining two Equations (19) and (20), we end up with the equilibrium equation at the microscale
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4820 NGUYEN-THANH et al.

𝚪0 ∗ P = 0. (21)

3.2.2 Derivation of microequilibrium with compatibility-enforcing operator

We start with the stationary condition of the variational principle (10) as follows: Find F ∈ Vc(F) such that

∫
P ∶ 𝛿F dV = 0 ∀𝛿F ∈ Vc(F), (22)

where Vc(F) is the space of tensor-valued functions that are compatible in the sense each of them can be derived as gradient
of a vector field and that are averaged over the volume of the RVE to give the constant tensor F. In mathematical terms,
the volume-averaging condition is given by (9) and the compatibility condition reads ∇×F= 0. The function spaces of
trial functions and test functions are identical.

Let W be a second-order tensor-valued function, then 𝚪0 ∗ W is a compatible field and its volume average vanishes,
that is,

∇ × (𝚪0 ∗ W) = 0, ⟨𝚪0 ∗ W⟩ = 0. (23)

The second condition is a consequence of the specific definition of �̂�0
at the zero wavenumbers, �̂�0(0) = 0. In the index

notation, the first equation reads

𝜖ijk(Γ0
mkrs ∗ Wrs),j = 0 ⇒ 𝜖ijkΓ̂

0
mkrsŴ rsi 𝜉j = 0 ⇒ −𝜖ijk(A−1

mr𝜉sŴ rs)𝜉k𝜉j = 0.

We see immediately that 𝜖ijk𝜉j𝜉k = 0 for all i. Thus, the last equation holds true for all i,m = 1, d.
Using the decomposition F = F + F̃ and keeping in mind that P = P(F + F̃), Equation (22) can be rewritten as

∫
P ∶ 𝛿F̃ dV = 0 ∀𝛿F̃ ∈ Vc(0).

The function space V c(0) for the trial and test functions can be relaxed by considering the equivalent variational equation

∫
P ∶ 𝛿(𝚪0 ∗ W) dV = 0 ⇔ ∫

(𝚪0 ∗ P) ∶ 𝛿W dV = 0 ∀𝛿W. (24)

As Equation (24) must hold true for arbitrary tensor-valued functions 𝛿W, the equilibrium equation (21) can be equiv-
alently derived from this equation. In fact, Equations (21) and (24) are the strong form and weak form of the microscopic
boundary value problem (10), respectively.

3.2.3 Compatibility projection operator and connection to the existing works

Even though the equilibrium equation (21) has exactly the same form derived in Geus et al,29 the main difference is that
𝚪0 is not a projection onto the function space V c(0). Indeed, we will point out that the Green function G = C0 ∶ 𝚪0 is a
projection operator onto the function space V c(0). That means

(i) G acting on any arbitrary tensor-valued function W produces an element in V c(0)

∇ × (G ∗ W) = 0, ⟨G ∗ W⟩ = 0 ∀W. (25)

(ii) G acting on any element W in V c(0) gives itself

G ∗ [G ∗ W] = G ∗ W ∀W. (26)
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NGUYEN-THANH et al. 4821

The first property (i) means that G projects W onto V c(0): G[W] ∈ Vc(0), while the second (ii) means G is idempotent:
G[G] = G.

First, multiplying Equation (23) by C0 on the left-hand side, we obtain

∇ × [(C0 ∶ 𝚪0) ∗ W] = 0, ⟨(C0 ∶ 𝚪0) ∗ W⟩ = 0,

which is identical to Equation (25) by identifying G = C0 ∶ 𝚪0. Second, let us consider a periodic tensor-valued function
W with the property ⟨W⟩ = 0, then Equation (20) reduces to

W = 𝚪0 ∗ (C0 ∶ W) ⇒ W = (C0 ∶ 𝚪0) ∗ W.

This equation implies

(C0 ∶ 𝚪0) ∗ W = (C0 ∶ 𝚪0) ∗ [(C0 ∶ 𝚪0) ∗ W],

which is nothing else but Equation (26).
According to this analysis, various projections can be constructed by choosing different reference elasticity ten-

sor C0. The Green projection operator derived in Geus et al29 is obtained by setting the reference medium C0

to the fourth-order identity tensor: C0 ∶ W = I ∶ W = W. In that case, we have G0 = I ∶ 𝚪0 = 𝚪0 and at the same
time

C0
ijkl = 𝛿ik𝛿jl ⇒ Aik = 𝛿ik𝛿jl𝜉j𝜉l = ||𝝃||2𝛿ik ⇒ Γ̂0

ijkl = −A−1
ik 𝜉j𝜉l = − 𝛿ik||𝝃||2 𝜉j𝜉l. (27)

Thus, among many possibilities of choosing the Green projection operator, we may choose

Gijkl =

{
𝛿ik||𝝃||2 𝜉j𝜉l ∀𝝃 ≠ 0,

0 𝝃 = 0.
(28)

As the right-hand side of equilibrium equation (21) is zero, the minus sign appearing in �̂�0
defined by Equation (28)

does not affect the final result. Thus, the minus sign from Equation (27) is drop down to obtain the operator (28). Then,
the equilibrium equation at the microscale is equivalent to

G ∗ P = 0. (29)

Remark
The above analysis not only leads to the existing results obtained in Michel et al27 and Geus et al29 but also draws a
connection between the two routes of derivation. At the same time, it reveals that there are many possibilities of choosing
projection operators other than (28), each of which is obtained by fixing the reference tensor C0. This outcome extends
the result presented in Geus et al.29

3.3 Numerical method for microscopic equilibrium equation and macroscopic
tangent moduli

We will solve the equilibrium equation defined by (28) and (29) using the Newton-Raphson method (Geus et al29).
Note that a detailed numerical procedure for the system accounting for magnetoelastostatics can be found in
Rambausek et al.31

In this contribution, we compare the solutions obtained by a two-scale approach and the proposed surrogate model
by means of the resultant macroscopic stress P and tangent moduli C. For such comparison, we need to compute these
quantities from the solution F of the microscopic BVP.
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4822 NGUYEN-THANH et al.

3.3.1 Numerical procedure for microscopic equilibrium

We examine Equation (29) with F considered as fixed and look for solution in terms of F̃. A linearization of this equation
with respect to F̃[n] at step n gives

G ∗
[
𝜕P
𝜕F

(F[n]) ∶ ΔF̃[n]
]
= −G ∗ P[n],

where we have used F[n] = F + F̃[n] and P[n] = 𝜕F𝜓(F + F̃[n]). Because G is numerically explicit in the Fourier space, this
equation should be evaluated in the Fourier space and then mapped back to the physical space. To sum up, we obtain the
iterative scheme

−1
{

Ĝ ∶  [𝜕P
𝜕F

(F[n]) ∶ ΔF̃[n]
]}

= −−1{Ĝ ∶  (P[n])},

F̃[n+1] = F̃[n] + ΔF̃[n+1]
, (30)

where  and −1 denote the discrete Fourier transform (DFT) and its inverse transform, also called the inverse DFT. The
initial guess F̃[0] can be chosen so that its volume average vanishes, that is ⟨F̃[0]⟩ = 0. Accordingly, we need to apply the
following boundary condition at each iteration

⟨F̃[n]⟩ = 0 ⇔ ⟨ΔF̃[n]⟩ = 0 ∀n.

Enforcement of this condition has been done by setting the Green operator to be zero at the zero wavenumbers as defined
in Equation (28).

3.3.2 Computation of macroscopic tangent moduli

The microscopic BVPs essentially characterize the constitutive law at the macroscale (see also arguments in Section 4.1).
In this spirit, we must be able to compute the macroscopic tangent moduli resorting to the information at the microscale.
To this end, we pursue the strategy outlined in Rambausek et al31 and briefly derive the formulation for macroscopic
tangent moduli. According to Equation (8), we can compute

C = 𝜕P
𝜕F

= 1||∫

[
𝜕P
𝜕F

∶
(

I + 𝜕F̃
𝜕F

)]
dV =

⟨
𝜕P
𝜕F

∶
(

I + 𝜕F̃
𝜕F

)⟩

, (31)

where I is the fourth-order identity tensor. In this equation, the deformation gradient F must be obtained as the solution of
the microscopic BVP. Thus, it remains to determine the sensitivity of the fluctuation field F̃ with respect to the macroscopic
field F, which is also called fluctuation sensitivity (see Miehe et al14). These quantities will be revealed by differentiating
Equation (29) with respect to F with the help of decomposition F = F + F̃. In doing so, we arrive at

G ∗
[
𝜕P
𝜕F

∶
(

I + 𝜕F̃
𝜕F

)]
= 0 ⇔ G ∗

(
𝜕P
𝜕F

∶ 𝜕F̃
𝜕F

)
= −G ∗ 𝜕P

𝜕F
, (32)

where the derivative 𝜕P/𝜕F can be determined because F is understood as given by the solution of Equation (29). Obvi-
ously, this is a linear system for the fluctuation sensitivity because it is derived from a linearization of Equation (29).
Equation (32) can be solved by the conjugate gradient (CG) method acting on the form

−1
{

Ĝ ∶ 
(
𝜕P
𝜕F

∶ 𝜕F̃
𝜕F

)}
= −−1

(
Ĝ ∶  [𝜕P

𝜕F

])
.

The CG method is used for solving Equation (32) for two reasons. (i) It is not easy to construct the matrix form of
Equation (29) as G is only available in the Fourier space. (ii) The left-hand side of this equation is conveniently computed
in a componentwise manner and the CG method can be applied to each component of equation.
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NGUYEN-THANH et al. 4823

Since the latter equation is derived from Equation (29), it is essential to pass the average condition associated with
Equation (29) on to this equation. Taking derivative of ⟨F̃⟩ = 0 with respect to F, the average condition on the fluctuation
sensitivity is revealed as follows ⟨

𝜕F̃
𝜕F

⟩

= 0.

In the present work, we will call numerical solutions of microscopic BVPs obtained by using the FFT-based high-fidelity
solutions. This terminology will be frequently used in Section 5.

4 SURROGATE MODEL USING APPROXIMATOR OF MACROENERGY
DENSITY BASED ON NEURAL NETWORKS

4.1 Rationale toward determination of the macroscopic constitutive law with a
feedforward neural network

The theory of first-order periodic homogenization basically provides a macroscopic constitutive law in a numerical
basis. This statement is reflected by two variational problems (10) and (11). The first variational problem defines the
macroscopic energy density without using the given externally applied conditions such as f and T, while the sec-
ond problem is characterized by this energy density. A numerical solution of the minimization problem (11) based
on gradient-based techniques such as Newton method would require evaluation of the derivatives of 𝜓 (see de Borst
et al39). In a finite element procedure, such derivatives are only inquired at the quadrature points of the entire
problem domain. Therefore, a two-scale computational procedure is laid out as follows: The inquiries of the solver
for the macroscopic BVP (11) at one quadrature point are supplied by resolving the corresponding microscopic BVP
with the inputs obtained from the solver at the macroscale. We call such procedure a concurrent computational
framework.

There are two drawbacks in a concurrent strategy. (i) It is computationally expensive. (ii) The constitutive law is only
available at the running time and lost after the computational procedure completes. However, because the constitutive
law is associated with the microstructures, or RVEs, of the material, it can be stored and reused in the future applications.
The surrogate model arises as a remedy of these advantages. The possibility of constructing the energy density 𝜓(F) by
using the material data {(F

(i)
, 𝜓

(i))}Ndata
i=1 is desirable.

Note also that the two-scale computational procedure is not a unique way to achieve the homogenized solution.
Indeed, the most fundamental assumption is that we may replace the original problem by the homogenized problem
characterized by (10) and (11). This results in the macrohomogeneity condition (5) that should be solved with (10)
and (11) to link the micro- and macroscopic quantities. These three equations constitute of an underdetermined sys-
tem. The macrohomogeneity condition can be fulfilled a priori by applying one of the three boundary conditions in
the microscopic BVP or combination of such type of different boundary sections. In doing so, we have plenty of possi-
bilities of solving the microscopic BVPs depending on the means of computing macroscopic energy density. According
to this analysis, it is fair to interpret that there are certain amount of noise in the sampling data. This argument
is also a strong reinforcement to why we may use neural networks as a sort of interpolation of the macroenergy
density.

4.1.1 Interpretation and terminology

In the current approach, the macroenergy density will be made numerically available by means of a neural network
trained on the input-output data collected in the form (F, 𝜓). The process of collecting data is conducted by solving many
microscopic BVPs with given values F as the inputs and computing the resultant macroenergy density (4) as the outputs.
While such a process is called offline stage, solving the macroscopic BVP (11) using the approximate macroenergy den-
sity is called online stage. In combination, these two stages constitute a surrogate model whose overall picture could be
recapitulated in Figure 2.
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4824 NGUYEN-THANH et al.

F I G U R E 2 Surrogate model for computational
homogenization by means of approximator of
macroenergy density

4.2 HDMR-based neural networks

The neural networks employed in this work stems from the contribution of Manzhos and Carrington38 that embedded
partially the structure of high-dimensional model representation (HDMR) into neural networks (NNs). In fact, the
above authors aimed at building multidimensional potential energy surfaces, which frequently arise in the field of com-
putational chemistry. An efficient implementation of neural networks with such specific architecture can be found in
Manzhos et al.45

4.2.1 High-dimensional model representation

A function f of multivariable x∈ [0, 1]D can be approximated by the expansion (cf Manzhos and Carrington38)

f HDMR(x) = f0 +
D∑

i=1
f (1)i (xi)
⏟⏟⏟

component function

+
∑

1≤i<j≤D
f (2)ij (xi, xj)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
mode term

+ · · · + f (D)
12…D(x1, … , xD), (33)

which is called a high-dimensional model representation. This expansion consists of a sum of mode terms, each of
which is in turn a sum of component functions fi1,… ,in(xi1 , … , xin). In general, a HDMR approximation is achieved by a
least-squared optimization problem

min∫
RD

[f (x) − f HDMR(x)]2d𝝁(x), (34)

where d𝝁 stands for a predefined measure (see Stein and Shakarchi46). Several methods have been proposed by choosing
different measures d𝝁 and the associated strategies were developed for determining the component functions.

As long as the functional form of the component functions characterized by controlling parameters and the measures
d𝝁 are defined a priori, the minimization problem (34) can be solved by a suitable gradient-based method. Among all pos-
sibilities, using neural networks as component functions is attractive because the functions they represent are universal
approximators and efficient methods for computing the network weights are available.

4.2.2 Neural networks based on the structure of high-dimensional representation
model

We summarize here the neural networks introduced by Manzhos et al.45 Then, we adapt the presented theory to our
specific application. A theory of artificial neural networks can be found in the standard text by Goodfellow et al.47
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NGUYEN-THANH et al. 4825

We recall that a multilayer perceptron (MLP) belongs to the class of feedforward neural networks. It consists of (i) an
input layer, (ii) many hidden layers, and (iii) an output layer. The construction of HDMR expansion described below is
based on the sum of many MLPs. As for our application, the input layer corresponds to the components of the macroscopic
deformation gradient and the output layer to the macroenergy density. Except for the input nodes, each node is a neuron
characterized by an associated activation function and its weight and bias parameters. First, we use an Ansatz for the
HDMR function f HDMR in the form

f HDMR(x1, … , xD) =
L∑

i=1
gNN

i (x), (35)

where D is the original number of dimensions and each gNN
i (x) is a neural network and there are L component functions

in this expansion. As compared with expression (33), the expansion into multiple mode terms have been imitated at this
step. Next, we perform dimensionality reduction in the arguments of gNN

i in such a way that

gNN
i (x1, … , xD) = f NN

i (yi
1, y

i
2, … , yi

d), (36)

where d<D is the reduced dimension and the reduced coordinates yi are obtained from the linear mappings

yi = Ai ⋅ x + bi. (37)

where Ai is a matrix of size (d×D). At this step, the partial spirit of dimensionality reduction in the component functions
of the HDMR expansion (33) has been copied. Now that we employ the feedforward neural network with one hidden
single-layer to represent f NN

i as follows

f NN
i (yi

1, … , yi
d) =

Ni∑
n=1

ci
n𝜎(wi

n ⋅ yi + vi
n) + vi

0, (38)

where 𝜎 is the activation function for the hidden layer, Ni is the number of hidden neurons corresponding to the ith
component function. The specific activation function will be presented later for a direct relevance.

Combining Equations (35)-(38), we arrive at

f HDMR(x1, … , xD) =
L∑

i=1

⎧⎪⎨⎪⎩
Ni∑

n=1
ci

n𝜎
i(wi

n ⋅ [Ai ⋅ x + bi] + vi
n) + vi

0

⎫⎪⎬⎪⎭ . (39)

In doing so, we actually use L neural networks with two hidden layers, first of which uses linear activation function
while the second uses the nonlinear activation function 𝜎. The ultimate output f HDMR is the sum of outputs of all the
networks. In Figure 3, the architecture of the overall network (39) is presented.

Note that the function form (39) already reflects the HDMR expansion (33) even though d is chosen to be identical
for all component functions. In fact, if we restrict some rows of Ai to be zero, then the components of yi corresponding
to these rows will vanish. Nevertheless, it is unnecessary to completely obey the expansion form (33) in minimizing the
functional (34) for our applications.

4.2.3 Training of the neural networks for the approximation of macroenergy density

An appropriate measure d𝝁 can be chosen so that the functional defined in (34) can be reduced to the arithmetic average
of (f − f HDMR)2 evaluated at all the input data. We recall that such input data are the macroscopic deformation gradient F
and the output data are the corresponding macroenergy density as the outcome of solving the microscopic BVPs. So we
need to minimize
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4826 NGUYEN-THANH et al.

F I G U R E 3 Architecture of the HDMR-based neural network function. A function f of multidimensional variable (x1,… ,xD) is
approximated by a summation of L component functions. One component is a neural network with two hidden layers that uses in order the
linear activation functions and tanh activation functions. It should be interpreted that F

k
ij = Fij for all the component functions [Colour figure

can be viewed at wileyonlinelibrary.com]

1|D|∑
F∈D

[𝜓 |F − 𝜓NN(F)]2 → min (40)

with respect to the neuron weights, where |D| denotes the number of data in D. In this formulation, 𝜓NN is the approxi-
mator of the analytical macroenergy density 𝜓 = 𝜓(F) and 𝜓 |F is the output data. The explicit expression of 𝜓NN is given
as in Equation (39) with x being replaced with F. For completeness, we write down the outcome of training process by
repeating Equation (39) as follows

𝜓
NN(F) =

L∑
i=1

⎧⎪⎨⎪⎩
Ni∑

n=1
ci

n𝜎
i(wi

n ⋅ [Ai ⋅ F + bi] + vi
n) + vi

0

⎫⎪⎬⎪⎭ . (41)

4.3 Analytical derivatives of neural networks

4.3.1 Computation of macroscopic stresses and tangent moduli

The finite element method will be used in tandem with the Newton-Raphson method to solve the macroscopic boundary
value problem. We briefly go through some important formulas used in our iteration scheme.

The variational equation derived from the minimization problem (11) with 𝜓 replaced by 𝜓NN is given by

J(𝝋, 𝛿𝝋) ∶= ⟨DΠ(𝝋), 𝛿𝝋⟩ = ∫
∇𝛿𝝋 ∶ 𝜕𝜓

NN

𝜕F
dV − ∫

f ⋅ 𝛿𝝋 dV − ∫ΓN

T ⋅ 𝛿𝝋 dA = 0 ∀𝛿𝝋.

Linearization of the left-hand side of the latter equation with respect to 𝝋 gives

⟨DJ(𝝋, 𝛿𝝋),Δ𝝋⟩ = ∫
𝛿F ∶ 𝜕

2𝜓
NN

𝜕F𝜕F
∶ ΔF dV .

Then, the Newton-Raphson iteration is formulated as
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NGUYEN-THANH et al. 4827

⟨DJ(𝝋[k]
, 𝛿𝝋),Δ𝝋[k]⟩ = ⟨f, 𝛿𝝋⟩ + ⟨t, 𝛿𝝋⟩ΓN − ⟨PNN,[k]

, 𝛿F⟩ ∀𝛿𝝋,

𝝋
[k+1] = 𝝋[k] + Δ𝝋[k]

, (42)

where we have used the following inner product notations

⟨PNN,[k]
, 𝛿F⟩ = ∫

𝜕F𝜓
NN(F

[k]
) ∶ ∇𝛿𝝋 dV , ⟨f, 𝛿𝝋⟩ = ∫

f ⋅ 𝛿𝝋 dV , ⟨T, 𝛿𝝋⟩ΓN = ∫ΓN

T ⋅ 𝛿𝝋 dA.

At each iteration of the algorithm (42), we need to compute the stress and the tangent stiffness as follows

P
NN

= 𝜕𝜓
NN

𝜕F
, C

NN
= 𝜕2𝜓

NN

𝜕F𝜕F
.

In the present work, we exclusively use the tanh as the activation function, that is, 𝜎i(x) = 𝜎(x) = tanh(x) for all activation
functions, which implies

𝜎′(x) = 1 − 𝜎(x)2, 𝜎′′(x) = 2𝜎(x)[𝜎(x)2 − 1].

Taking the first and second derivatives of expression (41) with respect to F, we arrive at

P
NN

=
L∑

i=1

⎧⎪⎨⎪⎩
Ni∑

n=1
ci

nwi
n ⋅ Ai[1 − 𝜎(qi)2]

⎫⎪⎬⎪⎭ , with qi = wi
n ⋅ [Ai ⋅ F + bi] + vi

n,

C
NN

=
L∑

i=1

⎧⎪⎨⎪⎩
Ni∑

n=1
2ci

n(wi
n ⋅ Ai)T ⋅ (wi

n ⋅ Ai)[𝜎(qi)2 − 1]𝜎(qi)
⎫⎪⎬⎪⎭ . (43)

These two expressions are the approximators of P and C that will be used in the macrosopic solver.

4.3.2 Feature normalization and recover to the physical values

In this part, we draw special attention to one crucial practice in implementation for those who wish to use the package
provided in Manzhos et al.45 As standardized in MATLAB package and many existing libraries, the training process of
neural networks accepts the normalized features, including inputs and outputs, to accelerate the convergence of the
algorithm. This step of feature normalization must be taken into account for our implementation.

We borrow again the representation (39) to illustrate the feature normalization step. Let us assume that the range of
the input coordinates and the output coordinates are respectively given by

Ωinput
r = [(xr)min , (xr)max ], (xr)min = min {(xr)j}

Ndata
j=1 , (xr)max = max {(xr)j}

Ndata
j=1 ,

Ωoutput = [fmin , fmax ], fmin = min {fj}
Ndata
j=1 , fmax = max {fj}

Ndata
j=1 , (44)

in which (xr)min , (xr)max means the minimum and maximum of the input data in r-direction, with 1≤ r ≤D, and fmin and
fmax are the minimum and maximum of the output data. The input and output data are both normalized to the range
[− 1,1] by the following scaling

(𝜉r)j = 2
(xr)j − (xr)min

(xr)max − (xr)min
− 1, gj = 2

fj − fmin

fmax − fmin
− 1, ∀r = 1, … ,D, (45)

where 𝝃j and gj are the scaled data. Following the definitions of the min- and max-quantities given in Equation (44), it is
evident that (xr)j ∈ [− 1,1] and gj ∈ [− 1,1].
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4828 NGUYEN-THANH et al.

Assume that f HDMR(x) is trained from the original data D = {xj, fj}
Ndata
j=1 and similarly gHDMR(𝝃) from the normalized

data Dnorm = {𝝃j, gj}
Ndata
j=1 . These two neural network functions are related to each other by a transformation that is the

continuous version of data scaling (45). Concretely, the transformation is given as follows

f HDMR(x) =
Δf
2
[gHDMR(𝝃(x)) + 1] + fmin, 𝜉r = 2 xr − (xr)min

Δxr
− 1,

where Δf = fmax − fmin and Δxr = (xr)max − (xr)min .
Now, note that the package given in Manzhos et al45 accepts the normalized data Dnorm and generates gHDMR in terms

of the associated neural network weights. Therefore, to compute the derivative of f HDMR with respect to the original
coordinate x, we rely on the chain rule

𝜕

𝜕xr
f HDMR =

Δf
2

[ D∑
s=1

𝜕gHDMR

𝜕𝜉s

2
Δxs

𝛿sr

]
=

Δf
Δxr

𝜕

𝜕𝜉r
gHDMR ∀r = 1, … ,D.

The first derivative serves for computation of the macroscopic stresses (43)1. Similarly, the second derivative

𝜕2

𝜕xr𝜕xs
f HDMR =

Δf
ΔxrΔxs

𝜕2

𝜕𝜉r𝜕𝜉s
gHDMR ∀r, s = 1, … D

is employed for computation of the macroscopic tangent moduli (43)2.

5 REPRESENTATIVE NUMERICAL EXAMPLES

The examples are chosen to demonstrate the robustness of the proposed computational framework, and they are presented
in the order of difficulty. To gain confidence in the reliability of the neural network outcome, that is, macroenergy density,
we show in all examples, when relevant, the analytical solution or the full-field solution as a mean of comparison.

We start with a one-dimensional toy problem where the heterogeneity is idealized and mathematically characterized
by the energy density with oscillating material parameters. The second and third examples aim at justifying the approxi-
mate stress field and tangent moduli given by Equation (43) as compared to the corresponding quantities obtained through
the FFT-based solver for microscopic BVP. The last two numerical examples delve into the real-world applications where
three types of solutions are constructed for comparison: (i) numerical solution by a surrogate modeling, (ii) numerical
solution by a concurrent computational approach, and (iii) full-field solution.

The details regarding the neural network architectures and number of material data used in the below examples
are given in Table 2, while the interpretation of the variables in this table are recalled in Table 1. In all the numerical
examples, we have used d=D for all the component functions although different values of d for different component
functions will reflect better the idea of high-dimensional model representation. However, using the same value for d, the
component function with less dependency on certain variables will reduce the corresponding weights in its associated
layer. Truncating the HDMR in the approximation, it does not harm by setting d=D because the computational cost for
training is much less than that spent for the data collection process. To prevent the overfitting issue, we split our database
into two sets: training data and validation data and use cross-validation in the training procedure. Other methods, such as
dropout, regularization, and their applications in computational homogenization have been discussed by Wang and Sun48

T A B L E 1 Meanings of the parameters that describe the architecture of neural network (41)

D Original dimension of the variable F as the input argument of 𝝍

d Reduced dimension; refer to Equation (36)

L Number of component functions; refer to Equation (41)

N Number of neurons in the second hidden layer of the component function; refer to Equation (38)

Ndata Number of data for training the network (39); refer to Equation (34)
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NGUYEN-THANH et al. 4829

T A B L E 2 Record of architectures of neural networks used
in our numerical examples

Examples D d L N Ndata

Example 5.1 1 1 2 5 103

Example 5.2 4 4 15 20 50× 103

Example 5.3 4 4 15 20 30× 103

Note: The meaning of these variables are defined in Table 1.

(see also Srivastava et al49). Furthermore, we have increased the hyperparameters L and N from rather small numbers
step by step to upgrade the complexity of the neural network. The hyperparameters are finally chosen so that the network
can perform well on the validation set and thus approximate the macroenergy density with high accuracy.

5.1 A mathematical one-dimensional toy problem

Let us start with a simple bar problem described by the following minimization problem (see Figure 4)

𝛿

{
∫

L

0
𝜓(X , 𝜖) dX − ∫

L

0
f (X) u(X) dX − [t0 u(X)]X→L

}
= 0, 𝜓(X , 𝜖) = 𝜇(X)

[2
3
(1 + 𝜖)3∕2 − 𝜖 − 2

3

]
with the essential boundary condition u(0)= 0. Note that 𝜓(X , 𝜖 = 0) = 0. In this formulation, X is the reference coordi-
nate, t0 is the traction force applied to the bar at X =L, with L= 1, 𝜖 = du∕ dX denotes the gradient of the displacement
field, and the mathematical parameter 𝜇 = 𝜇(X) representing the inhomogeneities is given by

𝜇(X) = 3
2
+ sin(2𝜋kX), k ∈ Z

+.

This boundary value problem in the strong form reads

d
dX

𝜕𝜓

𝜕𝜖
+ f (X) = 0,

where the boundary conditions are translated to

u(0) = 0, 𝜕𝜓

𝜕𝜖

(
X → L, 𝜖 → du

dX
(L)
)
= t0.

The RVE is depicted by 𝜇(𝜉) on one wavelength 1/k, that is 𝜇(𝜉) defined on the interval 𝜉 ∈ (X − 1∕2k,X + 1∕2k). The
microscopic BVPs are solved for 103 input macroscopic strain data 𝜖 that are randomly distributed in the range [0,2]
to compute the output data of macroenergy density. As the microscopic BVPs can be solved analytically as in Nguyen
et al,50 the material data can be easily collected. Thus, we used 103 data points for the high resolution of the macroscopic
solution, although much less data could provide high-quality solution. The approximate energy density 𝜓NN is obtained
by using two component functions, each of which has five neurons in its second hidden layer (see row Example 5.1 of
Table 2). In Figure 5, the homogenized solutions obtained by the surrogate model and a concurrent approach are com-
pared with the full-field solutions obtained with different wavenumber values k. We see that when k→∞, the full-field
solution converges to the homogenized solution. In addition, the surrogate-modeling solution agrees excellently with the
concurrent-modeling solution.

5.2 Surrogate model for a laminate microstructure

5.2.1 Problem setting

In this section, we study a two-dimensional homogenization problem, which accepts an analytical solution. Particularly,
we analyze a two-dimensional laminate RVE in the plane strain condition (see Figure 6). This RVE comprises two phases
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4830 NGUYEN-THANH et al.

F I G U R E 4 Mathematical toy problem. (Left) Problem setting of the mathematical heterogeneous bar subject to a traction. (Right)
With 𝜇(0) = 3∕2, the energy function 𝜓(0, 𝜖) = (1 + 𝜖)3∕2 − 3∕2𝜖 − 1 is plotted against the 𝜖-coordinate [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 5 Comparison between homogenization solution and full-field solution. (Left) The 100 macroscopic strain data 𝜖 is
uniformly distributed in the range [0,2] and shown by its histogram plot. (Right) The homogenized solution is obtained by using the neural
network macroenergy density (red dots) with 1000 sampling data and by the concurrent FE-FFT method (black dashed line). The full-field
solutions corresponding to k= 10 and k= 100 (blue and green curves) are obtained by using standard FEM with a high number of elements
[Colour figure can be viewed at wileyonlinelibrary.com]

of Neo-Hookean material

𝜓(F) = 𝜇

2
[trace(FT ⋅ F) − 2] + 𝜇

𝛽
[det (F)−𝛽 − 1],

where 𝜇 is the shear modulus and 𝛽 is determined in terms of Poisson ratio 𝜈 according to 𝛽 = 2𝜈∕(1 − 𝜈). The gradient
and hessian of 𝜓(F) are the stress tensor and tangent moduli that are explicitly computed as follows

Pij =
𝜕𝜓

Fij
= 𝜇Fij − 𝜇 det (F)−𝛽F−1

ji ,

Cijkl =
𝜕2𝜓

𝜕Fkl𝜕Fij
= 𝜇𝛿ik𝛿jl + 𝜇 det (F)−𝛽(𝛽F−1

ji F−1
lk + F−1

jk F−1
li ),

where F−1 is the inverse tensor of F. We denote by (∗)(i) the material parameter (∗) associated with phase 𝛼, 𝛼 = 1, 2 and
in this example we consider

𝜇(1) = 100, 𝜇(2) = 1000, and 𝛽(1) = 𝛽(2) = 1 ⇔ 𝜈(1) = 𝜈(2) = 1∕3.
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NGUYEN-THANH et al. 4831

F I G U R E 6 An RVE of laminate structure under plane strain condition. The laminate consists
of two phases of Neo-Hookean materials. Each phase takes up 50% volume of the entire RVE

5.2.2 Analytical solution

The microscopic boundary value problem corresponding to the laminate structure above admits an analytical solution.
For self-contained reading, we summarize the main steps given in the work Goüzüm et al,30 which dealt with the lami-
nate RVE problem of the electromechanically coupled materials. We will derive here a system of algebraic equations for
determining the gradient deformation fields F(i) distributed within two phases, which result from the application of a
generic macroscopic deformation gradient F. First, we recall that the two following differential equations must be fulfilled
throughout the RVE

∇ ⋅ PT = 0, ∇ × F = 0 ⇔ Pij,j = 0, 𝜖imnFjn,m = 0.

The first equation is the equilibrium equation in the RVE domain, while the second is the compatibility condition. For a
two-dimensional problem, these equations are

P11,1 + P12,2 = 0, F12,1 − F11,2 = 0,
P21,1 + P22,2 = 0, F22,1 − F21,2 = 0.

It can be deduced from the assembly of the laminate phases that the variables appearing in the last equations are
independent of X2. Taking this fact into account, we arrive at

P11,1 = 0, P21,1 = 0,
F12,1 = 0, F22,1 = 0.

which implies P11, P21, F12, F22 are all independent of X1 and X2. In short, these fields are constant throughout the entire
RVE domain. Due to the laminate structure, all variables P12, P22 and F11, F21 are constant within each phase. Accordingly,
it is possible to reuse the notation F(𝛼)

ij and P(𝛼)
ij to denote the scalar values which the components of F and P take on

throughout the phase (𝛼).
At this point, we have eight unknowns F(𝛼)

ij with i,j= 1,2, 𝛼 = 1, 2, and four equations

F(1)
12 = F(2)

12 , F(1)
22 = F(2)

22 ,

P(1)
11 = P(2)

11 , P(1)
21 = P(2)

21 .

The other four equations come from the essential boundary condition of the microscopic BVP. They are the average
conditions

1||∫
Fij dV = Fij ⇔

1
2
[F(1)

ij + F(2)
ij ] = Fij.

Keeping in mind that P = 𝜕F𝜓 is given in terms of F, we have just obtained eight equations for determining the eight
unknowns F(𝛼)

ij as follows
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4832 NGUYEN-THANH et al.

F(1)
12 = F(2)

12 = F12,
1
2
[F(1)

11 + F(2)
11 ] = F11,

𝜕𝜓 (1)

𝜕F11
= 𝜕𝜓 (2)

𝜕F11
,

F(1)
22 = F(2)

22 = F22,
1
2
[F(1)

21 + F(2)
21 ] = F21,

𝜕𝜓 (1)

𝜕F21
= 𝜕𝜓 (2)

𝜕F21
. (46)

As long as the variable F is given, F(i) for each phase can be computed with high accuracy. We address the solutions
numerically obtained from this nonlinear system of algebraic equations as analytical solutions. Using these solutions, we
can compute the macroenergy density according to

𝜓
analytical = 1||∫

𝜓 dV = 1
2
[𝜓(F(1)) + 𝜓(F(2))]. (47)

The exact macroscopic stress is computed as

P
analytical

= 1
2

[
𝜕𝜓

𝜕F
(F(1)) + 𝜕𝜓

𝜕F
(F(2))

]
= 1

2
[P(1) + P(2)]. (48)

We use the central difference formula with an extremely small perturbation 𝜖 to compute the corresponding “exact”
tangent moduli according to

C
analytical
ijkl ≈

P
(+)
ij − P

(−)
ij

2𝜖
, P

(±)
ij = Pij(F)|Fkl→Fkl±𝜖

, (49)

where P
(±)
ij are computed according to Equation (48) by using the input F with Fkl being replaced by Fkl ± 𝜖. Exact quan-

tities (47)-(49) will be used to compare the numerical solutions obtained by FFT-based approach and neural network
surrogate model.

5.2.3 Numerical results

In Figure 7, we show the macroenergy density, the stress component P11, and the tangent moduli component C1111, which
are computed from the surrogate model, the high-fidelity solution (FFT-based solution), and the analytical solution (46).
As for this comparison, we assemble Ndata = 50× 103 data points extracted from a database of 200× 103 data points Fij,
which are uniformly distributed in the range[

F11 F12

F21 F22

]
∶∶

[
0.7 → 1.3 −0.3 → 0.3

−0.3 → 0.3 0.7 → 1.3

]
.

We recall that macroscopic deformation gradients and the resulting macroenergy density play the role of input data and
output data, respectively. In addition, the architecture of the neural network for this training is defined by the parameters
L= 15 and N = 20 as shown in row Example 5.2 of Table 2.

Although we could notice the differences in stress and tangent moduli components, it is yet difficult to see any dif-
ferences in the macroenergy density. Indeed, it can be observed from Figure 8 that the relative errors in energy provided
by the surrogate-model solution and the high-fidelity solution as compared to the exact energy are very small. Hereby,
we highlight our argument regarding the obvious differences in the stress field and tangent moduli. At first sight, such
differences might lead to an impression that the method generated large approximation error in the solution. However,
it is not necessarily true because the minimum point of the approximate macroenergy density is close to the exact coun-
terpart. This reasoning is applicable to the results shown in the first column of Figure 7 and also the ones in subsequent
numerical examples.

To further validate the proposed computational framework, we conduct another set of numerical experiments. We
study the components of macroscopic stress and tangent moduli by fixing the components F11 = F22 = 1.2, F21 = −0.2
and then letting F12 to vary arbitrarily in the range [− 0.2,0.2]. In Figure 9, the multiple components of P

NN
and C

NN
are
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NGUYEN-THANH et al. 4833

F I G U R E 7 Comparison between surrogate-model solution, high-fidelity solution and analytical solution. The macroscopic energy
density (left column), the stress component P11 (middle column) and the tangent moduli component C1111 (right column) are ordered
according to the following navigation: (top row) surrogate-model solution, (middle row) high-fidelity solution and (bottom row) analytical
solution. The plots are generated by fixing F11 = F22 = 1.2 and varying F12, F21 in the interval [− 0.2,0.2] [Colour figure can be viewed
at wileyonlinelibrary.com]

presented by using Ndata = 50× 103 training data for construction of𝜓NN (see row Example 5.4 of Table 2). The high-fidelity
quantities P and C are obtained by using the high-fidelity solutions and formulas (8) and (31). The comparison shows
that excellent results can be obtained not only by the FFT-based method but also by the neural network approximation.
In addition, it reveals that the surrogate model captures the expected anisotropic property of the homogenized material
extremely well. This leads us to the next numerical study where analytical solution of the microscopic BVP is not available.

5.3 Surrogate model for a microstructure of circular inclusion

5.3.1 Problem setting

In this numerical experiment, we study a two-dimensional RVE with circular inclusion in a plane strain analysis. Such
RVE is a two-dimensional reduction of the cylindrical inclusion of a three-dimensional RVE with quite large dimension
along the axis of the cylinder. We denote the quantities associated with the inclusion and the matrix by the superscripts
(i) and (m), respectively. The circular inclusion takes up a volume fraction f (i) = 20% and hence its radius is determined
by 𝜋[R(i)]2 = f (i)L1L2, where L1 =L2 = 1 are lengths of the sides of the RVE (see Figure 10).
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4834 NGUYEN-THANH et al.

F I G U R E 8 Relative error in macroenergy density. The relative errors in macroenergy density of the surrogate-model solution and the
high-fidelity solution as compared the analytical solution are shown on the left and the right figure, respectively. The relative errors are
computed by dividing the corresponding absolute errors by the exact macroenergy density [Colour figure can be viewed
at wileyonlinelibrary.com]

F I G U R E 9 Macroscopic stress P and tangent moduli C. The macroscopic stress (left) and tangent moduli (right) are produced by the
surrogate model trained on 50× 103 data points. These tensors are compared with the counterparts generated by using the high-fidelity
solution and analytical solution. All the numerical results are plotted against the varying component F12 ∈ [−0.2, 0.2], while other three
components F11 = F22 = 1.2, and F21 = −0.2 are kept fixed [Colour figure can be viewed at wileyonlinelibrary.com]

The constituting phases are made of the Neo-Hookean materials characterized by the energy density (cf Yvonnet
et al51)

𝜓(C) = 1
2
𝜆[log(J)]2 − 𝜇 log(J) + 1

2
𝜇[trace(C) − 2], (50)

where C=FT⋅F is the right Cauchy stress tensor, J = det (F), 𝜆 and 𝜇 are the Lame parameters given in terms of Young
modulus E and Poisson ratio 𝜈 as follows

𝜆 = E𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜇 = E
2(1 + 𝜈)

.

As for our example, we choose

E(m) = 100 MPa, 𝜈(m) = 0.4, E(i) = 1000 MPa, 𝜈(i) = 0.3. (51)

The stress tensor P = 𝜕𝜓∕𝜕F and tangent moduli C = 𝜕2𝜓∕𝜕F𝜕F are derived as follows

Pij = 𝜇Fij + [𝜆 log(J) − 𝜇]F−1
ji ,

 10970207, 2020, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6493 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


NGUYEN-THANH et al. 4835

F I G U R E 10 An RVE with circular inclusion. The RVE consists of two phases: (i) a circular
inclusion and (m) a matrix surrounding the inclusion. Two phases are made of the Neo-Hookean
materials that are characterized by the energy density (50) and the associated Young modulus and
Poisson ratio. These material parameters are specialized to each phase

Cijkl = 𝜆F−1
ji F−1

lk − [𝜆 log(J) − 𝜇]F−1
jk F−1

li + 𝜇𝛿ik𝛿jl.

5.3.2 Numerical results

In this example, we use a database of 30× 103 uniformly distributed data points in the following range[
F11 F12

F21 F22

]
∶∶

[
0.8 → 1.2 −0.5 → 0.5

−0.5 → 0.5 0.8 → 1.2

]

for training process. Because the analytical solution is not available for this RVE problem, we show in Figure 11 only the
numerical results of the macroenergy density 𝜓 , stress field P11, and tangent modulus C1111 obtained by the FFT-based
and surrogate-model computations. We also note that the solution of the RVE problem contains the spurious ringing
artifacts surrounding the material interfaces (see Figure 12). This phenomenon occurs for the microstructure in which
the interfaces between phases are not aligned along the orthogonal axes of the mesh. When we refine the mesh, the
interpolations of the solution at the grid points in the mesh would not converge uniformly to the classical solution but
still converge pointwise. Surprisingly, the spurious oscillations do not appear for microstructures with interfaces aligned
with the axes of the mesh (see Zeman et al33). Indeed, such artifacts are not observed in the last example investigating
the laminate microstructure. Two recent papers by Rovinelli et al52 and Ma and Sun,53 among several others, have partly
resolved this issue.

Once again, we have fixed F11 = F22 = 1.1 to plot these quantities against the coordinates F12,F21 ∈ [−0.4, 0.4]. We
see that the neural network function have performed a good approximation such that there is negligible difference in the
macroquantities produced by surrogate model and high-fidelity solution.

Subsequently, we present in Figure 13 the stress tensor P and tangent moduli C for comparison between
surrogate-model and FFT-based solutions. In this numerical experiment, we set F11 = F22 = 1.1, F21 = −0.4 and let F12
vary in the range [− 0.4,0.4]. As expected, the isotropicity of the homogenized material is captured sufficiently well in the
surrogate model and reflected via the computation of all components of C.

In Sections 5.4 and 5.5, we examine the two-scale problems with the same microstructure of circular inclusion as the
one in the present example. Thus, we can reuse the trained model in this subsection to save tremendous computation effort
required for both building databases and training the neural networks. As a consequence, the algorithmic parameters
characterizing the network architecture in the next two subsections are the same as those in row Example 5.3 of Table 2.
A great advantage observed herein is that the existing knowledge can be exploited while improvement in accuracy of the
approximate macroenergy density is still possible in future applications.

5.4 Cook’s membrane problem

5.4.1 Problem setting

By this numerical example, we show the robustness of the proposed surrogate model using neural networks to approxi-
mate the macroenergy density. We present comparison of the mechanical responses at the macroscale computed by the
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4836 NGUYEN-THANH et al.

F I G U R E 11 Comparison between surrogate-model computation and high-fidelity solution. The macroenergy density (left column),
the stress component P11 (middle column) and the tangent moduli component C1111 (right column) are ordered according to the following
navigation: (top row) surrogate-model solution, (bottom row) high-fidelity solution [Colour figure can be viewed at wileyonlinelibrary.com]

surrogate model and concurrent computations. Concretely, we investigate the well-known Cook’s membrane problem
whose microstructure is represented by the circular inclusion in Subsection 5.2. This problem is named after the author
Cook54 who first reported it. The geometry of the membrane consists of a trapezoid surface in the X1-X2 plane (see
Figure 14). The structure is clamped along the left edge and it is loaded by a traction load q0 = 4 along the right edge in the
X2-direction. The membrane is rather thick such that the plane strain assumption is valid (see also section 2.1.5, Abaqus
Benchmarks Guide). Note that we do not aim at reproducing the Benchmark results in the aforementioned literature.

5.4.2 Numerical results

To show that the surrogate model is capable of generating numerical response that is comparable to the concurrent
FE-FFT approach, we place the results of two approaches adjacent to each other. In Figures 15 and 16, the displacement
fields and the resultant stresses corresponding to the surrogate model and concurrent computations are placed on the left
and the right, respectively.

This example shows advantages of our surrogate model as the material data are available from the analysis of the
previous example. At the macroscale the computation performs as usual, whereas at the microscale the neural network
will predict the effective stresses and tangent moduli in response to the macroscopic deformation gradients evaluated
at the quadrature points. So, we can avoid nested loops for solving the microscopic BVPs by FFT-based solver and the
macroscopic BVP by the finite element method.

5.5 Two-dimensional cantilever beam under plane strain analysis

5.5.1 Problem setting

As the last example, we reaffirm the efficiency of this computational framework by providing the quantitative compar-
ison between the full-field solution and the homogenized solution achieved by the surrogate modeling. To this end, we
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NGUYEN-THANH et al. 4837

F I G U R E 12 Ringing artifacts surrounding the material interfaces in the numerical solution for a circular-inclusion RVE with
macroscopic deformation gradient as {F11 = 1.1,F12 = −1.2,F21 = 0.2,F22 = 1.4} [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 13 Macroscopic stress P and tangent moduli C. The macroscopic stress (left) and tangent moduli (right) are produced by the
surrogate model trained on 30× 103 data points. These tensors are compared with the counterparts produced by using the high-fidelity
solution. All the numerical results are plotted against the varying component F12 ∈ [−0.4, 0.4], while other three components F11 = F22 = 1.1
and F21 = −0.4 are kept fixed [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 14 Cook’s membrane problem. The
Cook’s membrane is described by a two-dimensional
trapezoid, clamped along the long left edge and subject
to tangential traction q0 = 4 along the right edge. The
structure is constituted by the materials with
microstructure of circular inclusion. The problem is
analyzed in the plane strain condition [Colour figure can
be viewed at wileyonlinelibrary.com]
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4838 NGUYEN-THANH et al.

F I G U R E 15 Mechanical responses of the Cook’s membrane under plane strain condition. The contour plot shows the vertical
displacements computed at the macroscale according to the surrogate model (left) and to the concurrent approach (right)

F I G U R E 16 Distribution of resultant stress within the Cook’s membrane. The contour plot shows normal stress S11 (top) and S12

(bottom) computed at the macroscale according to the surrogate model (left) and to the two-scale approach (right), respectively
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NGUYEN-THANH et al. 4839

F I G U R E 17 Cantilever beam of
heterogeneous materials under plane
strain analysis. (Top) The beam is filled
with 40× 10 circular inclusions of
materials stiffer than the matrix and is
subject to a traction force q0 = −0.25.
(Bottom) When the number of
inclusions approaches infinity, the RVE
of circular inclusions represents well the
heterogeneity of materials according to
the pattern of inclusions in the top figure

F I G U R E 18 Final deformation of the cantilever beam. The vertical displacement is contour-plotted for both the homogenized solution
based on the surrogate modeling (left) and the full-field solution based on the structure with 40× 10 circular inclusions

investigate the deformation of a two-dimensional cantilever beam, once again, in plane strain analysis. The beam of rect-
angular geometry consists of N1 ×N2 stiff circular inclusions, where N1 and N2 are the number of inclusions in X1- and
X2-direction, respectively. In Figure 17 (top), one typical beam with (N1 ×N2)= (40× 10) circular inclusions is shown. For
a specific mechanical setting, the beam is clamped at its left edge and subject to the constant tangential traction q0 = −0.25
along its right edge, which is visualized in Figure 17 (bottom). The inclusions and matrix are made of materials given in
Subsection 5.3 by Equations (50) and (51).

5.5.2 Numerical results

In Figure 18, the full-field solution of the beam structure with 40× 10 circular inclusions (see Figure 17) is compared
with the homogenized solution based on the surrogate model. Also in this figure, the deformed configuration of the beam
as well as the contour plot of vertical displacement are shown. The agreement between the full-field solution and the
homogenized solution is clearly observed.

As expected, we could notice differences in the stress distribution as the homogenized solution “averages out” the fluc-
tuations to capture overall trend of the full-field solution. The distribution of normal second Piola stress S11 obtained by
surrogate modeling and full-field solution is shown in Figure 19. We observe that the overall distribution of the homoge-
nized stress is in great compliance with the full-field stress. The ranges of stress values differ from each other as the stress
field is concentrated more in the stiffer inclusion and less in the surrounding matrix. The homogenized stress basically
averages out the fluctuations in stress values across two phases. This is reflected in Figure 19 (top) where the perturba-
tions in values (presented by contour plot) are totally filtered out, leaving a smooth transition between neighboring points
in the entire domain.

These numerical results prove the reliability of our computational framework that uses HDMR-based neural networks
to construct the approximate macroenergy density.
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4840 NGUYEN-THANH et al.

F I G U R E 19 Distribution of normal second Piola stress S11. As for cantilever beam with real circular inclusions (bottom), it is seen that
the stress concentrates within the inclusions with higher intensity than that in the matrix phase. Two structures with 20× 5 and 40× 10
circular inclusions are shown in the bottom left and bottom right subfigures. As for the homogenized structure (top), the stress field appears
quite smooth throughout the entire domain, just as expected

6 CONCLUSION

This work proposes a surrogate model for two-scale computational homogenization. First, we pointed out that there is
a strong connection between the formulation of the Lippmann-Schwinger equation for the microscopic boundary value
problems by using the polarization technique and Galerkin-based projection. Indeed, the same result can be arrived
at by two different derivations. We obtained new compatibility projection operators that maps an arbitrary periodic
second-order tensor field to a compatible field. Second, a surrogate model for computational homogenization of elasticity
at finite strains is built based on a neural network architecture that mimics high-dimensional model representation. Par-
ticularly, this black-box function is an approximator of the macroscopic energy density and is trained upon the space of
uniformly distributed random data. The database is constructed by solving numerous microscopic problems with the aid
of the FFT-based solver. Comparison of the numerical results with full-field solutions as well as homogenized solutions
using the concurrent strategy validates the reliability and robustness of the proposed computational framework.

ACKNOWLEDEGMENTS
V.M.N.-T. thanks the sponsorship from Sofja Kovalevskaja Prize from Alexander von Humboldt Foundation (Zhuang as
PI). X.Z. would like to thank the Heisenberg-Professorship from German Research Foundation (DFG). L.T.K.N. wishes to
thank Felix Selim Göküzüm, Matthias Rambausek, and Marc-André Keip for introducing him to the topic computational
homogenization and also for fruitful discussions during his research stay at University of Stuttgart as well as the financial
support from DFG for the Cluster of Excellence in Simulation Technology (EXC 310).

CONFLICT OF INTEREST
The authors declare that there are no known conflicts of interest associated with this publication and there has been no
significant financial support for this work that could have prohibited its outcome.

ORCID
Lu Trong Khiem Nguyen https://orcid.org/0000-0002-5546-457X
Timon Rabczuk https://orcid.org/0000-0002-7150-296X
Xiaoying Zhuang https://orcid.org/0000-0001-6562-2618

 10970207, 2020, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.6493 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [01/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0002-5546-457X
https://orcid.org/0000-0002-5546-457X
https://orcid.org/0000-0002-7150-296X
https://orcid.org/0000-0002-7150-296X
https://orcid.org/0000-0001-6562-2618
https://orcid.org/0000-0001-6562-2618


NGUYEN-THANH et al. 4841

REFERENCES
1. Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids. 1962;10(4):343-352.

https://doi.org/10.1016/0022-5096(62)90005-4.
2. Hashin Z, Shtrikman S. A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids.

1963;11(2):127-140. https://doi.org/10.1016/0022-5096(63)90060-7.
3. Willis JR. Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys Solids. 1977;25(3):185-202.

https://doi.org/10.1016/0022-5096(77)90022-9.
4. Willis JR. Variational and related methods for the overall properties of composites. Advances in Applied Mechanics. Vol 21. Elsevier;

1981:1-78. https://doi.org/10.1016/S0065-2156(08)70330-2.
5. Avellaneda M. Optimal bounds and microgeometries for elastic two-phase composites. SIAM J Appl Math. 1987;47(6):1216-1228. https://

doi.org/10.1137/0147082.
6. Milton GW, Kohn RV. Variational bounds on the effective moduli of anisotropic composites. J Mech Phys Solids. 1988;36(6):597-629.

https://doi.org/10.1016/0022-5096(88)90001-4.
7. Castañeda PP. The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids. 1991;39(1):45-71. https://doi.

org/10.1016/0022-5096(91)90030-R.
8. Willis JR. The overall elastic response of composite materials. J Appl Mech. 1983;50(4b):1202-1209. https://doi.org/10.1115/1.3167202.
9. Talbot DRS, Willis JR. Variational principles for inhomogeneous non-linear media. IMA J Appl Math. 1985;35(1):39-54. https://doi.org/

10.1093/imamat/35.1.39.
10. Ponte CP, Willis JR. On the overall properties of nonlinearly viscous composites. Proc Royal Soc Lond A Math Phys Sci.

1988;416(1850):217-244. https://doi.org/10.1098/rspa.1988.0035.
11. Castañeda PP, Suquet P. Nonlinear composites. Advances in Applied Mechanics. Vol 34. Elsevier; 1997:171-302. https://doi.org/10.1016/

S0065-2156(08)70321-1.
12. Milton GW. The Theory of Composites. Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press;

2002. https://doi.org/10.1017/CBO9780511613357..
13. Hughes TJR, Feijóo GR, Mazzei L, Quincy J-B. The variational multiscale method-a paradigm for computational mechanics. Comput

Methods ApplMech Eng. 1998;166(1):3-24. https://doi.org/10.1016/S0045-7825(98)00079-6.
14. Miehe C, Schröder J, Schotte J. Computational homogenization analysis in finite plasticity Simulation of texture development in

polycrystalline materials. Comput Methods Appl Mech Eng. 1999;171(3):387-418. https://doi.org/10.1016/S0045-7825(98)00218-7.
15. Feyel F. Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci. 1999;16(1):344-354. https://doi.org/10.1016/

S0927-0256(99)00077-4.
16. Mandel J. Plasticité classique et viscoplasticité: course held at the department of mechanics of solids, September-October, 1971. courses

and lectures - International Centre for Mechanical Sciences, Springer-Verlag;New York, NY: 1972.
17. Hill R. On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London A. Mathematical

and Physical Sciences. 1972;326(1565):131-147. https://doi.org/10.1098/rspa.1972.0001.
18. Geers MGD, Kouznetsova VG, Brekelmans WAM. Multi-scale computational homogenization: trends and challenges. J Comput Appl

Math. 2010, 234, 234;(7):2175-2182. https://doi.org/10.1016/j.cam.2009.08.077.
19. Allaire G. Homogenization and two-scale convergence. SIAM J Math Anal. 1992;23(6):1482-1518. https://doi.org/10.1137/0523084.
20. Fish J, Shek K, Pandheeradi M, Shephard MS. Computational plasticity for composite structures based on mathematical homogenization:

theory and practice. Comput Methods Appl Mech Eng. 1997;148(1):53-73. https://doi.org/10.1016/S0045-7825(97)00030-3.
21. Fish J, Yang Z, Yuan Z. A second-order reduced asymptotic homogenization approach for nonlinear periodic heterogeneous materials. Int

J Numer Methods Eng. 2019;119(6):469-489. https://doi.org/10.1002/nme.6058.
22. Moulinec H, Suquet P. A numerical method for computing the overall response of nonlinear composites with complex microstructure.

Comput Methods Appl Mech Eng. 1998;157(1):69-94. https://doi.org/10.1016/S0045-7825(97)00218-1.
23. Moulinec H, Suquet P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes

rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie. 1994;318(11):1417-1423.
24. Vidyasagar A, Tan WL, Kochmann DM. Predicting the effective response of bulk polycrystalline ferroelectric ceramics via improved

spectral phase field methods. J Mech Phys Solids. 2017; 106(106):133-151. https://doi.org/10.1016/j.jmps.2017.05.017.
25. Cooley JW, Tukey JW. An algorithm for the machine calculation of complex Fourier series. Math Comput. 1965;19(90):297-301.
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