IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 October 2022, accepted 23 October 2022, date of publication 26 October 2022, date of current version 7 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3217458

== RESEARCH ARTICLE

Learning Physics Property Parameters of
Fabrics and Garments With a Physics
Similarity Neural Network

LI DUAN 1, LEWIS BOYD?, AND GERARDO ARAGON-CAMARASA !

1School of Computing Science, University of Glasgow, G12 8RZ Glasgow, U.K.
2National Manufacturing Institute Scotland, University of Strathclyde, G1 1XQ Glasgow, U.K.

Corresponding authors: Li Duan (l.duan.1 @research.gla.ac.uk) and Gerardo Aragon-Camarasa (gerardo.aragoncamarasa@ glasgow.ac.uk)

The work of Gerardo Aragon-Camarasa was supported by the EPSRC under Grant EP/S019472/1. The authors would like to thank Ali
AlQallaf and Ozan Bahadir for their constructive feedback and comments.

ABSTRACT Predicting the physics properties of deformable objects such as garments and fabrics is a
challenge in robotic research. Directly measuring their physics properties in a real environment is difficult
Bouman et al. (2010). Therefore, learning and predicting the physics property parameters of garments and
fabrics can be conducted in simulated environments. However, garments have collars, sleeves, pockets and
buttons that change how garments deform and simulating these is time-consuming. Therefore, in this paper,
we propose to predict the physics parameters of real fabrics and garments by learning the physics similarities
between simulated fabrics via a Physics Similarity Network (PhySNet). For this, we estimate wind speeds
generated by an electric fan and area weights to predict the bending stiffness parameters of real fabrics and
garments. We found that PhySNet coupled with a Bayesian optimiser can predict physics property parameters
and improve state-of-art by 34.0% for fabrics and 68.1% for garments.

INDEX TERMS Physics similarity map, physics similarity distance, Bayesian optimization, deformable

objects.

I. INTRODUCTION

Robot perception and manipulation of deformable objects
remain a key challenge. Due to the object’s complex geomet-
ric configurations and random deformations, a three-step pro-
cess is usually adopted. The first step consists of modelling
the objects in a simulated environment [2], [3] or using finite
element methods (FEM) [4]. Then, the second step is about
learning deformations of the object in the simulated environ-
ment while the object is manipulated [5], [6]. The final step
comprises finding an optimised trajectory for manipulating
the object [7], [8]. In these three steps, the challenge is to learn
the stress-strain curve of these deformable objects [9] which
depends on the physics property parameters of objects such as
stiffness, area weight and damping factors. Therefore, learn-
ing the physics property parameters of deformable objects is
key to enabling a robot to perform dexterous manipulation of
deformable objects.
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Previous approaches that estimate physics property param-
eters of materials consist of either learning physics prop-
erty parameters by aligning simulated models with real
objects [10], [11], [12], or learning physics property parame-
ters from video frames [1], [13], [14]. The former approaches
require high accuracy in aligning the objects using finite
element methods, which are computationally expensive,
while the latter approaches do not need simulated models
that match the real objects. Therefore, learning from video
sequences is computationally efficient and can be deployed
in a robotic system where a robot can apply an external force
on deformable objects.

For robotic deformable object manipulations, the physics
property parameters of deformable objects are linked to the
deformation patterns of manipulated garments. For example,
stiffer garments tend to bend less than softer garments, and
softer garments have more complex states than rigid gar-
ments. Suppose we assume that a robot has prior knowl-
edge of the physics property parameters of garments. In that
case, it can use these parameters to fine-tune a manipulation
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FIGURE 1. (Top) A triplet of images (an anchor, a positive and a negative) are input into PhySNet, and a Triplet loss
function (Eq. 3) is used to learn whether fabrics in the images have the same or different physics property parameters.
After training, PhySNet generates a Physics Similarity Map (PSM), where fabrics with similar physics property
parameters have smaller Physics Similarity Distances (PSD, ref. Eq. 2). (Bottom) We use an Xtion camera to capture real
fabrics, and we use an electric fan to exert a force onto the fabrics. Depth images of a simulated fabric with initial
physics property parameters (defined in section V-B1) and the depth images of a real fabric are input into the trained
PhySNet to have them mapped on the physics similarity map. Their PSDs are calculated from the map and are input into
a Bayesian optimiser (Section IV-B). The Bayesian optimiser outputs optimal physics property parameters, which are
used to generate a new simulated fabric. This loop iterates until the differences between optimal physics property

parameters of the last three iterations are less than 10%.

plan, making the garments’ manipulation effective. This
paper proposes to learn the physics similarity between sim-
ulated and real fabrics. For this, we have implemented
a Physics-Similarity Neural Network (PhySNet; inspired
by [14]), as shown in Fig. 1, to predict real fabric physics
parameters from simulated fabric physics parameters. The
core idea here is that measurements of physics prop-
erty parameters are difficult to obtain in a real environ-
ment without needing specialised equipment. For example,
Bouman et al. [1] obtained fabric’s stiffness parameters
experimentally using specialised devices and designed a
neural network architecture to regress stiffness parameters.
Therefore, taking advantage of simulation software, where
the physics property parameters can be obtained, can avoid
the challenge of obtaining them in real environments. Hence,
is it possible to leverage a simulation engine to estimate
physics parameters with a neural network when a wind
force field is applied to the fabrics?. To answer these ques-
tions, we have compiled a simulated fabric database to allow
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PhySNet to learn the physics similarity of simulated fab-
rics and to generate a Physics Similarity Map (PSM) for a
fabric. After we train PhySNet, a piece of real fabric and
a simulated fabric with initialised physics parameters are
input into PhySNet to get their a Physics Similarity Distance
(PSD). We then input the PSD into a Bayesian optimiser,
which outputs updated physical parameters. We input the
updated physics parameters into the simulator to generate
a new simulated fabric. This procedure iterates until stable
parameters (Section V-B1) are obtained from the Bayesian
optimiser.

PhySNet is trained on simulated data to learn physical
similarities between simulated fabrics. During testing, real
garments are input into the PhySNet, and we match simulated
fabrics with optimal physics distances. In this paper, the
challenge in the target task is to predict the physics properties
of real garments via learning physics similarities between
simulated fabrics. Garments can not be easily simulated in
simulation engines (ArcSim and Blender) because they have
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components such as collars, pockets and buttons. Simulating
garments is time-consuming and computationally costly. This
paper proposes that predictions of the physics properties of
garments can be completed by simulating fabrics and learning
physics similarities between simulated fabrics. This knowl-
edge can then be used in a downstream task such as folding.

The novelty of this paper is that we fest on the real garments
that do not appear in the training database, indicating that
our PhySNet is tested on unseen garments. The contributions
of this paper are threefold:

1) We propose that physics property parameters of real
fabrics and garments can be predicted from learning
physics similarities between simulated fabrics;

2) We propose that predicting the physics property param-
eters of real complicated objects, such as garments, can
be achieved from learning physics similarities between
simple simulated objects such as fabrics;

3) We demonstrate that learning physics property
from depth images outperforms learning them from
RGB images.

Il. RELATED WORK

Previous research on the physics property parameters of
deformable objects can be further divided into four cate-
gories: (i) using simulation models of objects to fit real
models [12], [15]; (ii) learning model-free shape transfor-
mations given initial and goal object configurations [16],
[17]; (iii) applying external forces and observing shape
changes [11], [18]; and, (iv) learning dynamic characteris-
tics from videos [1], [13], [19] by using knowledge learned
from dynamic characteristics of simulation models on real
models [14].

Tawbe et al. [15] proposed simulating sponges through a
neural gas fitting method [20] rather than simulating meshes.
They learnt and predicted the shapes of deformable objects
without prior knowledge about the objects’ material prop-
erty parameters by applying the neural gas fitting on simpli-
fied 3D point-cloud models. These 3D point-cloud models
focused on the parts of an object that had been deformed
to improve learning. Their approach required a multi-step
learning process to simplify the models and find the deformed
parts. However, this approach was tested only on objects
with simple geometries. Similarly, Arriola-Rios et al. [11]
suggested learning materials of sponges by using a force
sensor mounted on a finger in a robot gripper. The finger
pressed a sponge to measure the applied force, which was
then used to learn the material property parameters and to
predict the sponge’s deformation. Wang et al. [18] proposed
learning external robot-exerted forces applied on objects.
For this, they devised a Generative Adversarial Network
(GAN) to predict their deformed shapes and combine the
objects’ visual shapes (depth images) and the force applied
to the objects. Both [11] and [18] considered learning from
both the deformations of objects and the exerted forces on
objects because exerted forces are an essential indicator of
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the physics property parameters as defined by the slope of the
strain-stress curve [9] of the deformable objects. Therefore,
learning physic property parameters means learning the rela-
tionship between strain (deformations of objects) and stress
(exerted forces).

Guler et al. [17] also aimed to learn the deformation of
soft sponges, but they proposed a Mesh-less Shape Matching
(MSM) approach, which comprises learning linear transfor-
mations between deformed objects. Similar to [17], Sime-
onov et al. [16] proposed that deformable objects can be
manipulated by representing objects using cloud points rather
than object models and calculating manipulating motion
plans to estimate transformations between the object initial
and goal configurations. Model-free physics property and
deformation learning do not require learning actual object
physics property parameters but conceptualising how objects
can be deformed when an external force acts into the object.
The above methods are, however, constrained to regular pat-
terns of shape changes.

Bouman et al. [1] proposed to learn the physics property
parameters of fabrics from videos. Bouman et al. focused
on fabric stiffness, and their approach consisted of learning
statistical features of the image’s frequency domain of fabric
videos and using a regression neural network to predict the
stiffness parameters of fabrics. Similarly, Yang et al. [13]
proposed predicting the physics property parameters of fab-
rics by learning the dynamics of fabrics from videos using a
CNN-LSTM network architecture. However, these methods
are constrained to fabrics with regular shapes, while our
approach extends to garments with irregular and complex
shapes.

Wang et al. [12] proposed reparameterising the stiffness
of fabrics as a piecewise linear function of the fabrics’
strain tensor. That is, they sampled the strain tensor with
principle strains (maximum and minimum normal strains)
and strain angulars, combined as a matrix of 24 parame-
ters for stretching stiffness (i.e. resistance when fabrics are
stretched) and 15 parameters for bending stiffness (i.e. resis-
tance when fabrics are bent). To measure the stiffness of the
fabrics, they opted for a FEM approach that aligned simulated
meshes with the fabrics. They considered that stiffness is
nonlinear, making simulations and stiffness measurements
more accurate. However, the FEM method requires consid-
erable time to compute accurately the deformation of objects
which limits this approach’s applicability to real-time robotic
manipulation.

Learning from simulated objects to predict the physics
property parameters of real objects has been proposed by
Runia et al. [14]. They learnt physics similarity distances
between simulated fabrics and predicted physics property
parameters of real fabrics, where they decreased physics
similarity distances between real and simulated fabrics by
fine-tuning parameters of simulated fabrics via a Bayesian
optimiser. Their approach paved the way for a novel alterna-
tive that frees a network from complicated simulation-reality
approximations such as [12] and extends to regular
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shape fabrics, of which deformations are more complex,
e.g. [11], [15], [18]. Our approach is similar to [14], but we
propose to use depth information to learn the dynamics of
fabrics and garments from their depth images and opt to use
a triplet loss function instead of a pair-wise contrastive loss.
Compared with [14], where they only used one material, our
proposed pipeline can predict the physics property parame-
ters of seven fabric materials and three garments.

Wu et al. [21] proposed learning newton properties (mass,
density, etc.) of rigid objects (cubes) from unlabelled video
sequences. They constructed a database that contains video
sequences of objects in different scenarios: sliding down
an inclined surface, attached to a spring and falling onto
various surfaces. An unsupervised representation learning
model has been introduced to learn the newton properties
of the objects. Their work demonstrated the effectiveness
of learning physics (newton) properties from videos, which
is the focus of this paper. However, they only tested rigid
objects, while in this paper, we focus on deformable objects
of fabrics and garments.

Learning the physics properties of objects can also be
achieved from learning 3D images. Gao et al. [22] introduced
a TreeVes-Net to learn blood dynamics from CT angiogra-
phy images (3D images). They proposed a tree-structured
recurrent neural network (TreeVes-Net) that learns the bloody
dynamics to diagnose myocardial ischemia. Their paper
revealed that learning physics properties could be completed
by learning object dynamics from 3D images.

In this paper, we have used the ‘ArcSim’ simulator [23] to
simulate garments instead of using a finite element method
for modelling fabrics and garments. We opted for ArcSim
because it has been experimentally validated on ground truth
obtained by mechanically modelling the stiffness-strain rela-
tionship of garments. Our experiments do not focus on inves-
tigating the mechanical aspects of fabrics and garments. That
is, we do not measure the displacement between each pixel
of the fabric/garment from one state to another. Instead,
we focus on the physical similarity between simulated and
real fabrics/garments and use this similarity to adjust the
physics parameters of simulated fabrics. The information
shared between simulated and real fabrics/garments is only
the physics-property parameters being optimised as discussed
in Section IIT and IV.

Ill. FABRIC PHYSICS PROPERTY PARAMETERS
The relationship in bending stiffness between strain and
stress, as given by [12], is:

F = kesin(0/2)(hi + h2) "' |E| u 1)

where F is the external force, and k, is the material’s bending
stiffness. Figure 2 shows a visualisation of Eq. 1. In Figure 2,
triangles 123 and 143 represent two faces of a piece of fabric
where a force is applied to bend the fabric from triangle 123
to triangle 143. k1 and h; are the normals of the two triangles,
while E is an edge vector of the edge 13, which is shared
by both the triangles 123 and 143. u is a bending model
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FIGURE 2. Bending stiffness: h; and h, are normals of the triangles
123 and 143, E is the edge vector of the edge 13.

described in [12]. In Eq. 1, Wang et al. [12] treated the
bending stiffness, k., as a linear piecewise function of the
reparametrisation sin(6/2)(h; + hy)~L. To estimate bending
stiffness, the bending angle, 6 (in Fig. 2), are set to 0°, 45°
and 90°. For each value of 9, the bending stiffness is measured
five times. These five measurement points represent bending
behaviours of a piece of fabric in [12] experiments. Therefore,
there are 15 points represented by a matrix of size 3 x 5
(angles x bending measurement points). We represent our
predicted bending stiffness of the fabrics using this matrix
representation (e.g. Figure 4).

Bending stiffness is difficult to be measured directly with-
out specialised devices [1], but bending stiffness can be
derived from the strain-stress curve of materials [9]. There-
fore, if a neural network can learn the strain-stress relation-
ship, it is possible to estimate the bending stiffness of fabrics
and garments. That is, by observing deformations of fabrics
and garments, if the predicted external forces (stresses) match
measured external forces and deformations between simu-
lated and real fabrics and garments, we can establish that
the predicted bending stiffness can be approximated to the
real values. We refer to the match between deformations of
real and simulated objects as Physics Similarity Distances
(PSD, Section IV-A).

In our experiments, we use an electric fan to wave real
fabrics to exert an external force. We, therefore, predict wind
speed, which is proportional to wind force, as F,, = 1/2Apv
where F, is the wind force, p is the air density and A is the
surface area of a deformable object. In our experiments, the
fabrics used in our experiments have a surface area of 1 m?.

IV. MATERIALS AND METHODS

A. PhySNet

In this paper, we propose a Physics Similarity Network
(PhySNet), which is a Siamese network [14], [24] that clus-
ters input data according to their labels. PhySNet comprises
a convolutional neural network that extracts features from
input data and a fully connected layer that maps the extracted
features into a 2D Physics Similarity Map (PSM). We express
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our PhySNet asP = fy(I), where fy denotes a neural network
that contains convolutional layers and fully connected layers
parameterised by the parameters 6, and I denotes an input
video frame. We define P as a physics similarity point, which
is a point on the PSM mapped from an input fabric image /.
With these points in the PSM, we define a Physics Similarity
Distance (PSD) as:

(©))

where i and j are the ith and jth physics similarity points in the
PSM of two different fabric images. Input fabric images can
either be RGB or depth images of fabrics labelled according
to their physics property parameters and external parameters.

The triplet loss compares positive and negative pairs. Pos-
itive pairs are an anchor sample and a positive sample within
the same class (the physics property parameters in this paper).
In contrast, negative pairs are an anchor sample and a negative
sample of a different class from the anchor sample. The intro-
duction of triplet loss ensures that samples of the same classes
are clustered together while different classes are separated on
the physics similarity map. Therefore, negative and positive
samples are not directly compared, but negative and positive
pairs are compared.

The triplet loss compares positive pairs and negative pairs.
Positive pairs are an anchor sample and a positive sample
within the same class (the physics property parameters in this
research). In contrast, negative pairs are an anchor sample and
a negative sample with a different class from the anchor sam-
ple. The introduction of triplet loss ensures that samples of the
same classes are clustered together while different classes are
separated on the physics similarity map. Therefore, negative
and positive samples are not directly compared, but negative
and positive pairs are compared, which performs better than
other loss functions, such as contrastive loss. The triplet loss
is less greedy than the contrastive loss. A triplet loss also
ensures a margin between negative pairs and positive pairs,
while contrastive loss only uses a margin for dissimilar pairs,
irrespective of the positive pairs. This difference leads to the
contrastive loss function reaching a local minimum while the
triplet loss continues to optimise and perform better. That
is, [25] shows that the contrastive loss underperforms with
respect to the triplet loss by 14.1%

Images are triplet-classed, meaning that every input con-
tains three images, one defined as an anchor and the other
as positive and negative samples of the anchor. The input
triplets are mapped onto the PSM through PhySNet as physics
similarity points. Thus, our loss function is defined as:

| 2

PSDy; = |Pi= P’

PP = |Ppusitive — Panchor

NP = ’,Pnegative — Panchor
Loss = max(0, PP — NP + Margin) 3)

‘ 2

where Ppositives Pregative a0d Punchor are the positive, negative
and anchor points, respectively. An anchor point is a point
output from the PhySNet with an input of an image of a piece
of fabric. A positive point is a point output from the PhySNet
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with an input of an image of a piece of fabric of the same
physics property parameters as the anchor one. A negative
point is a point output from the PhySNet with an input of
an image of a piece of fabric with different physics property
parameters to the anchor one. PP and NP are the positive
pair and negative pair, respectively. The loss function aims
to shorten the Physics Similarity Distances (PSDs) between
the positive pairs and increase the PSDs between the negative
pairs. The implementation of Margin ensures that the triplet
loss does not concentrate on ‘“‘simple pairs” (the positive and
negative pairs that have a large difference, meaning they are
easy to be clustered) but on “hard pairs”™ (the positive and
negative pairs that have a small difference, meaning they are
difficult to be clustered), facilitating the learning of physics
similarities between simulated fabrics.

B. BAYESIAN OPTIMISATION

Initialised physics parameters are input into the simulation
engine, and output simulated fabrics. The simulated and real
fabrics are fed into a trained PhySNet, which outputs their
physics distances. In this paper, we aim to close the gap
between simulation and reality by finding physics parameters
for the simulation that resemble those observed in reality.
For this, we use Bayesian optimisation to find these physics
parameters for the simulation, and the objective is to minimise
physics distances between simulated and real fabrics.

Bayesian optimisation is used to find the optimal value of
a black-box function, where the black box means that the
structure and parameters of the function are unknown. The
black-box function is “expensive to evaluate’, which means
evaluating the function is computationally costly. In this
paper, Gaussian Processes are used to estimate the prior and
posterior distribution.

This optimisation comprises a black-box function f (X) that
takes X as input (where the dimension of X is usually less
than 20). Firstly, a random function (also called a “prior’’)
is used when several initial values of X (termed as querying
points) are used to evaluate f(X), and some values of f(X)
are obtained. These values of f(X) are used to update the
“prior” to form a posterior distribution, which is then used to
construct an acquisition function. The acquisition decides the
next querying point of X, which is the next value of X to be
input into f(X) to evaluate the value of f(X). The Bayesian
optimisation terminates when an optimal value of f(X) is
found.

To minimise physics distances, we thus convert physics
distances into negative values (for example, convert a physics
distance of 100 to -100) and maximise negative values (opti-
mal values are 0). We have used Botorch [26] to implement
our Bayesian Optimisation. Figure 1 shows our pipeline.

According to [27], Bayesian optimisation is used for
expensive-to-evaluate functions. In our experiments, evaluat-
ing the physics similarity distance between a simulated fabric
and a real fabric/garment requires updating the simulated
fabric’s physics parameters, modelling a new fabric with
ArcSim and rendering the new fabric with Blender, which
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requires time. If traditional optimisation algorithms such as
stochastic gradient descent are applied, generating sufficient
samples within a short time is impractical for this experi-
ment. Therefore, only Bayesian optimisation was tested in the
experiments.

V. EXPERIMENTS

A. FABRICS AND GARMENTS DATASET

For our experiments, we collected both simulated and real
fabric samples. To simulate fabrics, we use ArcSim [28],
which is a deformable object simulator that uses triangle
meshes and linear piecewise functions (Section III). Inputs
to ArcSim are the physics parameters of fabrics, including
stretching stiffness, bending stiffness and area weights, and
external environmental parameters, including gravity, wind
speed and wind direction. In this experiment, our search space
for the Bayesian Optimisation (as defined in Section IV-B)
includes bending stiffness, wind speed and area weight; thus,
we keep other parameter settings in their default values.The
external parameters are (as we set them in ArcSim): (i) wind
speed (from 1 to 6 m/s), (ii) fabric’s area weight (see Table 1),
and (iii) Bending stiffness (from 0.1 to 10 times of standard
bending stiffness parameters, [12], [14]). We defined this
search space based on the experimental settings described
in [14].

‘We have tested seven different materials; tablecloth, inter-
lock, denim, sparkle fleece, nylon, ponte roma and jet set
(red-violet). We choose these materials because they are
common in the textile industry. Table 1 shows the search
space for the different materials in terms of their area weight,
and the area weight is determined by finding the manufac-
turer’s information. We set the search space for wind speeds
to 1-6 m/s.

ArcSim outputs a sequence of 60 3D models. The length
of each video is 3 seconds with a sampling frequency
of 20Hz. We input these 60 3D models into Blender [2] to ren-
der them into a video sequence of depth images, where each
3D model corresponds to one frame. Because depth images
are sensitive to cameras’ relative positions with respect to
the captured object, randomising cameras’ positions in the
simulation environment can enhance PhySNet to recognise
real fabrics and garments. Therefore, we randomised the
camera locations in Blender and captured a fabric from six
different locations. That is, we translate in ArcSim in the
x (from 1 to 6) and z (from -0.5 to 0.3) axes while leaving
fixed the y axis to 0.5. Similarly, we rotate the camera in
ArcSim for z (from -260° to 280°) while we set the rotation in
x t0 90° and y to 0°. Bending stiffness settings are referenced
in [12], where they provided measured values of the mate-
rials used in our experiments. Therefore, our search space
for bending stiffness is from 0.1 to 10 of measured values
in [12].

For each simulated material, we randomise 30 combi-
nations of physics property parameters and external envi-
ronmental parameters constrained within the search space
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TABLE 1. Area weight search space for different materials.

Material Area Weight Search Space
White Tablecloth 0.1-0.17 m/s?
Gray Interlock 0.15-0.22 m /s>
Black Denim 0.30-0.37 m /s>
Sparkle Fleece 0.23-0.30 m /s>
Pink Nylon 0.16-0.23 m /s>
Ponte Roma 0.23-0.3 m/s>
Red Violet 0.1-0.17 m /s>

defined above. Combinations are uniformly distributed, and
each combination comprises a sequence of 60 3D models.
We input these 60 models into the Blender engine and render
the models with 6 rendering camera positions. Therefore,
we captured 10,800 images for each material, which are
labelled with their combination number. ArcSim [28] and
Blender [2] are used for generating images of simulated
fabrics in this experiment. However, images not containing
entire fabrics due to the camera positions are not included
and removed from the dataset.

We use an Asus Xtion camera to collect real fabric and gar-
ment samples. An electric fan waves fabrics with wind speeds
varying from 2.4-3.1 m/s. The varying wind speeds can
test whether our approach can detect fabrics and garments’
physics property parameters under different wind speeds. For
each real sample, a video of 60 frames in length is recorded
at a sampling frequency of 24 fps (2.5 s in real-time for each
video). Wind speeds are measured by an electronic anemome-
ter (model AOPUTTRIVER AP-816B), and area weights are
measured using an electric scale. All fabrics are cut into a
square of 1 m x 1 m such that their weights scaled by the elec-
tric scale are unit area weights. Our testing points for wind
speeds are located near the fabric. A list of the equipment
used for these experiments and the simulated and real images
can be found at https://liduanatglasgow.github.io/PhySNet-
BayOptim/.

B. EXPERIMENTAL METHODOLOGY
We have implemented PhySNet in Pytorch. PhySNet con-
sists of 2D convolutional layers with a PReLU layer and
a MaxPool2D layer between adjacent convolutional layers.
The convolutional layers are followed by a fully connected
layer with three linear layers and a PReLU between adjacent
linear layers. Input images are 1-channel depth with an image
resolution of 256 x 256. We have used an Adam optimiser
with a batch size of 32 and a learning rate of 1 x 1072,
A learning scheduler with a step size of 8 and a decay fac-
tor of 1 x 10~! has been used for the optimiser. We train
our PhySNet for 30 epochs with a batch size of 32. Our
PhySNet is trained on simulated fabrics images but tested on
real, unseen fabrics and garments. Our code is available at
https://liduanatglasgow.github.io/PhySNet-BayOptim/.

We compare the performance of our PhySNet network
with the Spectrum Decomposition Network (SDN) pro-
posed in [14]. This research was inspired by SDN, where
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the authors proposed learning wind speeds and fabric area
weights. Other research on the physics property parameters of
fabrics includes [1], [13]. However, they all trained and tested
their proposed approaches directly on real fabrics rather than
learning from simulated fabrics. SDN is the first research
on the physics property parameters of fabrics from learning
physics similarities between simulated fabrics when fabrics
are waved under a wind field. Runia et al. [14] showed that
the difficulties in measuring the physics property parameters
of real fabrics using specific and sophisticated instruments
could be solved by learning from physics similarities between
simulated fabrics.

The SDN is a network that uses a Fourier transformation
to convert time-domain RGB images into frequency-domain
maps and extracts the top K maximum-frequency parts of the
maps as features. For our baseline, we compare the perfor-
mance of four networks; two networks are PhySNet trained
on depth and RGB images, and the other two are SDN trained
on depth and RGB images.

1) ESTIMATING PHYSICS PARAMETERS OF FABRICS AND
GARMENTS

This experiment aims to find real fabrics’ physics and exter-
nal environmental parameters. Therefore, we adjust parame-
ter settings in the simulation engine to generate a simulated
fabric and calculate its PSD to the real fabric on the PSM.
We halt the optimisation once a stable PSD is found between
a simulated and real fabric (ref. Section IV-B). As discussed
in Section III, we only compare predicted results of wind
speeds and area weights because we do not have ground
truth for the bending stiffness of the real fabrics. Still, wind
speeds serve as indicators of the bending stiffness of the real
fabrics and act as our ground truth to validate our proposed
approach.

The Bayesian Optimiser described in section I'V-B is used
to find physics and external environmental parameters for
simulated fabrics that can minimise the physic similarity
distance between the simulated and real fabrics. Parameters
optimised in this experiment are bending stiffness, wind
speeds and area weights, which are normalised to [—1, 1].
Values for the parameters are initially set as 0. The search
space for these parameters is the same as the search space set
for simulated data as in Section V-A. We halt the Bayesian
Optimisation when updated parameters become stable. That
is, parameter updates do not change by more than 10% over
the last three epochs. Wind speed and area weight estimations
are compared with the measured ground truths, i.e. from the
anemometer and electric scale.

Simulating fabrics is easier than simulating garments
because fabrics have simple geometric shapes, whereas
garments have complex shapes. If PhySNet can recognise
real garments while being trained on simulated fabrics,
we can bypass simulating complex garments. We hypoth-
esise that dynamics and physics property parameters are
constant between garments and fabrics made of similar mate-
rials and can enable PhySNet to predict garment physics
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TABLE 2. Clustering accuracy for PhySNet and the SDN networks [14]
trained on depth and RGB images.

Name PhySNet (Depth)  SDN (RGB)  PhySNet (RGB)  SDN (Depth)

White Tablecloth 80% 91% 89% 90%
Black Denim 88% 89% 86% 97%
Gray Interlock 83% 86% 84% 92%
Sparkle Fleece 77% 82% 78% 92%
Ponte Roma 79% 84% 80% 93%
Pink Nylon 80% 83% 7% 93%
Red Violet 80% 87% 78% 92%

property parameters by training on simulated fabrics. There-
fore, we test this hypothesis by allowing PhySNet to predict
the physics and external environmental parameters for real
garments from the simulated fabrics. We selected three gar-
ments: a T-shirt, a shirt and jeans. To measure the physics
parameters of these garments, we use our PhySNets trained
on the grey interlock (for the T-shirt), a white tablecloth
(for the shirt) and the black denim (for the jeans) because
these garments are made of these fabrics and have similar
physics parameters.

The electric fan waves garments and the wind speeds are
recorded using the anemometer. Likewise, we follow the
same methodology for fabrics to capture garments as video
sequences. Garment images are input directly into PhySNet,
and the Bayesian optimiser is used to find the garments’
physics parameters. A garment is compared with a simu-
lated fabric of the same material rendered with parameters
set to 0. Updated parameters from the Bayesian optimiser
are input into the simulator to output an updated fabric,
and it is then compared to the real garments until stable
parameters are obtained. We halt the Bayesian Optimisation
when updated parameters become stable, as in the fabrics
experiment.

VI. EXPERIMENTAL RESULTS

A. CLUSTERING ACCURACY OF PhySNet AND SDN

From Table 2, we observe that the best performance for
clustering accuracy is on the SDN-trained network while
using depth images. Whereas the network with the lowest
accuracy is PhySNet trained on depth images. Overall, SDN
has a better performance than PhySNet. This is because a
Fourier transform outputs a frequency map for the trans-
formed images, and on this frequency map, areas of the
fabrics that deform fast from the waving wind are amplified
while static areas are attenuated. The SDN benefits from
these frequency maps while ignoring ‘less deformed’ areas,
but this causes an information loss and overfitting of the
training data. This loss of information can potentially reduce
the network’s ability to recognise real fabrics, as shown
in Section VI-B.

From Table 2, PhySNet trained on RGB images performs
better than PhySNet trained on depth images. For depth
images, changes in physics parameters do not have the same
levels of influence on spatial characteristics as texture char-
acteristics. Depth information remains relatively constant
between simulated and real fabrics, which means that depth
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FIGURE 3. An example of a successful Bayesian Optimisation: PhySNet estimating the physics parameters of the white tablecloth.
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FIGURE 4. Predicted bending stiffness of real fabrics and garments. We use surface plots [29] to visualise predicted bending stiffness parameters of
real fabrics and garments. The x and y axes in the surface plots represent the row and column indexes of the parameters, and the z axes are the

bending stiffness parameters.

is suitable for finding the physics parameters of real fabrics
and generalising better across domains.

B. PREDICTING FABRICS’ AND GARMENTS’ PHYSICS
PARAMETERS

Table 3 shows that the best performance is obtained using the
PhySNet trained on depth images. Our approach improves
the state-of-art (SDN trained on RGB images) by 34.0%.
Both the SDNs (trained on depth and RGB images) expe-
rience failures in finding the physics parameters of real
fabrics (denoted as ’F’). The reason for the failures is that
the SDN failed to map real fabric images onto the physics
similarity map; hence, the Bayesian optimiser cannot find
optimal values for the physics parameters of real fabrics.
As discussed in Section VI, the SDN has the disadvantage
of information loss that affects the network’s ability to pre-
dict the physics property parameters of real fabrics. From
Table 3, we also observe that PhySNet trained on depth
images outperforms PhySNet trained on the RGB images.
Depth images directly capture deformations, while RGB
images capture changes in the texture and colour mani-
folds that are not descriptive of deformations and structural
changes.

Figure 4 shows the predicted bending stiffness of real fab-
rics. Bending stiffness parameters are represented as matrices
(as defined in Section III). Therefore, we use surface plots
to display predicted values. From Figure 4, we can observe
that black denim is the stiffest material, while the sparkle
fleece is the softest material because black denim has the
highest predicted bending stiffness while sparkle fleece has
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TABLE 3. Fabric Physics Parameter Estimation. Percentage errors are
w.r.t group truths; wind (unit: m/s) and area weight (unit: kg/m?2).

Materials PhySNet (depth) PhySNet (RGB) SDN (depth)  SDN (RGB)
White Tablecloth  6.5%, 8.6% 92%,10%  119.6%, 15.0% 75.4%,11.11%
Gray Interlock  9.6%, 19.6%  40.7%,109%  5.4%,158%  5.4%,3.3%
Black Denim 5.4%, 5.5% 37.3%, 1.2% EF 90.0%, 8.2%
Ponte Roma 35%, 0.4% 34.6%,04% 22.7%,08%  33.8%,0%
Sparkle Fleece 34.6%, 0% 34.6%, 0% 48.8%, 2.6% EF

Red Violet 16.7%,6.3%  16.7%, 6.3% EF EF
Pink Nylon 12.6%, 2.6% 57.1%, 2.6% FF E F

TABLE 4. Garment Physics Parameter Estimation. Percentage errors are
w.rt group truths; wind (unit: m/s) and area weight (unit: kg/m?).

Materials PhySNet (depth) Ours PhySNet (RGB) SDN (depth) SDN (RGB)
T-shirt 3.1%, 17.1% 1.92%, 15.5%8 EF 27.3%, 0.5%
Deep Brown Shirt 34.2%,1.5% 59.2%,6.7% 60.4%, 18.7% FF
Brown Jeans 21.7%, 0.6 % 97.9%, 2.5% EF 148.3%, 8.3%

the lowest predicted value. These measurement results align
with human intuitions, where denim (i.e. jeans) is stiffer than
sparkle fleece (i.e. sweaters).

Table 4 shows the Bayesian Optimisation results for gar-
ments. We can observe that PhySNet trained on depth images
performs best while predicting garments’ physics proper-
ties and external environmental parameters. However, from
Table 4, we also observe that predictions for garments are
not as accurate as the predictions for fabrics due to the dif-
ferent shapes between the garments and fabrics. SDN RGB
and depth and the PhySNet RGB failed to optimise cor-
rectly and converged to incorrect values for each of the three
garments. The results, similar to section VI-B, indicate the
disadvantages of using RGB images and frequency maps for
finding real-garment physics parameters. Predicted stiffness
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parameters are shown in Figure 4. We can observe that jeans
are stiffer than T-shirts and shirts, which aligns with human
intuition. These results suggest that it is possible to esti-
mate the physics property parameters of garments by training
PhySNet on simple fabrics with a mean average error of
17.2% for wind speeds and 6.5% for area weight parameters.
Overall, we obtained a performance improvement between
our approach (PhySNet on depth images) and SDN on RGB
images (state of the art) is 68.1%

VII. CONCLUSION

In this paper, we proposed that predicting the physics property
parameters of real fabrics and garments can be achieved
by learning physics property similarities between simulated
fabrics. Our PhySNet outperforms the state-of-art by 34.0%
for fabrics and 68.1% for garments. However, there are lim-
itations to our proposed approach. That is, only bending
stiffness is considered, and physic’s property parameters that
determine strains (deformations) consist of stretching stiff-
ness, bending stiffness and damping. The reason to limit
the physics parameters is to reduce the search space for the
Bayesian Optimisation and guarantee convergence. Further
research involves developing a better optimisation method to
optimise all physics property parameters. We also show that
PhySNet is more effective while training on one rather than
multiple materials. Our future research focuses on devising
a methodology to enable a neural network to be trained on
different materials and predict the physics property parame-
ters of different fabric materials. Indeed, we envisage that a
general purpose of using PhySNet for predicting the physics
property parameters of fabrics and garments is to facilitate
robotic fabric and garment manipulation.

In our experiments, we used an electric fan to exert an
external force (waving) on fabrics and garments. We have
shown that a robot can interact with garments [30], [31],
and we envisage that robots can exert these forces on fab-
rics and garments while the robot interacts with the objects.
A robot can stretch objects to measure stretching stiffness
and facilitate manipulating objects by grasping and dropping
them to observe their deformations. From these interactions,
the network can effectively learn the physics parameters of
deformable objects. Also, future work can focus on an abla-
tion study of using data (video sequences) from multiple
perspectives to verify the proposed approach’s effectiveness
and applicability.
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