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Abstract: We propose a versatile optical ring lattice suitable for trap-
ping cold and quantum degenerate atomic samples. We demonstrate the
realisation of intensity patterns from pairs of Laguerre-Gauss (exp(iℓθ))
modes with differentℓ indices. These patterns can be rotated by introducing
a frequency shift between the modes. We can generate bright ring lattices
for trapping atoms in red-detuned light, and dark ring lattices suitable for
trapping atoms with minimal heating in the optical vorticesof blue-detuned
light. The lattice sites can be joined to form a uniform ring trap, making it
ideal for studying persistent currents and the Mott insulator transition in a
ring geometry.
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1. Introduction

Confining ultracold atomic samples in optical lattices allows the investigation of effects con-
ventionally associated with condensed matter physics within a pure and controllable system.
Optical lattices have been employed to trap arrays of atoms [1] as well as Bose condensates
(BECs). Important experiments include the investigation of the quantum phase transition from
a superfluid to a Mott insulator [2], and the realisation of arrays of Josephson junctions [3].
Of particular interest is the study of quasi 1D systems as quantum effects are strongest at low
dimensionality. An effective change of mass and associatedlensing have been observed in a
moving 1D lattice [4]. Various ring traps for quantum degenerate gasses [5, 6] have been gen-
erated that are in many ways equivalent to an infinite 1D geometry. Bright ring-shaped lattices
have been used in optical tweezing experiments [7]; more recently applications for atom optics
have been proposed [8] and vortex creation has been observedin a split BEC with 3-fold rota-
tional symmetry [9]. Here we report on the first realisation of a dark ring-lattice generated by
overlapping Laguerre-Gauss beams and demonstrate how darkand light lattices can be rotated
at arbitrary frequencies.

Optical beams at a frequency far detuned from the atomic or molecular resonance are one of
the fundamental tools for the manipulation of cold atoms andBECs [10]. The spatial structure
of the intensity distribution creates an energy potential well to trap and hold the target species,
either in the high intensity region of red detuned light, or in the low intensity region of blue de-
tuned light. Translation of the intensity distribution of the beam can be used to impart a global
motion to the trapped atoms/molecules [11]. Arbitrary intensity patterns can be generated us-
ing spatial light modulators (SLMs) acting as reconfigurable diffractive optical components,
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i.e. holograms. Most notably SLMs have been employed to formholographic optical tweez-
ers [12] where a single laser beam is diffracted to form multiple foci, trapping microscopic
objects in complex 3D geometries [13]. Very recently, SLMs have also been used to manip-
ulate single atoms [14] and BECs [15]. However, the nature ofnematic liquid crystal devices
means that most SLMs are limited in their update rate to around 50Hz, and even those based
on ferroelectric configurations are limited to 1kHz [15]. Inthis paper we establish a method for
creating both positive and negative optical potentials that can be rotated around the beam axis
at frequencies ranging from a few mHz to 100’s of MHz – opticalferris wheels for atoms or
BECs. The barriers between the individual potential wells can be controlled allowing the Mott
transition from a ring lattice to a uniform ring trap.

2. Rotating ring lattice theory

Laguerre-Gauss (LG) beams have an azimuthal phase dependence exp(iℓθ). The center of these
beams contains a phase singularity (optical vortex) where intensity vanishes. By overlapping
two equally polarised co-propagating LG beams with different ℓ-valuesℓ1 andℓ2 = ℓ1+δℓ, the
beams interfere constructively at|δℓ| azimuthal positions, separated by regions of destructive
interference, leading to a transverse intensity profile comprising |δℓ| bright or dark petals. An
angular frequency shift ofδω between the LG beams introduces an angular petal rotation rate
of δω/δℓ [16].

Although LG beams with non-zerop-indices (i.e. withp + 1 intensity rings), will allow
more freedom in the creation of exotic ring lattices, we confine our discussion in this paper to
the p = 0 case as it already allows the simple, but highly adaptable,formation of both bright
and dark dynamic ring lattices. We furthermore assume that the interfering LG beams have the
same focal position and beam waistw0 in order to guarantee stable propagation. The scaled
electric field of an LG beam using a laser powerP at wavelengthλ can be expressed as:

LGℓ = A|ℓ|exp

[

i

(

k(z− r2

2R
)−ωt +Φ|ℓ|

)]

e−iℓθ (1)

whereA|ℓ| =
√

I
√

2/(π|ℓ|!)
(√

2r/w
)|ℓ|

exp(−r2/w2) is a dimensionless radial amplitude vari-

ation multiplied by the square root of a beam intensity parameter I = Pw−2. Here w =
w0

√

1+(z/zR)2 is the beam waist, the Rayleigh range iszR = πw0
2/λ , the radius of curva-

ture isR = z(1+(zR/z)2), andΦ|ℓ| = (|ℓ|+1)arctan(z/zR) the Gouy phase. By interfering two
LG beams with differentℓ and angular frequency we obtain the intensity distribution:

I = |LGℓ1(ω)+LGℓ2(ω +δω)|2 = A|ℓ1|
2+A|ℓ2|

2+2A|ℓ1|A|ℓ2| cos(δℓθ −δω t +δΦ) . (2)

We have omitted the termδω
c (z − r2

2R ) in the cosine as it is negligible for our experimen-
tal parameters. The Gouy phase differenceδΦδℓ = (|ℓ1| − |ℓ2|)arctan( z

zR
) can be significant

near the focus. One ring lattice site will rotate to the angleof the next site in a distance
∆z = tan( 2π

||ℓ1|−|ℓ2|| )zR from the focus, i.e.∆z < zR for ||ℓ1| − |ℓ2|| > 8. In our experiment we
operate away from the focus so that the twist due to the Gouy phase is negligible. We note
that for collimated light beams any influence of the vector field nature [17] can be neglected
as the longitudinal polarisation components vanish. Even at a strong focus, perturbations could
be limited by employing circularly polarised light.[18] The spatial intensity in Eq.[ 2] has|δℓ|
intensity maxima and minima as a function ofθ and rotates at an angular frequencyδω/δℓ.
Complete constructive or destructive interference occursat a radius where both beams have
equal intensity, determined byA|ℓ|. For the case ofℓ1 = −ℓ2 the cylindrically symmetric inten-
sity pattern comprises 2ℓ petals (Fig. 1(a)) [19], forming a bright lattice. If|ℓ1| 6= |ℓ2|, the radii
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Fig. 1. (color online) Generation of bright (a) and dark (b) lattices frominterfering LG
beams with differentℓ values on an area of 6w× 6w. Note that the dark lattice sites are
positioned at phase singularities.

of the intensity rings differ. By choosing appropriate pairs of ℓ1 andℓ2 one can generate dark
lattices (Fig. 1(b)).

The maximum intensity of a single LGℓ beam can be approximated toIℓ/(4
√

|ℓ|) at a radius
rℓ ≈ w

√

|ℓ|/2, [20] and this approximation improves for largeℓ. One can also show that the
electric field in the radial direction has a full-width-half-maximum (FWHM) of

√

2ln(2)w.
By choosingrℓ2 − rℓ1 ≈

√

2ln(2)w, (i.e. ℓ2 ∈ Z with ℓ2 ≈ ±(
√

|ℓ1|+ 2
√

ln(2))2), andIℓ2 =
√

|ℓ2/ℓ1|Iℓ1, the two LG electric fields have similar maximum amplitudes and are separated
by 1 FWHM. This leads to a dark lattice with an approximately uniform depth in the radial
and azimuthal directions (Fig. 1(b)). We also note that the intensity gradient becomes maximal
≈

√
3Iℓ/(4w

√

|ℓ|) at r ≈ rℓ ±w/
√

8, which can be used for determining lattice site stability at
high rotation rates.

3. Rotating ring lattice experiment

Precise laser frequency shifts can be produced by passing light through an acousto-optic mod-
ulator (AOM). An acoustic modulation of angular frequencyωRF applied to a crystal produces
a traveling Bragg grating, shifting the frequency of the first order diffracted beam byωRF. Typ-
ically operating at aroundωRF/(2π) ≈ 100MHz, such modulators can be tuned over 10’s of
MHz. Two AOMs operating atωRF1 andωRF2 can produce light beams differing in angular
frequency byωRF1 −ωRF2 which can range from 0 to 10’s of MHz. Our radio frequency signal
generators (Marconi 2019) are passively highly stable, butto ensure long term relative stability
we synchronize their 10MHz clocks. In order to eliminate theslight angular shift produced by
tuning the modulator frequency, the experiment is configured in a double-pass arrangement,
thus doubling the frequency shift toδω = 2(ωRF1 −ωRF2). We note that alternatively, a small
frequency shift can be imposed onto a light beam by passing circularly polarized light through a
rotating half wave plate [21], which due to an accumulated geometric or Berry phase [22], shifts
the frequency by twice the rotation speed of the waveplate. This approach has been employed
in optical tweezers [23].

A Gaussian laser beam can be readily converted into a Laguerre-Gaussian mode by diffrac-
tion from a forked grating where the positive and negative first order beams correspond to
opposite signs ofℓ [24]. In our experiment the forked gratings are generated ona computer
addressed SLM (HoloEye). The mode purity of the diffracted Laguerre-Gaussian beams is en-
hanced beyond standard hologram design by incorporating a spatially dependent modulation of
the hologram blazing [25].

Figure 2 shows the experimental arrangement used to create bright and dark rotating ring
lattices. The Gaussian beam from a helium-neon laser is divided and double passed through
two AOMs, leading to laser beams with an angular frequency difference ofδω. These beams
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Fig. 2. (color online) Experimental setup for generating rotating dark orbright optical
ring lattices. Two double-passed AOMs impose a frequency shift between the light beams.
Bright lattices are generated by interfering the positive and negative diffracted beam from
anℓ forked hologram, whereas dark lattices are obtained from two separateholograms.

are expanded to the size of the SLM. For the bright lattice, the SLM is programmed with an
ℓ-forked diffraction grating and the two beams are aligned such that the positive and negative
diffracted first-order, which have opposite signs ofℓ, subsequently interfere to give an intensity
pattern rotating at angular frequencyδω/(2ℓ).

For the dark lattice we need to overlap two appropriate Laguerre beams with orderℓ1 andℓ2.
In our experiment we generated the requiredℓ1 andℓ2 forked holograms on different parts of the
same SLM, with each laser beam incident on one of the areas andaligned so that the reflected
beams are recombined to form the|ℓ1− ℓ2| petalled dark lattice. We note that alignment of the
ℓ1 andℓ2 beams is comparatively uncritical as the true zero intensity at the dark lattice sites
results from optical vortices (a 2π electric field phase winding around the dark lattice site).
Atoms at the dark lattice sites therefore experience extremely low intensity fluctuations. We
also note that, for both bright and dark lattices, the rotation is not subject to mechanical noise,
rendering it extremely stable over rotation frequencies ranging from mHz to 10’s of MHz.

Visualization of a rotating lattice requires high speed photography. Using shutter speeds
down to 5ns we have observed the rotating intensity patternsfor frequency shifts of up to
10’s of MHz between the two interfering Laguerre-Gaussian modes. The petal patterns rotate
at the expected frequencies. In Figs. 3(a) and 3(b) we show still images of the light and dark
lattice respectively, which agree well with theory.

4. Applications to atom optics

By subjecting cold atoms to the dark or bright ring lattice described above, they can be trapped
in the resulting light potential. In order to limit losses due to photon scattering we assume a light
beam far detuned from the atomic resonance. The AC Stark potential U , and photon scattering
rateS, are related to the light intensityI, and detuning∆ = ω −ω0 by:

U ≈ h̄Γ2I
8∆IS

, S ≈ Γ3I
8IS∆2 , (3)

whereΓ andIS denote the linewidth and saturation intensity of the atomictransition, respec-
tively. To illustrate the experimental feasibility of our scheme we use the two-level dipole po-
tential approximation, this could be extended to a higher-order multi-level atom model [26]. We
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Fig. 3. (color online) Observed intensity distribution for the bright (a) anddark (b) lattice
on an area of 3× 3mm2 and the corresponding theoretical distributions (c) and (d). The
bright lattice is generated from LG beamsℓ1 = −ℓ2 = 10 of equal intensity and the dark
lattice fromℓ1 = 3, ℓ2 = 11 with I2 ≈

√

ℓ2/ℓ1I1. As an illustration of a rotating lattice we
have made movies of the experiments e.g. (linkℓ1 = −ℓ2 = 10).

now consider the specific example of the D2 transition of87Rb atoms withΓ = 2π ×6MHz,
λ = 780nm, IS = 16.3Wm−2. We assume a ring lattice laser total power of 2W, which is
focussed to a beam waist ofw0 = 30µm at 1064nm for trapping in the bright lattice and
660nm for trapping in the dark lattice. For a ring lattice with 10 potential wells this results
in a peak intensity of 5×108Wm2 corresponding to a potential well 65µK deep for the bright
(ℓ1=5=−ℓ2) lattice and 0.8×108Wm2 corresponding to 15µK for the dark(ℓ1 = 5, ℓ2 = 15)
lattices respectively. The coldest atoms trapped in the high intensity regions of the red detuned
light potential will scatter a photon every 2s. For the blue detuned lattice the coldest atoms
are trapped at dark lattice sites and scattering will be negligible – even the hottest atoms only
scatter a photon every 6s.

The optical lattice potential is sufficient to provide confinement in the transverse direction.
To additionally localise atoms in the axial(z) direction we suggest a hybrid trap, combining the
optical lattice with a quadrupole magnetic trap [27, 5]. Forthe red lattice one could consider all-
optical confinement in a tightly focused lattice with a shortRayleigh range, but there is a trade-
off between axial confinement and scattering rate. Instead,atoms could be optically pumped
into magnetic weak-field-seeking states and loaded into a quadrupole magnetic potentialB =
B1{x/2,y/2,−z}. The centre of the quadrupole field could be positioned away from the beam
focus to ensure a stable Gouy phase. However, for a standard quadrupole gradient ofB1 =
100G/cm, the atoms will be confined axially to a region much smaller than the Rayleigh range
and the twist of the Gouy phase becomes negligible. In this hybrid magnetic and optical trap one
can use standard RF evaporation, allowing in-situ cooling to quantum degeneracy. Circularly
polarised LG lattice beams are required to maintain the symmetry between the quadrupole
magnetic field and the light field and obtain a uniform ring lattice potential.

Alternatively, one can provide axial confinement in a ring lattice by using counterpropagat-
ing laser beams to create a standing wave, generating an axially separated stack ofδℓ lattices
similar to the method suggested in [8]. However, by introducing a frequency shift between the
forward and backwards LG beam, the individual ring latticeswill not only rotate but also trans-
late along thez-axis at a speed∆ωλ/(4π). Additionally, having a single ring lattice rather than
a stack of ring lattices simplifies the experiment and enables single-site addressability.

Our hybrid ring lattice enables the observation of the Mott insulator transition in a geometry
with periodic boundary conditions. To adjust the barrier depth, and hence the tunneling between
sites, the relative powerη1,2 in theℓ1,2 beams can be varied. Experimentally, this can easily be
achieved by varying the modulation amplitude of both AOMs while keeping the overall light
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intensity constant. To make full use of all laser power, an electro-optic modulator could be
used to rotate the polarisation from the laser incident on a polarising beamsplitter leading to
the two AOMs. For the bright latticeη1,2 variation directly converts a uniform ring into a ring
lattice. Images from our optical experiment are shown in Figs. 4(a)-4(c) and the corresponding
hybrid lattice theory in Figs. 4(d)-4(f). For the dark lattice, the transition between uniform and
multi-petalled ring is achieved by gradually dimming the outer LG beam, and outer transverse
confinement is then provided by the magnetic potential (Figs. 4(g)-4(i)).

The dynamic nature of our lattice could also be used to initiate persistent currents. In order
to trap atoms in a rotating well pattern, several conditionsneed to be fulfilled: their initial
temperature must be low enough in order to be trapped, the rotation speed must change slowly
enough so that the atoms can adiabatically follow, and the centrifugal acceleration must be
small enough for the radial potential gradient. This constraint is much higher than the critical
rotation rate for vortex creation in 1Dωc = h̄

4mR2 ≈ 0.1rad/s for our parameters.

Fig. 4. (color online) Lattices suitable for studying the Mott transition betweena 10-site
ring lattice and a ring trap. Images (a)-(c) are from optical experiments. Images (d)-(f)
((g)-(i)) depict a red (blue) detuned hybrid magnetic/optical lattice withη1 = 1−η2 =
0.5,0.99,1 (0.5,0.8,1) respectively. The red (blue) lattice contours are at 15µK (12µK),
and the boxes havexyz dimensions 120×120×80µm3 (260×260×80µm3).

5. Conclusions

We have experimentally obtained both bright and dark optical ring lattices, with tunable barriers
between sites, and with a tunable rotation rate. Furthermore we have shown that, in combina-
tion with a magnetic trap, these lattices will be ideal for studying quantum degenerate gases.
Future applications of the lattice include studies of: persistent currents, rotation of a “quantum
register,” collisional studies using two counter-propagating rings.
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