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Attitude control actuator scaling laws
for orbiting solar reflectors

Andrea Viale ∗, Colin McInnes †

James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK

The rapid evolution of in-orbit manufacturing will enable the fabrication of low-cost, large-
scale space structures. In particular, the use of 3D printing technologies will remove traditional
payload constraints associated with launch vehicles, due to fairing size and launch loads, thus
allowing the construction of larger and lighter structures, such as orbiting solar reflectors.
These structures will require efficient attitude control systems, able to provide the necessary
torque for maneuvers and to counteract perturbations, such as gravity gradient and solar
radiation pressure. In this paper, a top-level overview of actuator performances for orbiting
solar reflectors is provided, and scaling laws associated with the required actuator mass and
input power are developed. For each class of actuator, upper bounds on the maximum size of
the structure which can be effectively controlled are presented. The results can also be extended
to other classes of large planar Earth-pointing structures such as solar power satellites, solar
sails, or large antennae.

Nomenclature

𝐴 area 𝑟 reflectivity
𝐵 magnetic field 𝑅 radius
𝛽 reflector rotation angle about 𝑥 axis 𝜌 density/areal density
𝑑 slant range 𝜎 stress
𝜖 zenith angle 𝑡 thickness
[𝑒 photovoltaic conversion efficiency 𝜏 time
[𝑎 fraction of reflector area used for energy conversion 𝑇 torque
𝜙 gimbal angle 𝜔𝑤 wheel angular velocity
\ orbit angle 𝑇𝑚 motor torque
𝐺 gravitational constant 𝑃 power
ℎ orbit altitude Subscripts:
î, ĵ, k̂ unit vectors □𝑐𝑙 current loop
𝐼 inertia □𝐸 Earth
𝐼𝑠𝑝 specific impulse □𝑚 motor
𝑙 reflector side □𝑜 orbit
𝑚 mass □𝑝𝑟𝑜𝑝 propellant
` gravitational parameter □𝑟 reflector
𝑛 nondimensional number □𝑠𝑟 𝑝 solar radiation pressure
a Poisson’s ratio □𝑡 thruster
𝜔 angular velocity □𝑣𝑟 variable reflectivity
𝑝 pressure □𝑤 wheel
𝑃⊙ solar constant
𝑃 power
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Fig. 1 Representation of a train of mirrors on a polar orbit reflecting sunlight to a solar power farm.

I. Introduction
With the rapid development of in-orbit manufacturing, the possibility of fabricating and assembling low-cost,

large-scale space structures will likely become concrete in the coming years [1]. The use of 3D printing technology and
robot manipulators will allow the construction of modular lightweight structures without the size constraints typically
associated with payloads launched from Earth [2]. Examples of such structures include solar power satellites, orbiting
reflectors, antennae and solar sails.

The solar power satellite (SPS) concept is a method proposed to generate solar electricity in orbit and then deliver
it to Earth via microwave [3] or laser transmission [4]. For significant power transmission, these structures typically
have a large area. For example, a NASA design concept involves a 5 x 15 km structure with a dedicated 8 km diameter
ground station [5]. Reference [6] proposes a 3.2 x 3.2 km structure in geostationary orbit controlled by 500 ion thrusters.
Orbiting solar reflectors (see Fig. 1) have also been proposed to reflect sunlight to Earth to illuminate terrestrial solar
power plants. Contrary to SPS, the mass of the space element is reduced by retaining the power conversion infrastructure
on the ground. Sunlight can be reflected to existing solar power farms to enhance their power output during peak
energy demand time, such as dawn and dusk, without the need to have a dedicated ground infrastructure, as for the
SPS concept [7]. The concept of orbiting solar reflectors was first developed by Oberth in the 1920s, proposing large
reflectors in polar orbit for illumination, navigation and enhancing agricultural output [8]. Ehricke then proposed a
range of reflector concepts optimized for different applications, such as illumination of rural areas or enhancement of
solar energy generation [9]. NASA studies in the 1980s then investigated the performance of a circular reflector with
a 1 km diameter in equatorial orbit [10]. Other design strategies include the use of multiple mirrors independently
controlled and connected to a larger frame [11]. A comprehensive literature review on orbiting solar reflectors can be
found in Ref. [12].

A key requirement for large space structures is the attitude control system. For example, actuators on an orbiting
solar reflector must provide torques to continuously slew the structure, such that sunlight is reflected to the desired
target. Given the large dimension of such structures, large attitude control torques are expected. In fact, the inertia
of a planar structure scales as the product between its mass 𝑚 and the square of its length 𝑙 and so for a fixed areal
density 𝜌, as the fourth power of the length 𝑙4. NASA explored the use of large deployable control moment gyroscopes
(CMGs) to control a 1 km diameter structure [10]. In particular a design with a pair of 40 meter diameter glass fiber
CMGs is proposed, coupled with magnetorquers for desaturation of the wheels. Authors in Refs. [13, 14] proposed
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Fig. 2 Orbit geometry, looking towards the orbital plane (a) and the PVF (b).

the used of a distributed array of CMGs primarily for vibration suppression and shape control rather than active
slewing of the structure. Similarly, use of piezo-ceramic actuators has been proposed for control of elastic vibrations
on large space structures [15]. Authors in Refs.[16, 17] propose to use an array of magnetorquers integrated within
the structure capable of providing torque about all three body axes. It is shown that distributed actuators may reduce
structural stresses and deformation compared to non-distributed actuators, providing centralized torques. The use of
solar radiation pressure (SRP) has also been proposed for control of large structures, in particular solar sails. The most
common SRP-based control methods include controllable rotating vanes [18, 19] and sliding masses [20] to change the
displacement between the centre-of-mass and the centre-of-pressure. More recently, use of electro-active materials able
to change their reflectivity according to an electric potential has been proposed. Authors in Ref. [21] discuss the use of a
distributed array of such variable reflectivity cells to generate control torques.

In this paper, simple scaling laws are presented, describing the variation of the required actuator mass and input
power as a function of the structure size and operational altitude. The aim is to provide a clear and intuitive understanding
of the performances of different classes of actuator (e.g., momentum exchange devices, solar radiation pressure
methods, current loops and thrusters) for orbiting solar reflectors, although results can be extended to other classes
of Earth-pointing large planar structures (such as SPS, solar sails or large antennae). Moreover, upper bounds on the
structure size which is controllable by each actuator are presented, based on the maximum available power or torque
constraints.

The paper is organized as follows. The problem statement and orbit geometry is presented in Section II. In Section
III the angular acceleration tracking and reorientation requirements are defined and compared with the perturbations
due to disturbance torques. Thereafter, Section IV discusses the performances of different classes of actuators, based on
their required mass and power. A discussion of the results will follow in Section V.

II. Problem statement and orbital relationships
The geometry of the problem is shown in Fig. 2. A reflector is assumed to be orbiting the Earth on a dawn-dusk

circular polar orbit with orbit altitude ℎ and radius 𝑅𝑜 = ℎ + 𝑅𝐸 , where 𝑅𝐸 = 6378 km is the radius of the Earth. The
reflector’s attitude control system must ensure constant sunlight reflection to a photovoltaic farm (PVF) located at the
Earth’s equator when the reflector is above the local horizon note that results for non-equatorial PVFs will be the same
due to the symmetry of the problem. The reflector is modeled as a rigid square plate with negligible thickness, side
length 𝑙 and areal density 𝜌𝑟 . Throughout this paper a constant areal density 𝜌𝑟 = 10 g m−2 is chosen, corresponding
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Fig. 3 Reflector at the zenith: conditions for light reflection to a PVF at the Earth’s equator.

to an ultra-lightweight structure, made of a 3D-printed polymer or composite material and overlaid with a thin film.
This value is also typical for large solar sails. [16]. Now define a reflector-centered reference frame (𝑥𝑦𝑧)𝑟 with axes
parallel to the principal directions of inertia of the reflector and unit vectors î𝑟 , ĵ𝑟 and k̂𝑟 , where 𝑥 and 𝑦 are the in-plane
directions and 𝑧 is the out-of-plane direction. Then, define an inertial reference frame (𝑥𝑦𝑧)𝑖 with unit vectors î𝑖 , ĵ𝑖 and
k̂𝑖 in the 𝑥𝑖 , 𝑦𝑖 and 𝑧𝑖 directions, such that ĵ𝑖 is parallel to the Earth’s spin axis and k̂𝑖 is normal to the orbital plane (see
Fig. 3). For simplicity, the rotation of the Earth during a reflector pass is neglected, such that the PVF is inertially fixed.
This is a reasonable approximation for the orbit altitudes considered in this paper. For example, for a 1000 km (3000
km) altitude, the pass duration is approximately 18 minutes (39 minutes), corresponding to a 4 deg (9.8 deg) rotation of
the Earth, or a 3.8 deg (4.56 deg) East-West rotation of the reflector, which can be reasonably neglected. Also, the effect
of the Earth rotation around the Sun are neglected.

Let \ be the orbit angle of the reflector, with \ = 0 when the reflector is located at the zenith of the PVF, as shown in
Fig. 2. Also, let 𝜖 be the zenith angle of the reflector such that 𝜖 = 0 at the zenith. The zenith angle can then be written
as a function of the orbit angle as

𝜖 = arcsin
(
𝑅𝑜

𝑑
sin \

)
(1)

where 𝑑 is the distance between the PVF and the reflector such that

𝑑 =

√︃
𝑅2
𝐸
+ 𝑅2

𝑜 − 2𝑅𝐸𝑅𝑜 cos \ (2)

Upon simplification, the first and second derivatives of the zenith angle with respect to time can then be written as:

¤𝜖 =
𝑅𝑜𝜔𝑜

[
2(𝑅2

𝑜 + 𝑅2
𝐸
) cos \ − 𝑅𝑜𝑅𝐸 (3 + cos 2\)

]
2𝑑2 (𝑅𝐸 − 𝑅𝑜 cos \)

(3a)

¥𝜖 =
𝑅𝑜𝜔

2
𝑜𝑅𝐸 (𝑅2

𝑜 − 𝑅2
𝐸
) (𝑅𝐸 − 𝑅𝑜 cos \) sin \

2𝑑4 (𝑅𝐸 − 𝑅𝑜 cos \)
(3b)

4



Fig. 4 First and second derivative of the elevation angle as a function of the zenith angle, for a range of orbit
altitudes.

where
¤\ = 𝜔𝑜 =

√︂
`

𝑅3
𝑜

(4)

is the constant orbit angular velocity and ` = 3.986 × 1014 m3 s−2 is the Earth’s gravitational parameter. Figure 4 shows
the variation of ¤𝜖 and ¥𝜖 as a function of 𝜖 and the orbit altitude ℎ. The first derivative of the zenith angle has its peak at
the zenith, whereas the peak of the second derivative changes depending on the reflector altitude.

III. Control modes, required angular accelerations and disturbances
Two main operation modes can be defined: tracking and reorientation. During tracking the reflector must be steered

to continuously reflect sunlight to the PVF, while −𝜖𝑚𝑎𝑥 ≤ 𝜖 ≤ 𝜖𝑚𝑎𝑥 . The parameter 𝜖𝑚𝑎𝑥 = max(𝜖) is the maximum
zenith angle during the tracking phase. If 𝜖𝑚𝑎𝑥 = 𝜋/2 sunlight is reflected during the entire transit of the reflector
above the local horizon. This condition ensures that the maximum amount of energy is delivered to the PVF. Outside
the tracking window the reflector must be reoriented to track the next PVF. The peak angular accelerations in these
two phases are now discussed and then compared with the orbit perturbations due to gravity gradient, solar radiation
pressure and atmospheric drag. In both cases, it is assumed that 𝜖𝑚𝑎𝑥 = 𝜋/2.

A. Tracking
In order to reflect sunlight to the PVF two conditions must be verified. Firstly, the reflector must be tilted at 45 deg

with respect to the orbital plane. Secondly the instantaneous axis of rotation must be parallel to k̂𝑖 such that, at the
zenith, the unit vectors î𝑖 , k̂𝑖 , î𝑟 and k̂𝑟 are coplanar, as shown in Fig. 3. Let 𝛾 be the reflector rotation angle about k̂𝑖 ,
such that 𝛾 = 0 when 𝜖 = 0. Both conditions are satisfied if the reflector rotates about k̂𝑖 by 𝛾 = 𝜖 , starting from the
nominal configuration shown in Fig. 3. Thus the reflector angular velocity and angular acceleration during the tracking
phase can be written as

𝝎𝒕 = ¤𝛾k̂𝑖 = ¤𝜖 k̂𝑖 (5a)
¤𝝎𝑡 = ¥𝛾k̂𝑖 = ¥𝜖 k̂𝑖 (5b)
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Fig. 5 Orientation of the reflector at endpoints of a reorientation manoeuvre between two adjacent PVFs.

where the derivative of the zenith angle is given by Eq. (3a). Hence, the reflector angular velocity changes at the same
rate as the derivative of the zenith angle. The unit vector k̂𝑖 can be expressed as:

k̂𝑖 = î𝑟 cos
𝜋

4
+ k̂𝑟 cos

𝜋

4
(6)

Note that Eq. (6) holds true for any zenith angle 𝜖 when the two conditions defined above are verified. Substituting
Eq. (6) into Eqs. (5) yields:

𝝎𝒕 =

√
2

2
¤𝜖 (î𝑟 + k̂𝑟 ) (7a)

¤𝝎𝑡 =

√
2

2
¥𝜖 (î𝑟 + k̂𝑟 ) (7b)

Note that such angular acceleration can be obtained by providing torques along the reflector axes 𝑥𝑟 and 𝑧𝑟 . However,
since the rotation axis is not a principal axis, additional torque on the 𝑦 axis should be provided to counteract the induced
precession.

B. Reorientation
The reflector reorientation between two consecutive PVFs can be performed by keeping the same rotation axis and

angular velocity direction as in the tracking phase, such that the reflector is always inclined by 45 deg with respect to the
orbital plane. This has the advantage that no sunlight is reflected to Earth during the reorientation manoeuver (note that
this is true only if 𝜖𝑚𝑎𝑥 = 𝜋/2, as in this case). In fact, at the end of the tracking phase, the reflected sunlight beam is
tangent to Earth and steered away from the ground. Similarly, at the beginning of a new tracking phase, the reflected
sunlight beam is tangent to the PVF when it crosses its local horizon.

Let 𝑛PVF be the total number of PVFs to be tracked during one orbit and assume that the difference between their
latitude is constant and equal to 𝛿 = 2𝜋/𝑛PVF. Now, as represented in Fig. 5, let 𝐴 and 𝐵 be the start and end point of
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the reorientation maneuver between two adjacent tracking sections, respectively (corresponding to the end of the first
PVF tracking and the beginning of the second PVF tracking) and let \𝐴, \𝐵 be the corresponding orbit angles. For
simplicity let PVF1 and PVF2 indicate two adjacent PVFs to be tracked. To avoid intersection between two consecutive
tracking sections, the following constraint holds

Δ\𝐴𝐵 = \𝐵 − \𝐴 > 0 (8)

which can be written as a function of the latitudinal PVF displacement:

𝛿 − 2\𝐴 > 0 (9)

Equation (9) defines the minimum angular displacement between the PVFs. If 𝛿 = 2\𝐴 the the points 𝐴 and 𝐵 are
coinciding and the reorientation time would be zero, implying that the required control torque diverges (as ¤𝜔𝑟 → ∞).
The constraint given by Eq. (9) also implies the existence of an upper bound on the number of PVFs that can be visited
per orbit, which will be discussed later.

Now, let 𝜙 be the angle between the reflector normals k̂𝑟 at the points 𝐴 and 𝐵 (see Fig.5). Using elementary
geometry, the angle 𝜙 can be written as a function of 𝜖 and 𝛿 such that 𝜙 = |2𝜖 − 𝛿 |. It is apparent from Fig. 5 that
the required reflector rotation is (assuming only one reflective side) Δ𝛾𝐴𝐵 = 𝛾𝐵 − 𝛾𝐴 = 2

(
𝜋 − 𝜙

2

)
+ 2𝑘𝜋 plus an

arbitrary integer number of complete rotations 2𝑘𝜋, where 𝑘 ∈ N. If both sides of the reflector are covered by reflective
membranes then the required rotation is smaller and equal to: Δ𝛾𝐴𝐵 = 2

(
𝜋
2 − 𝜙

2

)
+ 2𝑘𝜋. Hence the required reflector

rotation for a single-sided reflector (SSR) and double-sided reflector (DSR) is:

Δ𝛾𝐴𝐵 =


2
(
𝜋 − 𝜙

2

)
+ 2𝑘𝜋 = 2(1 + 𝑘)𝜋 − 𝜙, SSR

2
(
𝜋
2 − 𝜙

2

)
+ 2𝑘𝜋 = (1 + 𝑘)𝜋 − 𝜙, DSR

(10)

Assuming a bang-bang reorientation manoeuver, the angular acceleration ¤𝜔𝑟 follows from:

Δ𝛾𝐴𝐵

2
= 𝜔𝐴Δ𝑡𝐴𝑀 + 1

2
¤𝝎𝑟 (Δ𝑡𝐴𝑀 )2 (11)

such that
¤𝜔𝑟 =

Δ𝛾𝐴𝐵 − 2𝜔𝐴Δ𝑡𝐴𝑀

(Δ𝑡𝐴𝑀 )2 (12)

where 𝜔𝐴 is the residual angular acceleration of the reflector at point 𝐴 (note that this is also the angular velocity of the
reflector at point 𝐵 ) and (Δ𝑡)𝐴𝑀 is the orbital time associated to the arc 𝐴𝑀 , i.e.,

Δ𝑡𝐴𝑀 =
\𝑀 − \𝐴

𝜔𝑜

(13)

Figure 6 shows the orientation of the reflector at the endpoints (A and B) and midpoint (M) of the reorientation
manoeuver for a SSR and DSR.

The angular acceleration clearly changes as a function of the integer 𝑘 (Eq. (10)). It is reasonable to choose 𝑘 such
that the reorientation angular acceleration ¤𝝎𝑟 is minimum (to minimize the required torque), i.e.,:

𝑘 = arg min
𝑘∈N

| ¤𝜔𝑟 | (14)

Substituting Eqs. (10) and (13) into Eq. (12), the required reorientation acceleration can be found as a function of
the orbit altitude, the tracking angle and the number of PVFs to be tracked. If ¤𝜔𝑟 > 0 then the reflector is accelerated
during the reorientation phase and the maximum angular velocity may exceed the maximum angular velocity during
the tracking phase. In this case, the actuator will need to provide more angular momentum during the reorientation
maneuver. Conversely, if ¤𝜔𝑟 < 0, the reflector is decelerated during the reorientation. Then:{

max(𝜔𝑟 ) = 𝜔𝐴, if ¤𝜔𝑟 < 0
max(𝜔𝑟 ) = 𝜔𝐴 + | ¤𝜔𝑟 |Δ𝑡, if ¤𝜔𝑟 > 0

(15)
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Fig. 6 Reflector orientation at endpoints and midpoint, in case of single-sided reflector (a) and double sided
reflector (b). The reflector is here represented as a segment perpendicular to the reflected light direction. The
light is coming from outside the page.

Figure 7 shows the angular velocity and angular acceleration during the reorientation phase as a function of the orbit
altitude and of 𝑛PVF, compared with the peak tracking angular velocity and angular acceleration, represented as a
dashed black line, for a SSR. For a given 𝑛PVF the reorientation angular velocity and angular acceleration is below
the corresponding tracking values below a certain maximum altitude. Note that, for 𝑛PVF = 4, the maximum azimuth
angle must be reduced below 𝜋/2 above a certain altitude to ensure that condtion (9) is verified. This explains the
non-continuity of the first derivatives of the curves in Fig. 7 for 𝑛PVF = 4.

The green line in Fig. 8 shows the maximum number of PVFs that can can be tracked per orbit as a function of the
orbit altitude and verify 𝜔𝑟 < max(𝜔𝑡 ) and ¤𝜔𝑟 < max( ¤𝜔𝑡 ), for a SSR (a) and a DSR (b). Also shown with a orange
line is the maximum number of PVFs that can be tracked ensuring that consecutive tracking regions do not intersect
(Eq. (8)). For example, at an altitude of 1000 km and taking a SSR, up to 5 PVFs can be tracked. If 1 ≤ 𝑛PVF ≤ 3, the
angular velocity and angular acceleration during the reorientation phase do not exceed the corresponding peak values
during the tracking phase. Conversely, for 4 ≤ 𝑛PVF ≤ 5 the actuator should be designed based on the requirements on
the reorientation phase. The required angular acceleration is smaller for a DSR and therefore, at the same orbit altitude,
the tracking angular velocity and angular acceleration are dominant up to 4 PVFs, rather than 3. It is interesting to
observe that above 6371 km only two PVFs can be tracked per orbit. However, such altitude threshold is reduced to
1290 km (or 1880 km for a DSR) to ensure that 𝜔𝑟 < max(𝜔𝑡 ) and ¤𝜔𝑟 < max( ¤𝜔𝑡 ).

In the following section, the angular accelerations during the tracking and reorientation phase are compared with
other torque disturbances.

C. Comparison with disturbances
The main disturbances include perturbations due to gravity gradient, solar radiation pressure and atmospheric drag.

The maximum gravity gradient torque occurs when the structure is pitched at a 45 deg angle to the local vertical. Under
these conditions it is found that [17]

𝑇𝑔𝑟𝑎𝑣 =
`𝜌𝑟 𝑙

4

8𝑅3
𝑜

(16)
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(a) (b)

Fig. 7 Angular velocity and angular acceleration during reorientation and tracking phase, as a function of the
orbit altitude and of the number of PVFs per orbit.

(a) (b)

Fig. 8 Maximum number of PVFs that can be tracked during one orbit such that the angular velocity and
angular acceleration during the reorientation phase are smaller than the tracking phase (green line) and such
that adjacent tracking sections do not intersect (orange line), for a single-sided reflector (a) and a double-sided
reflector (b).

9



then, dividing by the reflector in-plane inertia 𝜌𝑟 𝑙
4/12 yields the equivalent angular acceleration, which is independent

of the reflector size and only scales with the cube of the orbit radius ∗:

¤𝜔𝑔𝑟𝑎𝑣 =
3
2

`

𝑅3
𝑜

(17)

Furthermore, assuming perfect reflector reflectivity, the SRP torque can be written as

𝑇𝑠𝑟 𝑝 = (2𝑝𝑠𝑟 𝑝𝑙2 cos2 𝛽)𝛿𝑠𝑟 𝑝 (18)

where the terms inside the brackets is the SRP force acting on the reflector [20], 𝑝𝑠𝑟 𝑝 = 4.56 × 10−6 N m−2 is the solar
radiation pressure, 𝛽 is the angle between the reflector normal and the light direction and 𝛿𝑠𝑟 𝑝 is the offset between the
center-of-pressure (CoP) and center-of-mass (CoM) of the reflector. Assuming 𝛿𝑠𝑟 𝑝 scales as 2.5 × 10−2𝑙 [20], setting
𝛽 = 45 deg and dividing the torque by the in-plane reflector inertia yields:

¤𝜔𝑠𝑟 𝑝 = 3 × 10−1 𝑝𝑠𝑟 𝑝

𝜌𝑟 𝑙
(19)

hence the SRP-induce angular acceleration is smaller for larger structures.
Lastly, the aerodynamic drag torque can be written as

𝑇𝑑𝑟𝑎𝑔 =

(
1
2
𝜌𝑎𝑡𝑚𝐶𝑑 𝑙

2𝑣2
)
𝛿𝑑𝑟𝑎𝑔 (20)

where the term inside the brackets is the resistance force due to drag [22], 𝜌𝑎𝑡𝑚 is the density of the atmosphere, 𝐶𝑑 is
the aerodynamic drag coefficient, 𝑣 is the reflector orbital velocity and 𝛿𝑑𝑟𝑎𝑔 is the offset between the reflector center-of-
aerodynamic pressure and the CoM. For a flat plate 𝐶𝑑 ≈ 2.2 [23] and the atmosphere density is modeled using a simple
exponential model [24] From Ref. [25], 𝛿𝑑𝑟𝑎𝑔 is approximately 0.2 m for a 100 m solar sail at an altitude of 400 km. It
is then assumed for simplicity that 𝛿𝑑𝑟𝑎𝑔 scales as 2 × 10−3𝑙. Then, dividing the torque by the in-plane reflector inertia
and simplifying, the equivalent atmospheric drag-induced angular acceleration can be found as:

¤𝜔𝑑𝑟𝑎𝑔 = 2.6 × 10−2 𝜌𝑎𝑡𝑚𝑣
2

𝜌𝑟 𝑙
(21)

Figure 9 compares the equivalent angular acceleration due to external perturbations with the peak tracking and
reorientation accelerations. The reorientation accelerations are shown in the case of tracking two equidistant PVFs. It
is apparent that below 3000 km the tracking angular acceleration is dominant in case of a DSR. If a SSR reflector is
used then the reorientation angular acceleration is larger for altitudes above approximately 2300 km. The SRP-induced
acceleration and the atmospheric drag acceleration are overall negligible for the altitude range considered here.

IV. Comparison of attitude control actuators
The attitude control actuator must be designed in order to deliver the peak torque required in the worse-case scenario.

The torque is proportional to the angular acceleration (which depends on the reflector orbit, as discussed in the previous
section) and the reflector inertia. If the areal density of the reflector is constant, then the required torque scales as 𝑙4,
suggesting that the required torques rapidly increase for large structures. In this section the performances of different
actuators will be discussed, in terms of their mass and power requirements. It is assumed that a DSR is employed to
track two equidistant PVFs per orbit and a range of altitudes between 1000 km and 3000 km is considered. Under
these assumptions and following the results in the previous section, the tracking angular acceleration can be used as
a design parameter to derive the required torques and therefore actuator mass. Higher altitudes will likely be of less
interest for this application, since the power density of the reflected light significantly decays at higher orbital radius [26].
Furthermore, in order to simplify the comparison of different families of actuators, it is assumed that the manoeuver is
about one of the reflector in-plane axes, with a reference angular acceleration given by the absolute value of the tracking
angular acceleration (Eq. (7b)), i.e., ¤𝜔 = ¥𝜖 . This neglects the full 3 axis control problem (which is outside the scope of

∗For consistency, the angular acceleration is indicated using the same symbol as in Eq. (5) and the same convention is used for the other
perturbations discussed. However, it must be noted that the direction of the angular acceleration vector will in general be different from Eq. (5)
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Fig. 9 Maneuver peak angular acceleration due to tracking and reorientation of the reflector and equivalent
angular acceleration caused by disturbances as a function of the orbit altitude.

this paper) while providing key information about advantages and disadvantages of each actuator for such applications.
The actuators considered are: control moment gyro (CMG), reaction wheel (RW), methods based on SRP, current

loops and thrusters.

A. Control Moment Gyro
In its simplest form, a CMG is a spinning fly-wheel mounted on a gimbal. By rotating the gimbal, the wheel angular

momentum vector is rotated thus generating a torque. In general, various CMG architectures can be used, including, for
example, pyramidal CMG structures or gimbals with multiple degrees of freedom [20]. Here, for simplicity, a pair of
counter-rotating CMGs is chosen with a disk shape, radius 𝑅𝑤 and thickness 𝑡 (see Fig. 10a). The counter-rotating
configuration has the main advantage of minimizing cross-coupling between control axes [27]. The wheels are nominally
spinning in opposite directions with constant angular velocity 𝜔𝑤 and they can be gimballed with respect to 𝑦𝑟 by
applying a torque 𝑇𝑚. Let 𝜙 be the gimbal angle (with 𝜙 = 0 when the wheels are parallel to the 𝑥𝑦 plane). It is desirable
to keep the gimbal angle below a threshold value, to avoid saturation [27] and interference between the wheel and the
reflector. Here, following Ref. [10], a reference value of 𝜙𝑚𝑎𝑥 = 10 deg is taken.

Let H𝑤1 and H𝑤2 be the angular momenta of the first and second wheel. In the reflector body frame, the wheel
angular momenta can be expressed as:

H𝑤1 =


𝐼𝑤𝜔𝑤 sin 𝜙
(𝐼𝑤/2) ¤𝜙

𝐼𝑤𝜔𝑤 cos 𝜙

 , H𝑤2 =


𝐼𝑤𝜔𝑤 sin 𝜙
−(𝐼𝑤/2) ¤𝜙

−𝐼𝑤𝜔𝑤 cos 𝜙

 (22)

where the 𝑦𝑟 components of the angular momentum vector are caused by the rotation of the wheel about the gimbal axis
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(a) (b)

Fig. 10 (a): Double 1-DOF control moment gyro. (b): Reaction wheel.

and

𝐼𝑤 =
1
2
𝑚𝑤𝑅

2
𝑤 (23)

𝐼𝑟 =
1
6
𝑚𝑟 𝑙

2 (24)

are the inertia of the wheel with respect to its spin axis and the inertia of the reflector with respect to its normal
respectively.

The reaction torques T1 and T2 generated by the two wheels on the reflector are therefore given by:

T𝑖 = − 𝑑

𝑑𝑡
H𝑖 = −

(
𝜕

𝜕𝑡
H𝑖 + 𝝎 × H𝑖

)
𝑖 = 1, 2 (25)

Upon simplifications, Eq. (25) can be used to define the total torque T as:

T = −2𝐼𝑤𝜔𝑤

(
¤𝜙 cos 𝜙 î𝑟 + 𝜔𝑧 sin 𝜙 ĵ𝑟 − 𝜔𝑦 sin 𝜙 k̂𝑟

)
(26)

Therefore, neglecting external perturbations, the Euler equations describing the reflector dynamics can be written as:
𝐼𝑥 ¤𝜔𝑥 + (𝐼𝑧 − 𝐼𝑦)𝜔𝑦𝜔𝑧 = −2𝐼𝑤𝜔𝑤

¤𝜙 cos 𝜙
𝐼𝑦 ¤𝜔𝑦 + (𝐼𝑥 − 𝐼𝑧)𝜔𝑧𝜔𝑥 = −2𝐼𝑤𝜔𝑤𝜔𝑧 sin 𝜙
𝐼𝑧 ¤𝜔𝑧 + (𝐼𝑦 − 𝐼𝑥)𝜔𝑦𝜔𝑥 = 2𝐼𝑤𝜔𝑤𝜔𝑦 sin 𝜙

(27)

Here, the terms 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 represent the inertia of the reflector and wheels. Due to the gimbal rotation, the wheel inertia
is time-dependent and therefore 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 are not constant. However, given that the maximum gimbal angle 𝜙𝑚𝑎𝑥 is
small, it is reasonable to assume the wheels are parallel to the 𝑥𝑦 plane during the entire duration of the maneuver. It
follows that: 

𝐼𝑥 = 𝐼𝑟/2 + 2(𝐼𝑤/2) + 2𝑚𝑤Δ𝑧
2

𝐼𝑦 = 𝐼𝑟/2 + 2(𝐼𝑤/2) + 2𝑚𝑤Δ𝑧
2

𝐼𝑧 = 𝐼𝑟 + 2𝐼𝑤
(28)

where Δ𝑧 is the distance between the CoM of the wheel and the CoM of the reflector. Assuming Δ𝑧 ≪ 𝑙, then

𝐼𝑥 = 𝐼𝑦 ≈ 𝐼𝑟/2 + 𝐼𝑤 (29)

Since 𝐼𝑥 = 𝐼𝑦 for a symmetric reflector and the gimbal angle is small, it follows from Eqs. (27) that the dynamics is
restricted to the 𝑥-axis with 𝝎 ≈ {𝜔𝑥 , 0, 0} =

{ ¤𝛽, 0, 0}, where 𝛽 indicates the rotation angle with respect to the 𝑥𝑟 axis.
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Then
𝐼𝑥 | ¥𝛽𝑥 | ≈ 2𝐼𝑤𝜔𝑤 | ¤𝜙 | (30)

where the absolute values of the angular acceleration ¥𝛽 and angular velocity ¤𝜙 have been considered since their sign is
not relevant in the following analysis. Then, integrating both sides of Eq. (30) with respect to time yields

𝐼𝑥 |Δ ¤𝛽 | = 2𝐼𝑤𝜔𝑤 |Δ𝜙 | (31)

where Δ ¤𝛽 is the variation of the reflector angular velocity corresponding to a given rotation Δ𝜙 of the gimbal. The
required wheel inertia can now be found by imposing | ¤𝜙| < ¤𝜙𝑚𝑎𝑥 and |Δ𝜙 | < 𝜙𝑚𝑎𝑥 , where ¤𝜙𝑚𝑎𝑥 is the maximum
gimbal rate. Here, for simplicity, it is assumed ¤𝜙𝑚𝑎𝑥 is a free parameter and only the constraint on the saturation angle
holds. † Then, setting Δ𝜙 = 𝜙𝑚𝑎𝑥 when Δ ¤𝛽 = Δ ¤𝛽𝑚𝑎𝑥 , the required wheel inertia can be calculated, using the saturation
avoidance constraint as:

𝐼𝑤 =
𝐼𝑟

2
Δ ¤𝛽𝑚𝑎𝑥

2𝜔𝑤𝜙𝑚𝑎𝑥 − ¤𝛽𝑚𝑎𝑥

(32)

The value Δ ¤𝛽𝑚𝑎𝑥 represents the maximum variation of the angular velocity during the tracking phase and can be
calculated via Eq. (3a). For a 1000 km orbit Δ ¤𝛽𝑚𝑎𝑥 ≈ 7 × 10−3 rad s−1. From now, the symbol Δ will be omitted to
simplify the notation.

Then, given the wheel inertia, the total mass of the two CMGs 2𝑚𝑤 can be written as:

2𝑚𝑤 =
1
6

¤𝛽𝑚𝑎𝑥

2𝜔𝑤𝜙𝑚𝑎𝑥 − ¤𝛽𝑚𝑎𝑥

𝜌𝑟 𝑙
4

𝑅2
𝑤

(33)

In principle, by increasing the wheel angular velocity, the wheel mass can be reduced. However, 𝜔𝑤 is practically
limited by the material strength of the wheel and the type of bearings used. The maximum stress of a rotating disk
occurs at its center and depends on the wheel angular velocity via [28]:

𝜎𝑚𝑎𝑥 =
3 + a

8
𝜌𝑤𝜔

2
𝑤𝑅

2
𝑤 (34)

where a is the Poisson’s ratio of the material. Solving Eq. (34) for 𝜔𝑤 , substituting it into Eq. (33) and simplifying
yields:

2𝑚𝑤 ≈ 1
12

√︂
3 + a

8

√︂
𝜌𝑤

𝜎𝑚𝑎𝑥

¤𝛽𝑚𝑎𝑥

𝜙𝑚𝑎𝑥

𝜌𝑟 𝑙
4

𝑅𝑤

(35)

where the approximation follows from ¤𝛽𝑚𝑎𝑥 ≪ 2𝜔𝑤𝜙𝑚𝑎𝑥 . Note that this is a reasonable approximation even for
hypothetical very large/slow-rotating wheels. For example, ¤𝛽𝑚𝑎𝑥/2𝜔𝑤𝜙𝑚𝑎𝑥 < 7 × 10−3 for a wheel made of 4340 steel
[28] and 𝑅𝑤 ≤ 100 m, with ℎ = 1000 km. For a given reflector side-length, the wheel mass can therefore be reduced
using material with a low stress-to-density ratio 𝜎𝑚𝑎𝑥/𝜌𝑤 or by increasing the radius of the wheel.

The motor torque 𝑇𝑚 required to drive the gimbal is:

𝑇𝑚 = (T1 − T2) · ĵ𝑟 (36)

where the minus sign on T2 is used since the wheels are gimballed in opposite directions. Substituting Eqs. (25) into
Eq. (36) and simplifying yields:

𝑇𝑚 = −2𝐼𝑤𝜔𝑤
¤𝛽 cos 𝜙 + 2𝐼𝑤 ¥𝜙 (37)

Since the maximum gimbal angle 𝜙𝑚𝑎𝑥 is small and neglecting the gimbal acceleration, the motor torque can then be
approximated as:

𝑇𝑚 ≈ −2𝐼𝑤𝜔𝑤
¤𝛽 (38)

Then, the power 𝑃 required during the manoeuvre is, by definition:

𝑃𝑚𝑎𝑥 = |𝑇𝑚 ¤𝜙 | (39)
†If the wheel mass is much smaller than the reflector mass, the reflector inertia is independent of the wheel inertia, therefore the Eq. (31) could be

directly solved with respect to the wheel angular momentum 𝐼𝑤𝜔𝑤 . However, here a more general case in considered, where the wheel inertia can be
large, such that 𝐼𝑥 also depends on 𝐼𝑤 .
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Assuming for simplicity that 𝑇𝑚 and ¤𝜙 have a peak at the same time ‡, i.e., substituting ¤𝛽 = ¤𝛽𝑚𝑎𝑥 and ¤𝜙 = ¤𝜙𝑚𝑎𝑥

(this is given by Eq. (30) for ¥𝛽 = ¥𝛽𝑚𝑎𝑥), the maximum power can be estimated. Again using the approximation
¤𝛽𝑚𝑎𝑥 ≪ 2𝜔𝑤,𝑚𝑎𝑥𝜙𝑚𝑎𝑥 and further simplifying yields:

𝑃𝑚𝑎𝑥 ≈ 1
6
𝜌𝑟 𝑙

4 ¥𝛽𝑚𝑎𝑥
¤𝛽𝑚𝑎𝑥 (40)

Note that the maximum power scales with 𝑙4 and it is proportional to the peak angular acceleration ¥𝛽𝑚𝑎𝑥 and angular
velocity ¤𝛽𝑚𝑎𝑥 .

It is interesting to compare the average power with the available input power 𝑃𝑖𝑛 that can be generated via photovoltaic
conversion. For a 45 deg angle between the reflector normal and incoming sunlight:

𝑃𝑖𝑛 = [𝑒[𝐴𝐴𝑟𝑃⊙ cos
( 𝜋
4

)
(41)

Here, [𝑒 represents the overall efficiency of the photovoltaic conversion, [𝐴 is the fraction of the reflector area used for
photovoltaic conversion, 𝐴𝑟 = 𝑙2 is the reflector area and 𝑃⊙ = 1327 W m−2 is the solar constant. Then the condition
𝑃𝑚𝑎𝑥 < 𝑃𝑖𝑛 defines an upper bound on the reflector side 𝑙

𝑙max <

√︄
6[𝑒[𝐴𝑃⊙√
2𝜌𝑟 ¥𝛽 ¤𝛽𝑚𝑎𝑥

(42)

B. Reaction wheel
A reaction wheel transfers torque to a body by changing the magnitude of its angular momentum, rather than its

direction. Consider a single wheel with spin axis aligned with the reflector 𝑥𝑟 axis, as shown in Fig 10b. Its angular
momentum H is given by:

H𝑤 = 𝐼𝑤𝜔𝑤 î𝑟 (43)

Hence, the resulting torque on the reflector is parallel to the 𝑥-axis such that:

T = − 𝑑

𝑑𝑡
H𝑤 = −𝐼𝑤 ¤𝜔𝑤 î𝑟 (44)

It follows that:
𝐼𝑥 ¥𝛽 = −𝐼𝑤 ¤𝜔𝑤 (45)

Integrating both sides of Eq. (45) with respect to time yields:

𝐼𝑥 |Δ ¤𝛽 | = 𝐼𝑤 |Δ𝜔𝑤 | (46)

where |Δ𝜔𝑤 | is the variation of the wheel angular velocity. The wheel reaches its maximum angular velocity 𝜔𝑤,𝑚𝑎𝑥

when ¤𝛽 is maximum, i.e., |Δ𝜔𝑤 | = 𝜔𝑤,𝑚𝑎𝑥 and |Δ ¤𝛽 | = ¤𝛽𝑚𝑎𝑥 . Also, the total inertia of the system wheel and reflector is
given by 𝐼𝑥 = 𝐼𝑟/2 + 𝐼𝑤 . Thus, from Eq. (45), the required wheel inertia can be found as:

𝐼𝑤 =
𝐼𝑟

2
¤𝛽𝑚𝑎𝑥

𝜔𝑤,𝑚𝑎𝑥 − ¤𝛽𝑚𝑎𝑥

(47)

Typically, the maximum angular velocity of the wheel is several orders of magnitude larger than the maximum angular
velocity required for the manoeuvre, hence:

𝐼𝑤 ≈ 𝐼𝑟

2
¤𝛽𝑚𝑎𝑥

𝜔𝑤,𝑚𝑎𝑥

(48)

where the approximation follows from ¤𝛽𝑚𝑎𝑥 ≪ 𝜙𝑚𝑎𝑥 . Then, the required wheel mass is given by:

𝑚𝑤 =
1
12

𝜌𝑟 𝑙
4

𝑅2
𝑤

¤𝛽𝑚𝑎𝑥

𝜔𝑤,𝑚𝑎𝑥

(49)

‡This is not true in general, however it is a conservative assumption.
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Fig. 11 CMG (continuous line) and RW (dashed line) mass and thickness requirements as a function of the
wheel radius, for an orbit altitude ℎ = 1000 km and a reflector size 𝑙 = 1000 m

As in Sec.IV.A, the wheel angular velocity can be expressed as a function of the material strength. In this case:

𝑚𝑤 ≈ 1
12

√︂
3 + a

8

√︂
𝜌𝑤

𝜎𝑚𝑎𝑥

¤𝛽𝑚𝑎𝑥

𝜌𝑟 𝑙
4

𝑅𝑤

(50)

The required motor torque is defined as:
𝑇𝑚 = −𝐼𝑤 ¤𝜔𝑤 (51)

Using the same assumption as in the previous section, the maximum power is then:

𝑃𝑚𝑎𝑥 = |𝑇𝑚𝜔𝑤 | ≈
1
12

𝜌𝑟 𝑙
4𝜔𝑤,𝑚𝑎𝑥

¥𝛽𝑚𝑎𝑥 (52)

Contrary to the CMG case, here the average power is proportional to the maximum angular velocity of the wheel rather
than the maximum angular velocity of the reflector. As in Section IV.A, an upper bound on the reflector size can be
found. In this case:

𝑙max <

√︄
12[𝑒[𝐴𝑃⊙√
2𝜌𝑟𝜔𝑤,𝑚𝑎𝑥

¥𝛽
(53)

C. Results for momentum exchange devices
Figure 11 compares the required CMG and RW mass as a function of the wheel radius, for 𝑙 = 1000 m. For reference,

the material properties are referred to 4340 steel, with density 𝜌𝑤 = 7800 kg m−3 and tensile stress 1800 MPa [28].
Here the maximum stress 𝜎𝑚𝑎𝑥 is fixed to 10% of the tensile stress and a = 0.3. The required wheel mass for the CMG
is approximately 5.7 times higher than that of a RW and this factor only depends on the CMG gimbal saturation angle
(compare Eqs. (35) and (50)). Therefore, for a given wheel mass, larger CMG wheels are needed compared to RW. For
example, the wheel radius should be at least 2.2 m for a RW and 13.5 m for a CMG to satisfy the requirement 𝑚𝑤 ≤ 𝑚𝑟 .
Figure 12 shows the mass ratio 𝑚𝑤/𝑚𝑟 as a function of the wheel radius and the reflector size at an altitude of 1000 km
new figure (a) and 3000 km (b), taking steel as wheel material. As expected, the ratio increases significantly at larger
reflector size and smaller wheel size. The CMG mass can be decreased by allowing larger gimbal angles although this
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Fig. 12 Mass ratio 𝑚𝑤/𝑚𝑟 as a function of the orbit altitude and the wheel radius, for an altitude of 1000 km (1)
and 3000 km (b)

will lead to saturation issues, as discussed. Also shown in Fig. 11 is the required wheel thickness. Clearly, smaller
wheels must be thicker due to the larger mass required and the wheel shape will become an oblate cylinder for 𝑅𝑤 < 1 m.

By inspection of Eqs. (35) and (50), the wheel mass is proportional to the square root of the material specific strength
(𝜎𝑚𝑎𝑥/𝜌𝑤). Speculatively, a wheel made of graphene (with strength up to 130 GPa [29] and density 2267 kg m−3 §), has
a specific strength 248 times larger than 4340 steel, thus the mass requirements can be reduced by a factor

√
248 ≈ 16

and allowing smaller wheels to be used. In this case, the constraint 𝑚𝑤 ≤ 𝑚𝑟 is verified for 𝑅𝑤 > 0.1 m for a RW and
𝑅𝑤 > 0.8 m for a CMG. Yet, in order to significantly reduce the mass, the wheel radius should be on the order of 10
meters. For example, a pair of 20-meter diameter graphene CMGs would have a total mass of only 400 kg per wheel
with a thickness of approximately 0.5 mm.

Due to the 𝑙4 inertia scaling, the requirements for smaller reflector are significantly reduced. For example, the mass
requirements for a 100-meter reflector are reduced by a factor 104. Thus, a 25-centimeter CMG with total mass of 50 kg
would suffice for the tracking requirements of a 100 m reflector on a 1000 km orbit.

By comparing Eqs. (40) and (52) the power requirements for a CMG are significantly smaller. In fact, the CMG
motor transfers the torque to the gimbal, whereas the RW transfers torque to the wheel, which is spinning at a much
larger rate than the gimbal. For example, a pair of CMGs with 𝑅𝑤 = 10 m on a 1000 m reflector require 372 W, whereas
a RW would require 0.6 MW.

Using the available power criterion, an upper bound on the reflector size was found via Eqs. (42) and (53) for the
CMG and RW respectively. Assuming [𝑒 = 0.2 and [𝐴 = 0.2 such upper bounds are 3.2× 105 m and 7.7× 103 m for the
CMG and RW respectively (taking 𝑅𝑤 = 10 m). The very large value found for the CMG suggests that due to the very
low power requirements, enough power can be generated to control an arbitrarily large reflector. Clearly other issues
not considered in this analysis, e.g., due reflector flexibility and vibration, will inevitably further limit the maximum
reflector size.

It is instructive to evaluate the CMG upper limit considering existing technology for attitude control of large
structures, e.g., the CMGs mounted on the International Space Station (ISS). A single ISS CMG generates a nominal
angular momentum 𝐻𝑤 = 4760 N m [30]. Then, for a pair of such CMG, from Eq. (31) it follows that the maximum
reflector dimension allowed is approximately 150 m for a 1000 km orbit or 173 m for orders of magnitude smaller
than the power-based upper bound, suggesting that improvements in CMG technologies are required to control larger
reflectors.

§https://www.quantachrome.com/general_pdf/graphene.pdf, accessed on 26 August 2021
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Fig. 13 SRP-based attitude control methods. (a) reflector with a sliding mass that changes the location of the
center-of-mass. (b) Variable reflectivity reflector.

D. Sliding masses
The attitude of the reflector can be changed by exploiting SRP. The force caused by the SRP acting at CoP of the

reflector (which coincides with its geometric center if the reflectivity is uniform and the reflector is perfectly flat)
generates a torque with respect to CoM of the reflector. By actively changing the location of the CoM, for example using
sliding masses on the surface of the reflector, the magnitude of such a torque can be modified. Usually, this method
is used for small adjustments of solar sails due to external perturbations [20]. Here, the possibility of extending this
method for larger maneuvers is explored, using the reference angular acceleration of the reflector for a range of orbit
altitudes.

Assume for simplicity that a single mass 𝑚𝑠 can slide without friction on a rail positioned along the reflector’s 𝑦𝑟
axis, such that the resulting torque is parallel to the 𝑥𝑟 -axis, where the axes are defined in Section II. Let 𝑥𝑚 be the
position of the sliding mass with respect to the CoP. The distance between the geometric center of the reflector and the
CoM of the system reflector and sliding mass is therefore:

𝑥𝑐𝑜𝑚 =
𝑚𝑠𝑥𝑚

𝑚𝑟 + 𝑚𝑠

(54)

Then, assuming a perfectly reflective reflector, the magnitude of the torque caused by the SRP is given by [20]:

𝑇 = 2𝑝𝑠𝑟 𝑝𝐴𝑟𝑥𝑐𝑜𝑚 cos2 𝛽 (55)

where the sunlight is assumed to be normal to the reflector when 𝛽 = 0. Note that the reflector does not rotate about its
geometric center but about the CoM. The angular momentum of the system reflector and sliding mass is therefore

𝐻 =

[
𝐼𝑏

2
+ 𝑚𝑟𝑥

2
𝑐𝑜𝑚 + 𝑚𝑠 (𝑥𝑚 − 𝑥𝑐𝑜𝑚)2

]
¤𝛽 (56)

where the term inside the square brackets is the total inertia of the system, being the sum of the reflector inertia and the
sliding mass inertia. Upon simplification, the equation 𝑇 = 𝑑𝐻/𝑑𝑡 governing the reflector rotation becomes:

¥𝛽 =
12(𝑚𝑠/𝑚𝑟 )𝑥𝑚

(
𝑝𝑠𝑟 𝑝 cos2 𝛽 − 𝜌𝑟 ¤𝛽 ¤𝑥𝑚

)
𝜌𝑟

[
𝑙2 + (𝑙2 + 6𝑥2

𝑚)𝑚𝑠/𝑚𝑟

] (57)

It is worth noting that a positive sliding mass velocity ¤𝑥𝑚 > 0 counteracts the positive torque caused by the solar
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Fig. 14 Slider mass ratio 𝑚𝑠/𝑚𝑟 as a function of the reflector mass.

radiation pressure if the reflector is rotating with non-zero angular velocity, thus decreasing the angular acceleration
¥𝛽. This is due to the Coriolis-induced torque generated by the sliding mass which is opposite to the SRP torque if
the sliding mass is moving towards the edge of the reflector. Conversely, when the sliding mass is moving towards
the center of the reflector ( ¤𝑥𝑚 < 0), the resulting Coriolis-induced torque has the same direction as the SRP torque.
Eventually, Eq. (57) can be solved for 𝑚𝑠 to estimate the minimum mass for a given acceleration profile ¥𝛽. Here, a
set of simplifying assumptions is made to avoid solving the equation of motion directly and to obtain an estimate of
the required sliding mass 𝑚𝑠 using average values for the reflector angle and the sliding mass position. In particular,
assuming that the reflector is pitched at 45 deg with respect to the sunlight and that the sliding mass is located halfway
between the CoP and the reflector edge (i.e., 𝑥𝑚 = 𝑙/4), then:

𝑚𝑠 =
8𝑚𝑟 𝜌𝑟 ¥𝛽

12𝑝𝑠𝑟 𝑝 − 24𝜌𝑟 ¤𝑥𝑚 ¤𝛽 − 11𝑙𝜌𝑟 ¥𝛽
(58)

In principle, a "reference" sliding mass velocity ¤𝑥𝑚 could be chosen such that the slider can reach the edge of the
reflector within the time allocated for the manoeuvre (such that ¤𝑥𝑚 is proportional to the reflector size). However, for
simplicity, ¤𝑥𝑚 is assumed to be small and neglected; additional comments will be made at the end of this section for the
general non-zero velocity case. Using these conditions, the sliding mass to reflector mass ratio can be written as:

𝑚𝑠

𝑚𝑟

=
8𝑙𝜌𝑟 ¥𝛽

12𝑝𝑠𝑟 𝑝 − 11𝑙𝜌𝑟 ¥𝛽
(59)

Figure 14 shows the sliding mass as a function of the reflector size, for the three angular accelerations corresponding to
a 1000, 2000 and 3000 km orbit altitude. For each angular acceleration, a maximum reflector length exists such that,
given the angular acceleration ¥𝛽, the required sliding mass approaches infinity as 𝑙 → 𝑙max:

𝑙max =
12
11

𝑝𝑠𝑟 𝑝

𝜌𝑟 ¥𝛽
(60)

For example, for the peak angular acceleration of a 1000 km orbit the maximum reflector size according to Eq. (60)
is only approximately 17 m. This value increases to approximately 236 m for a 5000 km altitude orbit. However, it
should be noted that if the sliding mass dynamics are included in the analysis, the required sliding mass may increase, as
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Fig. 15 Required variable reflectivity area as a function of the reflector size, for a range of angular accelerations.

suggested by Eq. (58). Furthermore, if a variable angular acceleration profile is considered, the sliding mass may be
subjected to large linear accelerations, which may increase significantly the power requirements if 𝑚𝑠 is large.

E. Variable reflectivity reflector
A net in-plane torque on the reflector can be obtained using a surface with variable reflectivity. This method has

been studied extensively for solar sail applications [31, 32]. For a preliminary estimation of the achievable torque,
assume that two equal rectangular regions with dimensions 𝑙 and 𝑥𝑟 along two opposite edges of the reflector can change
their reflectivity, such that the resulting torque is parallel to the 𝑥𝑟 -axis, as shown in Fig. 13b. Moreover, assume the
reflectivity of these regions can be changed between 0 (completely absorbing) and 1 (completely reflecting). Then, the
net torque in the 𝑥-direction is therefore:

𝑇 = (𝑟+ − 𝑟−)𝑝𝑠𝑟 𝑝
𝐴𝑣𝑟

2

(
𝑙

2
− 𝑥𝑟

2

)
cos2 𝛽 (61)

where 𝐴𝑣𝑟 = 2𝑥𝑟 𝑙 is the total area of the two edges with variable reflectivity and 𝑟+ and 𝑟− are their reflectivity
coefficients and the required torque is:

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =
𝐼𝑟

2
¥𝛽 (62)

Note that any additional mass required to change the reflectivity is here neglected, such that the total inertia appearing in
Eq.(62) is only the inertia of the reflector. Assume that 𝑟− = 0 and 𝑟+ = 1 (such that the resulting torque is maximum for
a given variable reflectivity area) and the angle between the reflector normal and the incoming sunlight is 45 deg. Then,
solving the inequality 𝑇 ≥ 𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 for 𝐴𝑣𝑟 and constraining the total variable reflectivity area to be smaller than the
total reflector area yields the total variable reflectivity area required to rotate the reflector with angular acceleration ¥𝛽:

1 −

√︄
3𝑝𝑠𝑟 𝑝 − 4𝑙 ¥𝛽𝜌𝑟

9𝑝𝑠𝑟 𝑝
≤ 𝐴𝑣𝑟

𝑙2
≤ 1 (63)

Figure 15 shows the regions where Eq. (63) is satisfied, using the same reference accelerations ¥𝛽 used in the previous
section. This method is not effective for reflectors larger than 10 m for the 1000-km orbit reference acceleration. When
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lower angular accelerations are allowed, larger reflectors can be used, however the required variable reflectivity area
approaches the total reflector area 𝑙2, suggesting that this type of control cannot be effective for large reflectors.

F. Current loop
This section explores the use of a current loop at the edge of the reflector to generate a torque through interaction

with the Earth’s magnetic field B. Use of current loops as secondary actuator on a 1000 m circular reflector was proposed
in Ref. [10], to counteract SRP torques and desaturate CMGs. Robb et al. [16] considered distributed magnetorquers on
a 100 × 100 m reflector and concluded that full control could be delivered if the combined areal density of the structure
and magnetorquers is on the order of 10 g cm−2.

Consider a conductive wire at the edge of the reflector, with total length 4𝑛𝑐𝑙 𝑙, where 𝑛𝑐𝑙 is the number of turns
around the reflector edge. Let 𝑖 be the current flowing in the circuit. The torque produced by the coil is then:

T = m × B (64)

where m = 𝑛𝑐𝑙𝑖𝐴k̂𝑟 is the magnetic dipole generated by the current loop. Assume now a 45 deg angle between the
magnetic dipole and the magnetic field and assume the output torque is parallel to the 𝑥𝑟 -axis. The latter condition
will in general not be the case for the actual reflector orbit, however it suffices to provide an approximate value of the
resulting torque, so that:

𝑇 =

√
2

2
𝑛𝑖𝐴𝐵 (65)

where the factor of
√

2/2 results from the 45 deg angle between the magnetic dipole and the Earth’s magnetic field. Due
to the large area enclosed within the edge of the reflector, a large control torque may be produced. A simple dipole
model is used for the Earth-magnetic field:

𝐵 = 𝐵0

(
𝑅𝐸

𝑅𝑜

)3
(66)

with 𝐵0 = 3.12 × 10−5 T, such that 𝐵 = 2 × 10−5 T for a 1000 km orbit. Conversely, the required torque is given by

𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =

(
𝐼𝑟

2
+ 𝐼𝑐𝑙

)
¥𝛽 (67)

where 𝐼𝑐𝑙 is the inertia of the current loop with respect to the 𝑥𝑟 -axis:

𝐼𝑐𝑙 = 2

[
1
12

𝑚𝑐𝑙

4
𝑙2 + 𝑚𝑐𝑙

4

(
𝑙

2

)2
]
=

1
6
𝑚𝑐𝑙𝑙

2 (68)

and 𝑚𝑐𝑙 is the total mass of the wire. Setting 𝑇 ≥ 𝑇𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 allows the minimum number of ampere-turn 𝑛𝑐𝑙𝑖 to be
found:

𝑛𝑐𝑙𝑖 ≥
¥𝛽(𝑚𝑐𝑙 + 𝑙2𝜌𝑟 )

3
√

2𝐵
(69)

Given the current 𝑖 and the wire resistance 𝑅 the required power is then:

𝑃 = 𝑅𝑖2 (70)

The resistance 𝑅 can be written as a function of the wire resistivity b, its length 4𝑛𝑙 and cross section 𝐴𝑤 such that:

𝑅 = b
4𝑛𝑐𝑙 𝑙
𝐴𝑐𝑙

(71)

Substituting Eq. (71) into Eq. (70) and further simplifying yields:

𝑃 =
𝜎𝑐𝑙b (4𝑙)2

𝑚𝑐𝑙

(𝑛𝑐𝑙𝑖)2 (72)

where 𝜎𝑐𝑙 is the density of the wire and 𝑚𝑐𝑙 is the total wire mass. Solving Eq. (72) for the ampere-turns 𝑛𝑐𝑙𝑖 and
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Fig. 16 Magnetorquer mass ratio as a function of the input power and orbit altitude, for 𝑙 = 1000 m.

substituting back into Eq. (69) the required wire mass 𝑚𝑐𝑙 can be found:

𝑚𝑚𝑖𝑛
𝑐𝑙 < 𝑚𝑐𝑙 < 𝑚𝑚𝑎𝑥

𝑐𝑙 (73)

where:

𝑚𝑚𝑖𝑛
𝑐𝑙

𝑚𝑟

=
9𝐵2𝑃 − 16 ¥𝛽2𝑙4b𝜌𝑟𝜎𝑐𝑙 − 3

√︁
9𝐵4𝑃2 − 32 ¥𝛽2𝐵2𝑙4𝑃b𝜌𝑟𝜎𝑐𝑙

16 ¥𝛽2𝑙4b𝜌𝑟𝜎𝑐𝑙

(74a)

𝑚𝑚𝑎𝑥
𝑐𝑙

𝑚𝑟

=
9𝐵2𝑃 − 16 ¥𝛽2𝑙4b𝜌𝑟𝜎𝑐𝑙 + 3

√︁
9𝐵4𝑃2 − 32 ¥𝛽2𝐵2𝑙4𝑃b𝜌𝑟𝜎𝑐𝑙

16 ¥𝛽2𝑙4b𝜌𝑟𝜎𝑐𝑙

(74b)

The argument of the square root must be positive thus setting a lower bound on the required power:

𝑃𝑚𝑖𝑛 =
32
9

¥𝛽2b𝜎𝑐𝑙𝜌𝑟

𝐵2 𝑙4 (75)

An upper bound on the available power is then given by 𝑃𝑖𝑛. By substituting Eq. (75) into Eqs. (74) it can be shown
that the minimum actuator mass for 𝑃 = 𝑃𝑚𝑖𝑛 is equal to the reflector mass, for any 𝑙. Then, 𝑚𝑚𝑖𝑛

𝑐𝑙
can be reduced by

increasing the supplied power 𝑃, within the range 𝑃𝑚𝑖𝑛 < 𝑃 < 𝑃𝑖𝑛. Figure 16 shows the current loop mass scaled with
respect to the reflector mass, as a function of the supplied power and the orbit altitude, for a 1000 m reflector. For
ℎ = 1000 km a minimum power 𝑃𝑚𝑖𝑛 ≈ 6 MW is required, i.e., approximately four orders of magnitude larger than the
power required by a CMG. The required power is smaller at higher orbits, although a CMG would still outperform the
magnetorquer. For example, at ℎ = 3000 km, 𝑃𝑚𝑖𝑛 ≈ 125 kW compared to a 1 W power requirement for a CMG at the
same altitude.

G. Thrusters
Given the large specific impulses of modern electric propulsion, ion thrusters could be used to provide a large total

impulse for a small propellant consumption. The torque delivered can be maximized by placing the thrusters at the
edge of the reflector, while keeping the propellant tank at the center of the reflector, to minimize the increment of the
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reflector’s inertia due to the propellant mass. The additional inertia caused by the propellant distribution subsystem is
not considered for simplicity. From the definition of specific impulse, the rate of expelled mass propellant is:

¤𝑚 =
𝐹

𝐼𝑠𝑝𝑔0
(76)

where 𝐹 is the net force generated by each thruster, 𝐼𝑠𝑝 is the specific impulse and 𝑔0 is the acceleration of gravity on
the Earth surface. The force 𝐹 can also be written as a function of the required torque 𝑇 , the number of thrusters 𝑛𝑡 , and
their distance from the rotation axis. Assuming that all thrusters are located at the edge of the reflector, i.e., at a distance
𝑙/2 from the rotation axis, and that the force vector is perpendicular to the reflector it follows that

¤𝑚𝑝𝑟𝑜𝑝 =
2𝑇

𝑛𝑡 𝑙 𝐼𝑠𝑝𝑔0
(77)

The torque 𝑇 can then be written as
𝑇 =

𝐼𝑟

2
¥𝛽 (78)

where the contribution of the propellant tank on the reflector inertia has been neglected since it is close to the reflector’s
rotation axis (note that this approximation may not be valid for smaller structures, however it will suffice for this
preliminary analysis). Therefore, the reflector inertia is approximately constant and Eq. (77) can be integrated with
respect to time such that the total propellant mass during a single orbit is equal to

𝑚𝑝𝑟𝑜𝑝 = 𝑛𝑡

∫
¤𝑚𝑝𝑟𝑜𝑝𝑑𝑡 =

∫
𝐼𝑟 | ¥𝛽 |𝑑𝑡
𝐼𝑠𝑝𝑙𝑔0

(79)

The numerator is the total impulse 𝐼𝑡𝑜𝑡 required for attitude control during one orbit and depends both on the tracking
and reorientation accelerations. However, the reorientation phase can be neglected under the current assumption of a
single PVF tracking per orbit, since the required angular acceleration is at least one order of magnitude smaller than the
tracking acceleration. In case of multiple PVFs tracking per orbit this approximation may not hold and larger propellant
masses may be required. It follows that:

𝐼𝑡𝑜𝑡 = 2𝐼𝑟Δ ¤𝛽𝑚𝑎𝑥 (80)

where Δ ¤𝛽𝑚𝑎𝑥 is the maximum variation of the angular velocity during the tracking phase. The required propellant mass
during a single orbit can therefore be written as

𝑚𝑝𝑟𝑜𝑝 =
2𝐼𝑟Δ ¤𝛽
𝐼𝑠𝑝𝑙𝑔0

(81)

If the nominal thrust 𝐹 is known, the number of thrusters 𝑛𝑡 can then be estimated by equating the required torque with
the produced torque, i.e.,

𝐼𝑟

2
¥𝛽 = 𝑛𝑡

𝑙

2
𝐹 (82)

such that
𝑛𝑡 =

𝑙3 ¥𝛽
6𝐹

(83)

Taking an ion propulsion system with 𝐼𝑠𝑝 = 5000 s and nominal thrust 𝐹 = 1 N [6], a reflector with side 𝑙 = 1000 m
orbiting at 1000 km requires 𝑚𝑝𝑟𝑜𝑝 = 2500 kg and 𝑛𝑡 = 50. Doubling 𝑚𝑝𝑟𝑜𝑝 to take into account additional structural
mass, yields approximately 5 tonnes of material, half the mass of the reflector. Compared to other momentum exchange
actuators, this option does not therefore seem attractive, not only due to the large actuator mass ratio, but also for the
number of thrusters required. Note that 𝑛𝑡 could be reduced using chemical propulsion, however, at the cost of a lower
𝐼𝑠𝑝 and therefore even larger propellant mass requirements.

V. Discussion
Table 1 summarizes the main characteristics of the actuators considered. In particular, the maximum reflector size

𝑙max and the actuator mass (scaled with respect to the reflector mass) are indicated, for ℎ = 1000 km and ℎ = 3000
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Control
method Max reflector size Actuator to reflector mass

(𝑙 = 1000 m) Remarks

ℎ = 1000 km ℎ = 3000 km ℎ = 1000 km ℎ = 3000 km

CMG
(𝑅𝑤 = 1 m)

256 m (S)
1053 m (G)

477 m (S)
1936 m (G)

≫ 1 (S)
0.86 (G)

4.18 (S)
0.25 (G) Low power requirement

𝑃 ≈ 370 W at 1000 km
𝑃 ≈ 8 W at 3000 kmCMG

(𝑅𝑤 = 10 m)
820 m (S)
3330 m (G)

1509 m (S)
6123 m (G)

1.41 (S)
0.08 (G)

0.42 (S)
0.03 (G)

RW
(𝑅𝑤 = 1 m)

621 m (S)
2520 m (G)

1143 m (S)
4635 m (G)

2.47 (S)
nd (G)

0.73 (S)
0.04 (G) Large power requirement

𝑃 ≈ 10 MW at 1000 km
𝑃 ≈ 0.7 MW at 3000 kmRW

(𝑅𝑤 = 10 m)
1965 m (S)
7969 m (G)

3614 m (S)
≫ 103 m (G)

0.24 (S)
0.01 (G)

0.07 (S)
0.004 (G)

Sliding
masses

9 m (𝑚𝑠 = 𝑚𝑟 )
17 m (𝑚𝑠 → ∞)

235 m (𝑚𝑠 = 𝑚𝑟 )
136 m (𝑚𝑠 → ∞) nd nd Not applicable to

large structures

Variable
reflectivity 11 m (𝐴𝑣𝑟 = 𝑙2) 161 m (𝐴𝑣𝑟 = 𝑙2) nd nd Not applicable to

large structures

Current
loop > 103 m ≫ 103 m 1 1

Large power requirement
𝑃 > 62 MW at 1000 km
𝑃 > 0.13 MW at 3000 km

Thruster nd nd 0.5 0.04 requires periodic
propellant refilling

Table 1 Summary of mass ratio and maximum reflector length for the attitude control discussed. For momentum
exchange devices, results are presented for different wheel radius 𝑅𝑤 and material: steel (S) and graphene (G).
The maximum reflector size is calculated assuming 𝑚𝑤 = 𝑚𝑟 .

km. For CMG and RW, the results are further divided based on a reference wheel radius (𝑅𝑤 = 1 m and 𝑅𝑤 = 10 m)
and wheel material, steel (S) and graphene (G). Also, Fig. 17 shows the maximum reflector size as a function of the
orbit altitude and Fig. 18 shows the required power as a function of the reflector size and orbit altitude for CMG, RW
and magnetorquer. It is apparent that CMGs can provide large torques to control very large structures, due to their
low power requirements, contrary to RWs. The actuator mass can be reduced by using larger and thinner wheels or
using a material with a larger specific strength. Two graphene 10 m radius wheels with a total mass of 860 kg (8% of
the reflector mass) would deliver the required peak torque for a 1000 km orbit, filling a total volume of approximately
4.1 m3. The maximum reflector size shown in the table is calculated such that the wheel mass is equal to the reflector
mass. In principle, due to the low power requirements of CMGs, much larger structures could be controlled with larger
power inputs (see Fig. 17, where the power constraint curves have been calculated using Eqs. (42) and (53)), however in
this case the CMG mass would increase significantly and other structural issues not considered in this study may emerge
at larger scales.

The CMG arrangement discussed in Section IV.A was useful to obtain analytical insights into the angular momentum
and torque requirements. Clearly, different CMGs arrangements can be considered. One example, discussed in Ref. [33],
involves a pair of four CMGs in a pyramid configuration, skewed at an angle of approximately 53 deg. The CMGs
are mounted on the non-reflective side of the reflector. This configuration ensures redundancy and it is optimal for
singularity avoidance (not considered in this analysis). Other possibilities include variable speed and/or double-gimbal
CMGs [10].

Clearly, given the large wheel size requirement, the notion of a rigid graphene flywheel seems unattainable using
current technology, although with the rapid development of in-orbit manufacturing this may ultimately be achievable.
Alternatively, as proposed in previous NASA studies [10], deployable filamentary wheels could be used to increase
the wheel radius while keeping its mass small. In Ref. [10] two 40 meter diameter CMGs are proposed to control a 1
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Fig. 17 Maximum reflector size as a function of the orbit altitude and the actuators considered. For CMG and
RW, results are shown for steel and a wheel radius of 1 m. The mass constraint corresponds to the case 𝑚𝑤 = 𝑚𝑟 ,
whereas the power-constrained maximum size is calculated via Eqs. (42) and (53).

Fig. 18 Power requirements for CMG, RW and magnetorquer, as a function of the orbit altitude and reflector
size.
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km diameter reflector. The rotors of the CMGs are made of a fine glass fiber mesh with the fiber path chosen such
that the fiber tension is constant at all locations. In addition to reducing the mass of the rotor, the advantage of this
solution is that a large wheel radius can be obtained by deploying the mesh structure, which is then tensioned thanks to
the centrifugal-induced forces generated by the wheel rotation. More speculatively, fluid control moment gyros could
be developed, whereby a liquid is rotating inside a circular tube at the edge of the reflector, thus exchanging angular
momentum without any solid rotating part [34]. As discussed in Section IV.C, using the CMGs mounted on the ISS, the
maximum size of the reflector is on the order of 130 m for a 1000 km orbit.

One possible issue related to deployable CMGs or large rotors in general is the effects of CMG flexibility on the
pointing accuracy. Based on the approach shown in Ref. [10] the CMGs will not cause undesirable interactions with the
control system or significant pointing error if the ratio between control frequency 𝑓𝑐 and the lowest natural frequency of
the CMG 𝑓𝑛 is smaller than 0.1. Following Refs. [10, 35] these frequencies can be estimated as

𝑓𝑛 = 0.1
𝜔𝑤

2
(84)

𝑓𝑐 =
1

2𝜋

√︂
𝛼max
Δ𝛿𝑒

(85)

where 𝛼max and Δ𝛿𝑒 are the maximum reflector angular acceleration and the maximum allowed pointing error,
respectively. From Section III.A, the maximum reflector angular acceleration during the tracking phase can be estimated
from ¥𝛾, i.e., 𝛼max ≈ max( ¥𝛾) ≈ 3 × 10−5 rad s−2. The pointing error depends on the dimension and shape of the PVF as
well as the current slant range 𝑑 and can be estimated as:

Δ𝛿𝑒 ≈ arctan
(
Δ𝑟PVF
𝑑

)
(86)

where Δ𝑟PVF is the maximum allowed distance between the centre of the centre of the image area on the ground and
the centre of the PVF. Assuming a circular PVF with a diameter of 10 km [26] and taking the slant range at 𝜖 = 0
(i.e., at the zenith), the max pointing error is approximately 6.7 × 10−4 rad for a 1000 km orbit and 5.3 × 10−4 rad for a
3000 km orbit, where Δ𝑟PVF was chosen as the radius of the PVF. Then, the ratio 𝑓𝑐/ 𝑓𝑛 is approximately 1.4 × 10−4 and
1.6 × 10−4 for a 1000 km and 3000 km altitude respectively, in both cases smaller than the recommended ratio of 0.1. It
therefore appears that the flexibility of the CMGs will not cause significant issues with the pointing accuracy.

The SRP-based methods have a maximum controllable reflector size on the order of 10 m for an orbit altitude of
1000 km and 150 m for a 3000 km altitude. Analogous results can be obtained for other classes of SRP-based methods,
such as tip-vanes [36]. This suggest that SRP cannot be used to control large reflectors at lower altitudes. However, for
individually pointed reflectors connected to a frame [11], use of SRP could be a viable solution at higher altitudes,
although CMGs may still be required to control the external frame.

Current loops can provide large torques, although the required mass is several orders of magnitude larger than
the CMG requirement, making this solution less attractive than the CMG as a primary actuator choice. Moreover,
several current loops with different orientations would be required to ensure controllability along each axis, making the
resulting architecture more complex. This solution could be used as a secondary actuator for CMG desaturation or
counteracting other perturbations, such as the gravity gradient torque. Considering the worse case gravity gradient
torque at an orbit altitude of 1000 km, the minimum required power is on the order of 14 kW but must be increased to
approximately 45 kW to decrease the wire mass below 1 tonne. For reference, each solar array wing on the ISS can
produce approximately 31 kW of power [37].

One possible solution to minimize the gravity gradient torque would be to append the CMGs at the top of two booms
with linear density 𝜌𝑏 and length Δ𝑧, normal to the reflector, as represented in Fig. 1. The gravity gradient torque can be
canceled by properly selecting the wheel mass such that 𝐼𝑥 = 𝐼𝑦 = 𝐼𝑧 . In particular, from Eq. (28), assuming Δ𝑧 ≫ 𝑅𝑤

and Δ𝑧 ≫ 𝑙, the inertia of the reflector and wheel can be written as:
𝐼𝑥 ≈ 𝐼𝑟

2
+ 2𝑚𝑤Δ𝑧

2 + 2
3
𝜌𝑏Δ𝑧

3

𝐼𝑦 ≈ 𝐼𝑟

2
+ 2𝑚𝑤Δ𝑧

2 + 2
3
𝜌𝑏Δ𝑧

3

𝐼𝑧 ≈ 𝐼𝑟

(87)
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Hence, the condition 𝐼𝑥 = 𝐼𝑦 = 𝐼𝑧 is satisfied if

𝑚𝑤 =
1
24

𝑚𝑟

(
𝑙

Δ𝑧

)2
− 1

3
𝜌𝑏Δ𝑧 (88)

For example, if Δ𝑧 = 𝑙 and neglecting the mass of the booms, the required wheel mass would be 1/24 of the reflector
mass. In this case, the CMGs would not only provide the required tracking torque but would also cancel the gravity
gradient torque. Moreover, with this configuration, the reflector rotation axis is also a principal axis, thus removing
the need for torque along the 𝑦𝑟 axis to remove the precession torque. Additional torque about the 𝑦𝑟 axis may be
required when a full three-dimensional extension of the problem is considered and the Earth rotation is taken into
account. However, as discussed, the effect of Earth rotation are expected to be small at the altitudes considered here,
thus the control about the 𝑦𝑟 -axis could be accomplished with a secondary actuator such as a dedicated reaction wheel
or a magnetorquer. Also note that the gravity gradient induced angular acceleration is approximately one order of
magnitude smaller than the peak tracking angular acceleration at an altitude of 1000 km. Therefore, this method appears
to be more attractive at higher altitudes, where the gravity gradient induced angular acceleration is comparable or larger
than the tracking angular acceleration (see Fig. 9). Even if other issues related to structural stability or boom vibration
may emerge, the advantages of this configuration offer scope for further investigation.

In this paper, which performs a top-level assessment of different types of actuator, the effects of the structure
flexibility has not specifically been taken into account. In the case of orbiting solar reflectors, structural rigidity is
essential to minimize the membrane bending or wrinkling, which may reduce the total energy delivered to the ground.
In order to minimize the structure oscillations, piezo-electric actuators embedded within the structure can be used, as
discussed in Ref. [15]. Alternatively, an array of small CMGs placed at optimal locations on the structure can also be
used to suppress vibrations, as proposed in Refs. [13, 14]. In both cases, the additional actuators used for structural
control will ultimately increase the reflector areal density, consequently increasing the torque and angular momentum
requirements for the maneuver.

It is clear that more detailed analyses are required to address the optimal control architecture for each specific
reflector configuration and orbit altitude, taking into account structure flexibility and vibrations, however this top-level
analysis of scaling laws outlined that momentum exchange devices, in particular CMGs, can significantly reduce the
actuator mass and input power requirements over other classes of actuators for control of large orbiting solar reflectors.

VI. Conclusions
In this paper, a top-level overview of actuator performance for orbiting solar reflectors in polar orbit has been

presented. In particular, the attitude control requirements for pointing and reorientation maneuvers have been considered
for an orbit altitude range between 1000 and 3000 km and then compared with perturbations. It has been found that
the tracking requirements are dominating below an altitude of 3000 km, assuming a double-sided reflector and two
reorientations per orbit. Then, based on such tracking requirements, the actuator mass and power requirements have
been discussed for different classes of actuators. It has been found that control moment gyros are the most attractive
actuator solution for this application. Methods based on solar radiation pressure cannot produce the required torques at
large reflector scales, while magnetorquers would require very large power.
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