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A B S T R A C T

In the design and analysis of composite materials based on periodic arrangements of sub-units it is of paramount
importance to control the emergent material symmetry in relation to the elastic response. The target material
symmetry plays also an important role in additive manufacturing. In numerous applications it would be useful
to obtain effectively isotropic materials. While these typically emerge from a random microstructure, it is not
obvious how to achieve isotropy with a periodic order. We prove that arrangements of inclusions based on
a rhomboidal cell that generates the face-centered cubic lattice do in fact preserve any material symmetry of
the constituents, so that spherical inclusions of isotropic materials in an isotropic matrix produce effectively
isotropic composites.
1. Introduction

Composite or microstructured materials have been long since con-
sidered as important means to engineer and optimize mechanical prop-
erties for specific applications [1–3]. With the advent of additive man-
ufacturing (also known as 3D-printing), production of artificial con-
structs conceived to possess specific optimal properties is now becom-
ing possible. The design of the mechanical behavior of composites
is increasingly relevant in a large variety of scenarios of practical
interests, ranging from construction [4] to biomimetic materials [5].

The architecture of such materials is typically based on designing
features at a small scale, that lead to the desired large-scale behavior
of structural elements. In light of this, theoretical studies of compos-
ites often involve asymptotic (periodic) homogenization or alternative
upscaling techniques based on average field theories (see for example
the review [6] where the two approaches are compared) to obtain
suitable predictions of the effective material behavior. Examples can
be found in Refs. [7–9], and [10] concerning poroelastic composites,
biophysical applications (such as bone, tendons, tumors, and organs)
and metamaterials, respectively.

On the one hand, obtaining detailed quantitative information on
material parameters typically requires employment of sophisticated
combinations of analytical and/or computational techniques [11–15].
On the other hand, some qualitative information can be deduced by
simple symmetry arguments and this will be the focus of the present
note. One of the most important qualitative properties of elastic solids
is the material symmetry, and the target symmetry for a composite is
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always considered in the design process. Luckily, one can draw some
conclusion on material symmetry by considering how the response to
simple homogeneous deformations interacts with the geometric prop-
erties of the assembly of microscopic units that form a composite. This
is especially true when the large-scale specimen is built by a periodic
reproduction of identical units.

Several studies dealt with material symmetries in the context of
linearized elasticity [16,17] and the minimal symmetry induced by
a periodic arrangement of inclusions in a binary composite has been
repeatedly investigated by different methods [18–20]. Nevertheless, it
is not clear whether it be possible to obtain an effectively isotropic
response by a periodic arrangement of inclusions in a three-dimensional
body, while it is well known that a hexagonal lattice would suffice to
get such a maximal symmetry in a two-dimensional context. In partic-
ular, a periodic arrangement of uniaxially aligned fibers leads to either
tetragonal or transverse isotropic response depending on weather the
planar projections of such fibers are encoded in a square or hexagonal
periodic cell [21,22]. Topological optimization procedures offer a way
to approach an isotropic response by resorting to nontrivial geometries.
While in rare cases the lack of isotropy is negligible [12,13], a residual
anisotropy is usually found in three-dimensional composites in the
presence periodicity. Introducing randomness in the microstructure
remains the most accepted way to reach an isotropic response.

Based on geometric symmetry considerations, it is well known how
to achieve a large-scale cubic symmetry with a periodic inclusion
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lattice. By considering a standard cubic periodic cell, then the existence
of three planes of symmetry guarantees the material orthotropy as
long as no additional degree of anisotropy is induced by the material
symmetry of the individual phases in the composite. This is true when
the individual phases are geometrically arranged in the host in order
to guarantee the existence of such planes of symmetries, and they are
individually at most orthotropic. When assuming, in addition, that the
individual phases are either all isotropic or at most cubic, and that the
resulting geometry is invariant with respect to rotation of the three
orthogonal axis (this can be achieved for example by considering either
a cubic or a spherical inclusion in three dimensions), the resulting
material response is then in general cubic. This is also shown in the
works [23,24], where the authors define a suitable function which
measures the deviation from isotropy for composites in the context of
asymptotic homogenization.

Common lore suggests that, with a periodic inclusion lattice, one
cannot achieve isotropy without additional constraining strategies [12,
13], even with isotropic components. Should this be the case, then
it would be somewhat unpleasant because, on the one hand, periodic
arrangements are by far the most convenient approach in both additive
manufacturing and computational material design and, on the other
hand, isotropic elasticity is very often assumed in practical applications,
especially in the context of simple models used to validate experimental
results.

In this work, we show that the maximal symmetry that can be
achieved for three-dimensional periodic composites is not the cubic
one. We give a rigorous and yet simple proof of the fact that a
periodic arrangement on a face-centered cubic (FCC) lattice of spherical
inclusions of an isotropic solid within an isotropic matrix gives rise to
a large-scale isotropic response. In doing so, we also show that any
rhomboidal computational cell that generates such a lattice can be
used to successfully design homogenized solids in which the material
symmetry is not affected by the periodicity of the construction, since
the latter would preserve even the largest possible symmetry group. It
is significant to observe that the geometric symmetry group of such
rhomboidal cells is strictly smaller than the symmetry group of the
lattice they generate, but the lattice and not the cell is the geometrically
relevant structure when analyzing large-scale properties.

Incidentally, our result shows that the small lack of isotropy com-
putationally found for several periodic arrangements based on a FCC
lattice is to be ascribed to (unavoidable) numerical approximations
rather than to real geometric obstructions. This leads to important
changes in perspective for the interpretation of numerical results and
towards the design of isotropically elastic metamaterials, with relevant
consequences on several applications.

We frame our discussion in the context of linear elasticity by intro-
ducing, in Section 2, a normalized Voigt representation of the elasticity
tensor which is very convenient for the identification of material pa-
rameters and symmetries. We then discuss the link between lattice
symmetries and material symmetries for periodic composites in Sec-
tion 3 and, finally, present our main result and a symmetry-preserving
rhomboidal cell in Section 4.

2. Normalized Voigt representation

We are interested in describing the effective linear elastic response
of a composite that consists of two isotropically elastic phases. One
is the matrix and the other one occupies spherical inclusions with
centers distributed on a periodic lattice. Due to the spherical shape of
the inclusions and the isotropic nature of the two materials, the only
source of anisotropy in the homogenized material response can be the
geometry of the inclusion lattice. It is thus convenient to represent the
linearized measure of strain and the Cauchy stress tensor on a basis for
the space of symmetric tensors that is adapted to the geometry of the
inclusion lattice. This leads to the construction of a normalized Voigt
representation.
2

We denote by (𝒂1,𝒂2,𝒂3) the generators of the lattice, namely linearly
independent vectors such that the centers of the spherical inclusions are
obtained as combinations of 𝒂1, 𝒂2, and 𝒂3 with integer coefficients. The
set of lattice sites is then denoted by  = ⟨𝒂1,𝒂2,𝒂3⟩Z. A set of directors
of the lattice can be constructed building an orthonormal basis for R3

out of the generators. For instance, we may choose

𝒍1 =
𝒂1

‖𝒂1‖
, ‖𝒍2‖𝒍2 = 𝒂2 − (𝒂2 ⋅ 𝒍1)𝒍1,

‖𝒍3‖𝒍3 = 𝒂3 − (𝒂3 ⋅ 𝒍1)𝒍1 − (𝒂3 ⋅ 𝒍2)𝒍2.

We now introduce an orthogonal basis for the linear space of
ymmetric tensors built upon the lattice directors. The basis  =
(𝖹1,𝖹2,𝖹3,𝖹4,𝖹5,𝖹6) is given in terms of dyadic products by

𝖹1 = 𝒍1 ⊗ 𝒍1 , 𝖹2 = 𝒍2 ⊗ 𝒍2 , 𝖹3 = 𝒍3 ⊗ 𝒍3 ,

4 =
𝒍2 ⊗ 𝒍3 + 𝒍3 ⊗ 𝒍2

√

2
, 𝖹5 =

𝒍1 ⊗ 𝒍3 + 𝒍3 ⊗ 𝒍1
√

2
,

𝖹6 =
𝒍1 ⊗ 𝒍2 + 𝒍2 ⊗ 𝒍1

√

2
.

Such a basis is orthonormal with respect to the tensor scalar product
defined by 𝖠 ∶ 𝖡 ∶= tr(𝖠𝖳𝖡).

As customary in linear elasticity, we decompose the deformation
radient tensor as 𝖥 = 𝖩 + ∇𝒖, with 𝒖 the displacement field and

𝖩 the isometry that maps spatial vectors to material ones. The stan-
dard linearized strain measure is then 𝖤 = 1

2 (∇𝒖𝖩 + 𝖩𝖳∇𝒖𝖳). In the
nfinitesimal-displacement regime considered in linear elasticity, 𝖩 is
onstant and homogeneous and can be taken as the identity. 𝖤 is a
ymmetric tensor, characterized by six degrees of freedom. A possible
hoice of objective quantities to represent them are the eigenvalues
f 𝖤 and the orientation of its eigenvectors with respect to the lattice
irectors. Equivalent degrees of freedom can be encoded in the six
omponents of 𝖤 on the basis , that we group in a six-component
ector 𝜺, so that

=
6
∑

𝑘=1
𝜺𝑘𝖹𝑘.

he Cauchy stress tensor 𝖳 is constitutively related to 𝖤 and the lattice
directors (all objective quantities). To emphasize its relation with the
lattice structure, it is convenient to expand also 𝖳 on the tensorial basis
. We thus have

𝖳 = 𝖳̂(𝖤, 𝒍1, 𝒍2, 𝒍3) =
6
∑

𝑘=1
𝝉𝑘(𝖤, 𝒍1, 𝒍2, 𝒍3)𝖹𝑘,

where the six-component vector 𝝉 corresponding to the normalized
Voigt representation of 𝖳 has been introduced. The dependence of
the stress components on the lattice directors is written explicitly to
highlight the fact that, to describe an objective anisotropic response,
we need to consider the strain 𝖤 in relation to the lattice directors and
not to an arbitrary basis of R3.

A general linear constitutive relation whereby 𝝉 depends on the six
objective degrees of freedom in 𝜺 is thus given by 𝝉 = 𝐶𝜺, where 𝐶
is the 6 by 6 matrix of material coefficients. We can thus write the
stress–strain relation as

𝖳 =
6
∑

𝑖,𝑘=1
𝐶𝑖𝑘𝜺𝑘𝖹𝑖. (1)

Since all of the involved quantities are objective, this is a mani-
festly objective constitutive relation (in line with the conclusion of
Steigmann [25]).

It is customary to think of the elastic response as generated by
a potential energy density. A necessary and sufficient condition for
𝖳 in Eq. (1) to be the first variation of an elastic energy density
quadratic in 𝖤 is that the matrix 𝐶 be symmetric, namely 𝐶𝑖𝑘 = 𝐶𝑘𝑖.
This would reduce its independent components from 36 to 21, but this
assumption is not necessary for our discussion. Moreover, the fact that
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any deformation from the relaxed configuration should increase the
stored elastic energy translates into requiring that the matrix of the
coefficients 𝐶𝑖𝑘 be positive definite.

The matrix 𝐶 is the normalized Voigt representation of the classical
lasticity tensor C (a fourth order tensor with well-known symmetries)
nd, indeed, we can also give the constitutive prescription as 𝖳 = C𝖤.
he definition of C implied by relation (1) is

∶=
6
∑

𝑖,𝑘=1
𝐶𝑖𝑘𝖹𝑖 ⊗ 𝖹𝑘,

from which we can retrieve the 81 components (Greek indices running
from 1 to 3)

C𝛼𝛽𝛾𝛿 ∶=
6
∑

𝑖,𝑘=1
𝐶𝑖𝑘𝖹

𝛼𝛽
𝑖 ⊗ 𝖹𝛾𝛿

𝑘 .

We want to emphasize that, while the components of C obviously
depend on the choice of a basis to compute coordinates in the lab
frame, the entries of the elasticity matrix 𝐶 are material constants
completely independent of the reference frame. In fact, they bear a
mechanical meaning that is linked only to the mechanical role of the
lattice directors chosen to build the tensorial basis . In view of this,
it should be clear that the common pragmatic way of introducing the
standard Voigt representation through an index-based identification of
the entries of 𝐶 and C confers to the coordinate basis a mechanical
meaning that may not always be appropriate.

3. Lattice symmetries and material symmetries

The symmetries of the lattice are the subgroup of the isometries of
R3 that map the set  of lattice sites onto itself. Besides the obvious
translations that are responsible for the large-scale homogeneity of
the material, we can have reflections and rotations and will focus our
attention on these.

An important role in our analysis is played by the tensorial basis .
It allows to extract only the necessary information from the elasticity
tensor in a coordinate-invariant way, thereby giving a material meaning
to the coefficients of the 6 by 6 matrix representation 𝐶. It provides a
consistent way to identify how the components of the stress change
when the applied strain is changed by an isometry. Thanks to the use
of the basis , all of the constraints on the coefficients of 𝐶 derived
in what follows are independent of the choice of coordinates used to
represent the lattice generators and directors.

Employing index notation with summation only over repeated
Greek indices going from 1 to 3, we have

𝖹𝛼𝛽
𝑘 = 𝒍𝑘𝛼𝒍𝑘𝛽 for 𝑘 = 1, 2, 3,

𝖹𝛼𝛽
𝑘 =

𝒍𝑘−1𝛼𝒍𝑘−2𝛽 + 𝒍𝑘−2𝛼𝒍𝑘−1𝛽
√

2
for 𝑘 = 4, 5, 6,

ith pedices computed mod 3.
If we denote by 𝖲 an isometry, it is represented on the basis (𝒍1, 𝒍2, 𝒍3)

y an orthogonal matrix. When we apply the isometry 𝖲 to the basis
ectors we get the transformed tensors 𝖹̃𝑘 = 𝖲𝖹𝑘𝖲

𝖳. More specifically

̃ 𝛼𝛽
𝑘 = 𝖲𝛼𝜇𝒍𝑘𝜇𝖲𝛽𝜈𝒍𝑘𝜈 , for 𝑘 = 1, 2, 3, and

̃ 𝛼𝛽
𝑘 = 1

√

2

(

𝖲𝛼𝜇𝒍𝑘−1𝜇𝖲𝛽𝜈𝒍𝑘−2𝜈 + 𝖲𝛼𝜇𝒍𝑘−2𝜇𝖲𝛽𝜈𝒍𝑘−1𝜈
)

,

or 𝑘 = 4, 5, 6. Tensorial scalar products between the basis tensors
orrespond to summation over the Greek indices. Hence, the products
etween original (index 𝑗) and transformed (index 𝑘) tensors become
ombinations of the components of the isometry 𝖲, identified in terms
f the Latin indices 𝑗 and 𝑘. We thus find

• for 𝑗, 𝑘 = 1, 2, 3:

𝖹𝛼𝛽 𝖹̃𝛼𝛽 = 𝒍 𝛼𝖲𝛼𝜇𝒍 𝜇 𝒍 𝛽𝖲𝛽𝜈𝒍 𝜈 = (𝖲𝑗𝑘)2, (2)
3

𝑗 𝑘 𝑗 𝑘 𝑗 𝑘
• for 𝑗 = 1, 2, 3; 𝑘 = 4, 5, 6:

𝖹𝛼𝛽
𝑗 𝖹̃𝛼𝛽

𝑘 =
√

2𝖲𝑗(𝑘−2)𝖲𝑗(𝑘−1), (3)

• for 𝑗 = 4, 5, 6; 𝑘 = 1, 2, 3:

𝖹𝛼𝛽
𝑗 𝖹̃𝛼𝛽

𝑘 =
√

2𝖲(𝑗−2)𝑘𝖲(𝑗−1)𝑘, (4)

• for 𝑗, 𝑘 = 4, 5, 6:

𝖹𝛼𝛽
𝑗 𝖹̃𝛼𝛽

𝑘 = 𝖲(𝑗−2)(𝑘−2)𝖲(𝑗−1)(𝑘−1)

+𝖲(𝑗−2)(𝑘−1)𝖲(𝑗−1)(𝑘−2). (5)

From these relations we can write the linear transformation 𝑆̂
induced by 𝖲 on the normalized Voigt representation of the strain,
namely the matrix representing the change of basis from (𝖹̃𝑘)6𝑘=1 to :
ee Eq. (6) given in Box I.

This means that if we want to compute the six components on 
f a strain that has components equal to 𝜺 on the transformed basis
𝖹̃𝑘)6𝑘=1, we just need to compute 𝑆̂𝜺. Similarly, the vector 𝑆̂𝝉 gives
he components on  of a stress that has components equal to 𝝉 on the
ransformed basis (𝖹̃𝑘)6𝑘=1. Note that there is no one-to-one correspon-
ence between isometries and the set of induced transformations, since
ifferent isometries of R3 can be associated with the same 𝑆̂, as we shall
ee below. This is due to the fact that different isometries acting on the
attice directors may induce the same transformation on the elements
f the tensorial basis .

A symmetry of the lattice  is a purely geometric concept. We
ill now discuss how these isometries can be related to the material

esponse and how they influence the large-scale mechanics of the
omogenized system. An isometry 𝖲 of R3 is a material symmetry if the
tress computed on the transformed strain represented by 𝑆̂𝜺, namely
𝑆̂𝜺, coincides with the transformed stress 𝑆̂𝐶𝜺 for any choice of 𝜺.

Hence, requiring the stress identity 𝐶𝑆̂𝜺 = 𝑆̂𝐶𝜺 corresponds, by the
arbitrariness of the strain, to the commutation relation

𝐶𝑆̂ = 𝑆̂𝐶 (7)

between the matrix representing the isometry and the elasticity matrix.
If the inclusion lattice possesses a given symmetry 𝖲, the materials

are isotropic, and the inclusions are spherical, then it is clear that the
strains 𝜺 and 𝑆̂𝜺 represent equivalent stimuli on the material, because
the two situations can be made completely identical by a mere change
of coordinates. The full experiment is coherently rotated and so are
the reactions of each material region. In this case we expect that every
symmetry of the lattice is linked to a corresponding material symmetry.

Nevertheless, we stress that for a system with a given inclusion
lattice the group  of material symmetries can be larger than the
group  of lattice symmetries. In fact, under the present assumptions
of isotropy and spherical inclusions, any lattice symmetry is a mate-
rial symmetry and we conclude that Eq. (7) must be satisfied for 𝑆̂
associated with elements of . This imposes constraints in the form of
linear relations between the components of the elasticity tensor 𝐶. Once
these constraints are identified, we may find additional transformations
𝑆̂ that satisfy (7) for any constrained 𝐶 but are not associated to any
lattice symmetry. If this is the case, then  is strictly larger than .
As shown in Section 4, finding lattices with this property is the key
point of the present treatment.

3.1. Examples of material symmetries

The isometries given by the identity 𝖨3 of R3 and by −𝖨3 (that are
symmetries of any periodic lattice) both induce the identity transfor-
mation 𝑆̂ = 𝐼6 and the commutation relation 𝐼6𝐶 = 𝐶𝐼6 is true for any
𝐶. Hence, if the lattice and material symmetry groups are  =  =
{𝖨3,−𝖨3}, no constraint is imposed on 𝐶 and the material is generically
anisotropic. In what follows, we denote rotations by 𝖰 and reflections
by 𝖱, with explanatory subscripts.
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𝑆̂ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(𝖲11)2 (𝖲12)2 (𝖲13)2
√

2𝖲12𝖲13
√

2𝖲13𝖲11
√

2𝖲11𝖲12

(𝖲21)2 (𝖲22)2 (𝖲23)2
√

2𝖲22𝖲23
√

2𝖲23𝖲21
√

2𝖲21𝖲22

(𝖲31)2 (𝖲32)2 (𝖲33)2
√

2𝖲32𝖲33
√

2𝖲33𝖲31
√

2𝖲31𝖲32
√

2𝖲21𝖲31
√

2𝖲22𝖲32
√

2𝖲23𝖲33 𝖲22𝖲33 + 𝖲23𝖲32 𝖲23𝖲31 + 𝖲21𝖲33 𝖲21𝖲32 + 𝖲22𝖲31
√

2𝖲31𝖲11
√

2𝖲32𝖲12
√

2𝖲33𝖲13 𝖲32𝖲13 + 𝖲33𝖲12 𝖲33𝖲11 + 𝖲31𝖲13 𝖲31𝖲12 + 𝖲32𝖲11
√

2𝖲11𝖲21
√

2𝖲12𝖲22
√

2𝖲13𝖲23 𝖲12𝖲23 + 𝖲13𝖲22 𝖲13𝖲21 + 𝖲11𝖲23 𝖲11𝖲22 + 𝖲12𝖲21

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (6)

Box I.
T
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Let us now consider a lattice that is invariant under 𝖨, −𝖨, and under
otations of angle 𝜋 about one of the directors, say 𝒍3. This is the case
henever the lattice generator 𝒂3 is orthogonal to the plane identified
y 𝒂1 and 𝒂2, and thus coincides with 𝒍3. The relevant isometry is given
y

𝜋 =
⎛

⎜

⎜

⎝

−1 0 0
0 −1 0
0 0 1

⎞

⎟

⎟

⎠

.

y composition, the lattice must also be invariant under −𝖰𝜋 = −𝖨𝖰𝜋 ,
hat is a reflection through the plane generated by 𝒍1 and 𝒍2. Since
2
𝜋 = (−𝖰𝜋 )2 = 𝖨, no other symmetry is implied by the group structure
nd  = {𝖨,−𝖨,𝖰𝜋 ,−𝖰𝜋}. The transformation induced by both 𝖰𝜋 and
𝖰𝜋 is

̂ 𝜋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

nd the commutation relation 𝑄̂𝜋𝐶 = 𝐶𝑄̂𝜋 implies 𝐶4𝑘 = 𝐶𝑘4 =
5𝑘 = 𝐶𝑘5 = 0 for 𝑘 ≠ 4, 5. Since the diagonal entries of 𝐶 remain
nconstrained, no additional transformation satisfies the commutation
elation for all constrained elasticity matrices and we have  =  =
𝖨,−𝖨,𝖰𝜋 ,−𝖰𝜋}. In this case the large-scale response of the material is
onoclinic.

If it happens that there is invariance of the lattice under 𝜋-rotations
bout another axis 𝒃 orthogonal to 𝒍3, then we easily see that the last
hree columns and rows of 𝐶 have non-vanishing coefficients only on
iagonal entries. This is the case of an orthotropic material. Note that
n this case the group of lattice symmetries contains also a third 𝜋-
otation about 𝒍3 × 𝒃 and the corresponding reflection, for a total of
ight elements, and we still have  =  due to the independence of
he diagonal entries of 𝐶.

Another important case arises when the material is orthotropic and
lso invariant under rotations of angle 𝜋∕2 about, for instance, 𝒍3. In
his case we must consider the isometry

𝜋
2
=
⎛

⎜

⎜

⎝

0 −1 0
1 0 0
0 0 1

⎞

⎟

⎟

⎠

.

By composition we find that other isometries must belong to . In
articular, 𝖰 3𝜋

2
= 𝖰3

𝜋
2
. The transformation induced by 𝖰 𝜋

2
is

𝑄̂ 𝜋
2
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

he commutation relation (7) thus implies the additional constraints

21 =𝐶12, 𝐶22 = 𝐶11, 𝐶23 = 𝐶13, (8)
4

𝐶31 = 𝐶32, 𝐶55 = 𝐶44.
his is the case for a lattice that is square in the plane generated by
1 and 𝒍2 and rectangular in the other two coordinate planes and the
aterial response is tetragonal.

If the lattice is simple cubic we have that 𝜋∕2-rotations about 𝒍1
nd 𝒍2 are additional symmetries. The constraints imposed by the first
f these can be obtained from (8) with the index substitutions 3 ↦ 1,
↦ 2, 2 ↦ 3, 4 ↦ 5, 5 ↦ 6, and 6 ↦ 4, leading to the cumulative

dentities

33 = 𝐶22 = 𝐶11, 𝐶66 = 𝐶55 = 𝐶44,

12 = 𝐶13 = 𝐶23 = 𝐶32 = 𝐶31 = 𝐶21,
(9)

hat already entail the consequences of the 𝜋∕2-rotation about 𝒍2. In
his case the material response is cubic and the elasticity matrix takes
he form

cubic =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎 𝑏 𝑏 0 0 0
𝑏 𝑎 𝑏 0 0 0
𝑏 𝑏 𝑎 0 0 0
0 0 0 𝑐 0 0
0 0 0 0 𝑐 0
0 0 0 0 0 𝑐

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

ith 𝑎, 𝑏, and 𝑐 independent material constants. Again, we have  =
.

. Symmetry-preserving periodic cells

We will now give a positive answer to the question ‘‘Are there
nclusion lattices that would always preserve the material symmetries in-
uced on the homogenized medium by the material symmetries of the
wo solid components and the shape of the inclusions?’’. In other words,
e will exhibit an inclusion lattice for which the group of material

ymmetries induced by the lattice symmetries is the whole group of
sometries of R3. In particular, for isotropic components and spherical
nclusions, the large-scale elastic response of the material is isotropic.
nce an appropriate inclusion lattice is found, we can easily identify a

homboidal cell that originates that lattice by a periodic tessellation of
pace.

We first treat the case of transverse isotropy, that is isotropy in one
lane. We consider the periodic inclusion lattice with generators

1 = (1, 0, 0), 𝒂2 = (1∕2,
√

3∕2, 0), 𝒂3 = (0, 0, 1).

Clearly, we can choose as lattice directors 𝒍1 = 𝒂1, 𝒍3 = 𝒂3, and
𝒍2 = (0, 1, 0).

The lattice formed in this way is hexagonal in planes orthogonal to
𝒍3. The 𝜋-rotation 𝖰𝜋 about 𝒍3 is a material symmetry and so the system
is at least monoclinic. But in fact this lattice is also invariant under 𝜋-
rotations about 𝒍1 and 𝒍2, showing that the material symmetry group
contains that of an orthotropic system. We stress that these two sym-
metries are not symmetries of the parallelepiped with edges identified
by (𝒂1,𝒂2,𝒂3), which could be used as a periodic cell for computational
studies of the homogenized response, and yet they belong to both the

lattice and the material symmetry group.
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A further symmetry characteristic of this lattice (but not of the
periodic cell) is the 𝜋∕3-rotation about 𝒍3:

𝖰 𝜋
3
=

⎛

⎜

⎜

⎜

⎝

1∕2 −
√

3∕2 0
√

3∕2 1∕2 0
0 0 1

⎞

⎟

⎟

⎟

⎠

.

The corresponding transformation is

𝑄̂ 𝜋
3
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1∕4 3∕4 0 0 0 −
√

6∕4
3∕4 1∕4 0 0 0

√

6∕4
0 0 1 0 0 0
0 0 0 1∕2

√

3∕2 0
0 0 0 −

√

3∕2 1∕2 0
√

6∕4 −
√

6∕4 0 0 0 −1∕2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Taking into account that the orthotropic symmetry implies that
the last three rows and columns of the elasticity matrix 𝐶 have non-
vanishing coefficients only on diagonal entries, it can be readily seen
that the commutation relation 𝑄̂ 𝜋

3
𝐶 = 𝐶𝑄̂ 𝜋

3
implies

𝐶21 = 𝐶12, 𝐶22 = 𝐶11, 𝐶13 = 𝐶23,

𝐶31 = 𝐶32, 𝐶55 = 𝐶44, 𝐶11 = 𝐶12 + 𝐶66,
(10)

entailing the following general form of the elasticity matrix 𝐶trans
associated with this inclusion lattice:

𝐶trans =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎 𝑎 − 𝑏 𝑑 0 0 0
𝑎 − 𝑏 𝑎 𝑑 0 0 0
𝑑′ 𝑑′ 𝑐 0 0 0
0 0 0 𝑒 0 0
0 0 0 0 𝑒 0
0 0 0 0 0 𝑏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with 𝑎, 𝑏, 𝑐, 𝑑, 𝑑′, and 𝑒 are independent material constants, with 𝑑 = 𝑑′

if we assume the existence of an elastic energy density.
An observation central to our argument is that we arrive at the form

𝐶trans for the elasticity matrix by assuming, on top of an orthotropic
symmetry group. the sole addition of the 𝜋∕3-rotation 𝖰 𝜋

3
to the set of

lattice and material symmetries. Nevertheless, it is just a matter of sim-
ple computations to check that an elasticity tensor of the special form
𝐶trans does in fact commute with any of the transformation matrices
associated with rotations of arbitrary angle 𝜃 about 𝒍3:

𝖰𝜃 =
⎛

⎜

⎜

⎝

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎞

⎟

⎟

⎠

.

This shows that  contains all the isometries that preserve the plane
orthogonal to 𝒍3, it is strictly larger than , and the material response
is transversely isotropic.

An analogous result was proven in a more general setting regarding
homogenized elastic structures by Ptashnyk and Seguin [18]. What we
want to highlight here is the shape of the computational cell, as defined
by (𝒂1,𝒂2,𝒂3), that can be used in simulations and design processes
to guarantee that transverse isotropy is not disrupted by the assumed
periodicity (that is of course an approximation in the description of
real systems). The fact that hexagonal periodic cells preserve isotropy
in planar problems has been empirically know for quite some time.
Nevertheless, from the discussion above, it should be clear that we do
not need to have a periodic cell that is invariant under 𝜋∕3-rotations
as long as we generate a periodic inclusion lattice with this property.
In fact, we can use a cell with faces orthogonal to 𝒍3 that are rhombi,
with angles of 60◦ and 120◦, normally extruded in the third direction.

We are now positioned to make an important step beyond what has
been so far rigorously or empirically shown. Indeed, it is difficult to
bring to three-dimensional cells a hexagon-like character, but we can
easily tune a rhomboidal cell to achieve an inclusion lattice that implies
the largest possible material symmetry group, namely the full group of
isometries. With this type of cell we can simulate or design periodic
5

Fig. 1. Unit cell that generates the FCC inclusion lattice. The generators (𝒂1 ,𝒂2 ,𝒂3) are
edges of a regular tetrahedron (dotted lines) and the faces are identical rhombi with
angles of 60◦ and 120◦.

structures that do not disrupt any material symmetry in spite of the
approximation associated with periodicity. We provide a way other
than randomization to generate isotropically elastic metamaterials.

We consider the periodic inclusion lattice of unit cell shown in Fig. 1
and with generators

𝒂1 = (1, 0, 0), 𝒂2 =

(

1
2
,

√

3
2

, 0

)

, 𝒂3 =

(

1
2
,

√

3
6

,

√

6
3

)

,

that are edges of a regular tetrahedron. We then choose as lattice
directors 𝒍1 = 𝒂1, 𝒍2 = (0, 1, 0), and 𝒍3 = (0, 0, 1). In each of the planes
generated by pairs of lattice generators, we have a hexagonal lattice,
but the symmetries of these planar lattices need not be symmetries of
the three-dimensional structure. For instance the rotations of angle 𝜋∕3
about 𝒍3 is not a lattice symmetry.

The first lattice symmetries that we consider are the reflections that
map 𝒂1 onto −𝒂1 and 𝒂2 onto −𝒂2, namely

𝖱1 =
⎛

⎜

⎜

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎟

⎟

⎠

, and 𝖱2 =

⎛

⎜

⎜

⎜

⎝

1∕2 −
√

3∕2 0
−
√

3∕2 −1∕2 0
0 0 1

⎞

⎟

⎟

⎟

⎠

.

From the commutation relation originated by 𝖱1 we find the orthotropic
symmetry with constraints 𝐶5𝑘 = 𝐶𝑘5 = 𝐶6𝑘 = 𝐶𝑘6 = 0 for 𝑘 ≠ 5, 6. The
additional consequences of the lattice symmetry 𝖱2 are

𝐶43 = 𝐶34 = 0, 𝐶22 = 𝐶11, 𝐶12 = 𝐶21 = 𝐶11 − 𝐶66,

𝐶23 = 𝐶13, 𝐶32 = 𝐶31, 𝐶24 = −𝐶14, 𝐶42 = −𝐶41,

𝐶55 = 𝐶44, 𝐶56 =
√

2𝐶41, 𝐶65 =
√

2𝐶14.

With these constraints, the elasticity matrix can be given in terms of 8
parameters, with 𝐷 = 𝐶11 − 𝐶66, as

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝐶11 𝐷 𝐶13 𝐶14 0 0

𝐷 𝐶11 𝐶13 −𝐶14 0 0

𝐶31 𝐶31 𝐶33 0 0 0

𝐶41 −𝐶41 0 𝐶44 0 0

0 0 0 0 𝐶44
√

2𝐶41

0 0 0 0
√

2𝐶14 𝐶66

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (11)

that shows some signatures of isotropic symmetry but is not even
transversely isotropic yet.

The last set of constraints that we need to consider comes from the
𝜋∕3 rotation about the axis identified by 𝒂1 +𝒂2 +𝒂3, a diagonal of the
rhomboidal cell. This produces a cyclic permutation of the generators
and corresponds to

𝖰sum = 1
4

⎛

⎜

⎜

⎜

⎜

1
√

3 + 2
√

2 −
√

6
√

3 − 2 −1 −
√

2 −
√

6
√ √ √ √

⎞

⎟

⎟

⎟

⎟

.

⎝

− 2 − 6 6 − 2 0
⎠
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𝐶

T
c

𝐶

m
t
t
g

5

c
i
t
g
m
s

d
r
b
i
c
s
w
r

s
u
t
s
n

n
t
I
s

𝑄̂sum = 1
16

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 4
√

3 + 7 8 − 4
√

3 −2
√

3 − 2 2 − 2
√

3 2
√

2 +
√

6

7 − 4
√

3 1 4
√

3 + 8 2
√

3 + 2 2
√

3 − 2 2
√

2 −
√

6

4
√

3 + 8 8 − 4
√

3 0 0 0 −4
√

2

2
√

3 − 2 2 − 2
√

3 0 −4 4
√

3 + 8 6
√

2 − 2
√

6

−2
√

3 − 2 2
√

3 + 2 0 4
√

3 − 8 4 −6
√

2 − 2
√

6
√

6 − 2
√

2 −2
√

2 −
√

6 4
√

2 −6
√

2 − 2
√

6 2
√

6 − 6
√

2 −2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Box II.
The linear transformation associated with this rotation is 𝑄̂sum which
is given in Box II.

From the commutation relation 𝐶𝑄̂sum = 𝑄̂sum𝐶, with 𝐶 as given
in Eq. (11), and by neglecting redundant identities, we finally obtain
for 𝐶 the constraints

𝐶33 = 𝐶11, 𝐶13 = 𝐶31 = 𝐶11 − 𝐶66,

14 = 𝐶41 = 0, 𝐶44 = 𝐶66.

he elasticity matrix thus depends only on two independent material
onstants, denoted by 𝑎 and 𝑏, and assumes the general form

iso =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑎 𝑎 − 𝑏 𝑎 − 𝑏 0 0 0
𝑎 − 𝑏 𝑎 𝑎 − 𝑏 0 0 0
𝑎 − 𝑏 𝑎 − 𝑏 𝑎 0 0 0
0 0 0 𝑏 0 0
0 0 0 0 𝑏 0
0 0 0 0 0 𝑏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

This is the form of the elasticity matrix associated with an isotropic
aterial response. In fact, even though we arrived at 𝐶iso by imposing

he commutation relation (7) for only three different material symme-
ries, it can be easily checked that 𝐶iso𝑆̂ = 𝑆̂𝐶iso for any 𝑆̂ of the form
iven by (6), namely any isometry of R3 is a material symmetry.

. Conclusions

We have proved that a periodic arrangement on a face-centered
ubic lattice of spherical inclusions of an isotropic solid within an
sotropic matrix gives rise to a large-scale isotropic response. This has
he important implication that a rhomboidal computational cell that
enerates such a lattice can be used to design composites in which the
aterial symmetry is not affected by the periodicity of the construction,

ince even the largest possible symmetry group would be preserved.
To be able to discuss material symmetries in a way that is indepen-

ent of the reference frame, we have introduced a normalized Voigt
epresentation, based on material directors rather than on a coordinate
asis. Within this concise setup, symmetries of the inclusion lattice
nduce linear constraints on the entries of the 6 by 6 matrix of material
oefficients that represents the linear elasticity tensor. Importantly,
uch geometric constraints can give rise to a material symmetry group
hich is larger than the group of lattice symmetries, thereby leaving

oom for the emergence of effectively isotropic materials.
Our findings allow to interpret several computational results that

how an almost isotropic behavior of metamaterials with FCC structure
nder a new light. Those results should be regarded as missing the
heoretical prediction simply by numerical approximation and not as
howing that the metamaterial has cubic symmetry with a small, but
on-vanishing, degree of anisotropy.

Our construction is based on the remarkable fact that a rather small
umber of discrete symmetries is sufficient to constrain the elasticity
ensor in such a way that any isometry becomes a material symmetry.
n light of this, the shape of the inclusions need not be spherical. It is
ufficient to choose a solid that is symmetric under the two reflections
6

𝖱1 and 𝖱2 and the rotation 𝖰sum considered above. For instance, an
appropriately oriented tetrahedron would be suitable, but also more
complicated shapes could be considered.
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