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Abstract
Batchmarking is common and useful for many capture–recapture studies where
individual marks cannot be applied due to various constraints such as timing,
cost, or marking difficulty. When batch marks are used, observed data are not
individual capture histories but a set of counts including the numbers of indi-
viduals first marked, marked individuals that are recaptured, and individuals
captured but released without being marked (applicable to some studies) on
each capture occasion. Fitting traditional capture–recapture models to such data
requires one to identify all possible sets of capture–recapture histories that may
lead to the observed data, which is computationally infeasible even for a small
number of capture occasions. In this paper, we propose a latent multinomial
model to deal with such data, where the observed vector of counts is a non-
invertible linear transformation of a latent vector that follows a multinomial
distribution depending onmodel parameters. The latent multinomial model can
be fitted efficiently through a saddlepoint approximation based maximum like-
lihood approach. The model framework is very flexible and can be applied to
data collected with different study designs. Simulation studies indicate that reli-
able estimation results are obtained for all parameters of the proposedmodel.We
apply the model to analysis of golden mantella data collected using batch marks
in Central Madagascar.

KEYWORDS
batch marking, capture–recapture, golden mantella, latent multinomial model, saddlepoint
approximation

1 INTRODUCTION

Standard models for capture–recapture data, like the
closed-population models of Otis et al. (1978) and the
Cormack–Jolly–Seber model (Cormack, 1964; Jolly, 1965;
Seber, 1965), rely on the fact that marked individuals can
be uniquely identifiedwhen they are recaptured. However,
there are many experiments in which this is not possi-
ble either because it is too costly or too difficult to apply

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

individual marks. Examples include fisheries research in
which many thousands of smolts (young fish) may be
captured and marked at the same time or the study of
mosquitoes and other insects which are too small to mark
individually (see, e.g., Davidson et al., 2019; Doll et al.,
2021). In these cases, it is common to apply batch marks
such that all individuals captured on one ormore occasions
receive identical marks. This strategy provides complete
information in the case of a two-stage experiment in which
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individuals are captured and marked on one occasion and
recaptured on the second occasion. The standard estima-
tors for such data, the Lincoln–Petersen and Chapman
estimators, do not rely on individual identification. How-
ever, information is lost if the study comprises more than
two occasions because the capture history of individuals
cannot be determined uniquely. This is referred to as an
extended batch-mark study (Huggins et al. 2010; Cowen
et al. 2017).
This paper was motivated by the analysis of data from

a batch marking study of golden mantella (Mantella
aurantiaca), configured as a robust design (Pollock, 1982)
including six primary periods each containing 3–4 sec-
ondary occasions (21 secondary occasions in total). The
golden mantella is a critically endangered frog found only
in small areas of forest in CentralMadagascar. Information
on population status is urgently needed to inform conser-
vation measures, but the small size of the frog makes indi-
vidual marking difficult. However, batch marking using
Visible Implanted Elastomers (VIE tags) is possible and
was used tomark batches of frogs at 2-month intervals dur-
ing the rainy season, with a view to estimating abundance.
Modeling data from extended batch-mark experi-

ments is challenging because the actual capture histories
for marked individuals required by common capture–
recapture models cannot be observed. Observed data for
such experiments comprise a set of counts including the
numbers of individuals first marked, marked individuals
that are recaptured, and unmarked individuals captured
but released without being marked (applicable to some
studies) on each capture occasion. An immediate solution
is to identify all possible sets of the true (latent) individual
capture histories that could have produced the observed
data and then calculate the likelihood by summing up
the probabilities for each set of latent capture histories.
However, if the study contains more than a few capture
occasions and the number of individuals marked is not
very small, then there will be many configurations of
the possible latent capture histories and computing the
likelihood directly will be computationally expensive and
thus infeasible in practice.
Huggins et al. (2010) proposed a pseudo-likelihood

approach for modeling batch mark data of marked indi-
viduals in the context of open populations. Survival
and capture probabilities are estimated using estimat-
ing equations and population size is estimated through
the Horvitz–Thompson estimator. Cowen et al. (2014)
formulated a likelihood function for data from marked
individuals and showed that their approach producesmore
accurate estimates and lower standard errors than the
pseudo-likelihood approach of Huggins et al. (2010). The
latter is also more advantageous in terms of efficiency for
larger problems (e.g., more than 11 capture occasions).
These methods focus on marked individuals only; indi-

viduals captured with no marks are not included in the
analysis. This gap was later filled by Cowen et al. (2017)
who developed a flexible hidden Markov model (HMM)
framework that accounts for data from both marked and
unmarked individuals. Key to constructing the HMM for
batch mark data is defining two sets of latent variables:
the numbers of individuals with different batch marks
that are available for capture on each occasion, and the
numbers of unmarked individuals that are present in
the population on each occasion. One appealing advan-
tage of the HMM approach is that the likelihood can
be maximized efficiently using the forward algorithm for
HMMs.
Although the HMM approach of Cowen et al. (2017)

has advantages over previous methods, we foresee some
potential practical issues adapting it for our mantella data
analysis. As noted by the authors (Cowen et al., 2017,
Section 7.2, p. 1328), the HMM approach will encounter
dimensionality issueswhen the numbers ofmarked and/or
unmarked individuals become large. This occurs because a
large number of marked/unmarked individuals results in
high-dimensional state-dependent probability and transi-
tion probabilitymatrices for theHMMs. Theweather loach
example considered by Cowen et al. (2017) consists of 11
occasions with at most 280 marked individuals and the
largest estimated abundance of 1007 on a single occasion.
As a comparison, our data consist of 21 occasionswith 1090
individuals marked in the first period, and results from
our model (see details in Section 5) show that the lowest
abundance estimate is 1385 for a single period. Thus, we
anticipate that the dimensionality issue will bemuchmore
severe if we adapt the HMM approach for our data. Cowen
et al. (2017) handled the dimensionality issue in a trial-
and-error manner by grouping the latent states into bins
and putting an upper bound for the number of unmarked
individuals in the population. Thesewere proven to be use-
ful for their example, but it is challenging in practice to
determine appropriate values for the bin size and the upper
bound for the number of unmarked individuals.
We propose a new model to analyze extended batch-

mark data, which avoids the practical issues of the HMM
approach. The model falls within the class of latent multi-
nomial models (Link et al., 2010), where the observed
vector of counts is assumed to arise from a non-invertible
linear transformation of a latent vector that is modeled
via a multinomial distribution. More specifically, we can
model the true but unobservable capture–recapture pro-
cess using a multinomial model, and then link the latent
vector of frequencies of capture–recapture histories to the
observed counts through a derived known matrix. There
are two main reasons to develop the model here. First,
the model framework is very flexible and can be easily
adapted to analysis of different types of extended batch-
mark data. Second, the model can be fitted via an efficient
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ZHANG et al. 3

TABLE 1 Data summary

Period Marks 1 2 3 4 5 6
1 1090 219 55 17 255 90 15
2 295 43 42 41 62 37
3 115 35 7 2 0
4 686 174 81 30
5 403 107 13
6 141 1

Notes: Summary of the goldenmantella data. TheMarks column indicates how
many individuals were marked over all occasions within each primary period.
The columns to the right show howmany times these individuals were recap-
tured on the subsequent secondary occasions within that same period and in
each of the following periods.

maximum likelihood approach based on the saddlepoint
approximation (Zhang et al., 2019, 2021).

2 DATA

The data on the golden mantella were collected during
their breeding seasons, December through March, in the
austral summers of 2014–2015 and 2015–2016. Individuals
were captured during three primary periods in each year,
one each in December, January, and March, with each pri-
mary period comprising three secondary occasions in the
first year and four secondary occasions in the second. A
total of 2,730 individuals were marked, with 1,500 marked
in the first year and 1,230 in the second. The number of
unmarked individuals captured on each secondary occa-
sion ranged from aminimumof 21 on the fourth secondary
occasion of the final primary period to a maximum of
438 on the second secondary occasion of the first primary
period. The total number of recaptures of marked indi-
viduals was 1326. The highest number of recaptures, 651,
came from individuals marked during the first primary
period, which is not surprising as these individuals have
the most opportunities to be recaptured. Only one individ-
ualmarked during the final primary periodwas recaptured
on one of the subsequent secondary occasions. Table 1 pro-
vides a summary of the data onmarking and recaptures by
the primary period.

3 MODELS ANDMETHODS

3.1 Latent process

The latent (unobservable) process for the capture–
recapture study of interest using batch marks can be
described as a POPAN model (Schwarz & Arnason, 1996)
incorporating the robust design (Pollock, 1982). Suppose
the study consists of 𝐾 primary periods indexed by

𝑘 = 1,… , 𝐾, and within period 𝑘 there are 𝑇𝑘 secondary
capture occasions indexed by 𝑡 = 1, … , 𝑇𝑘 . The model
assumes that the population is closed within each primary
period but allows for immigration/birth and emigra-
tion/death between two primary periods. As is standard
for Jolly–Seber based models, immigration/birth is
assumed to be completed at the beginning of each primary
period, and emigration is assumed to be permanent.
Let 𝜔𝑖𝑘𝑡 denote the latent (true) capture event for indi-

vidual 𝑖 = 1, … ,𝑁 on occasion 𝑡 of period 𝑘, where 𝑁

represents the size of the superpopulation that consists of
all individuals which are ever present in the population
and are available for capture. There are two possibilities
for each 𝜔𝑖𝑘𝑡: 0 (non-capture) and 1 (capture). Let 𝝎𝑖𝑘 =
(𝜔𝑖𝑘1, … , 𝜔𝑖𝑘𝑇𝑘 ) denote the latent capture history for indi-
vidual 𝑖 in primary period 𝑘, and 𝝎𝑖 = (𝝎𝑖1, … , 𝝎𝑖𝐾) the
overall latent capture history for the individual. Then,
each latent capture history 𝝎 is a vector of length 𝑇 =∑𝐾

𝑘=1
𝑇𝑘. The number of all latent histories is 𝐽 = 2𝑇 . For

convenience, we index these latent histories as history 𝑗 =
1,… , 𝐽.
Suppose 𝑥𝑗 is the number of individuals with latent cap-

ture history 𝑗. Let 𝜋𝑗 = 𝜋𝑗(𝜽) denote the probability that
an individual has latent history 𝑗, where 𝜽 is a vector of
model parameters. Assuming independence between indi-
viduals yields a multinomial model for 𝒙 = (𝑥1, … , 𝑥𝐽)

′,
𝒙 ∼ Multinomial(𝑁; 𝝅), where 𝝅 = (𝜋1, … , 𝜋𝐽)

′.
Now, we consider how to express each element 𝜋𝑗 of 𝝅

in terms of the model parameters 𝜽, which include

∙ 𝑝𝑘𝑡: the capture probability on secondary occasion 𝑡 of
period 𝑘; 𝒑 = (𝑝11, 𝑝12, … , 𝑝𝐾𝑇𝐾 );

∙ 𝜙𝑘: the survival probability from period 𝑘 to 𝑘 + 1; 𝝓 =
(𝜙1, … , 𝜙𝐾−1);

∙ 𝛽𝑘: the probability of entry in period 𝑘; 𝜷 = (𝛽1, … , 𝛽𝐾).

The probabilities of events 0 and 1 on secondary occasion 𝑡
of period 𝑘 are 1 − 𝑝𝑘𝑡 and 𝑝𝑘𝑡, conditional on the individ-
ual being available for capture. The parameter 𝜙𝑘 denotes
the probability that an individual is alive (i.e., available
for capture) during period 𝑘 + 1 given that it was avail-
able in period 𝑘, and 𝛽𝑘 denotes the probability that an
individual is first available for capture during period 𝑘.
Given that emigration is permanent, 𝛽1 is the probabil-
ity that an individual is available for capture during the
first primary period, 𝛽2 is the probability that an indi-
vidual is available for capture during the second primary
period given that it was not available during the first pri-
mary period, etc. The capture event 0 has a probability
of 1 on any occasion on which an individual is not avail-
able for capture, either because it has not entered or has
already died/emigrated. Consider a simple example with
𝐾 = 3 and 𝑇𝑘 = 2 for 𝑘 = 1, 2, 3. The probability of latent
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4 ZHANG et al.

history 001010 is Pr(001010) = {𝛽1(1 − 𝑝11)(1 − 𝑝12)𝜙1 +

𝛽2}𝑝21(1 − 𝑝22)𝜙2𝑝31(1 − 𝑝32).
Note that the survival and capture probabilities are

actually modeled on the logit scale to avoid the problem
of constrained optimization when fitting the resulting
model via maximum likelihood (introduced below). We
also transform the entry probabilities, 𝛽𝑘, 𝑘 = 1,… , 𝐾, but
more consideration is needed because of the added con-
straint that

∑𝐾

𝑘=1
𝛽𝑘 = 1. Specifically, we reparameterize

the model in terms of the conditional entry probabilities,
𝛽∗1 , … , 𝛽∗𝐾−1 defined such that 𝛽∗1 = 𝛽1, 𝛽∗2 = 𝛽2∕(1 − 𝛽1),
…, 𝛽∗𝐾−1 = 𝛽𝐾−1∕(1 − 𝛽1 −⋯− 𝛽𝐾−2). Optimization is
then conducted with respect to logit(𝛽∗1 ), … , logit(𝛽∗𝐾−1)
which automatically constrains the value of 𝛽𝐾 so that∑𝐾

𝑘=1
𝛽𝑘 = 1 and 𝛽𝑘 ∈ (0, 1) for all 𝑘 = 1,… , 𝐾.

3.2 Observed data

When batch marks are used for the study, the vector 𝒙
cannot be observed because marked individuals are not
identifiable. Instead, we can only observe the set of counts
including:

∙ 𝑚𝑘𝑡, the number of individuals marked on secondary
occasion 𝑡 of primary period 𝑘;

∙ 𝑛𝑘𝑗𝑡, the number of individuals that are marked in pri-
mary period 𝑘 and recaptured on secondary occasion 𝑡

of primary period 𝑗;

for each 𝑘 = 1,… , 𝐾, 𝑗 = 1,… , 𝐾, and 𝑡 = 1, … , 𝑇𝑘. Let𝒎 =

(𝑚11, … ,𝑚1𝑇1 , … ,𝑚𝐾𝑇𝐾 )
′ and 𝒏 = (𝑛111, … , 𝑛𝐾𝐾𝑇𝐾 )

′. Note
that some elements of 𝒏 are always equal to zero, specif-
ically 𝑛𝑘𝑗𝑡 = 0 if 𝑗 < 𝑘 or both 𝑗 = 𝑘 and 𝑡 = 1. These
elements are removed from 𝒏 and are not regarded as data.

3.3 Connecting the observed and latent
variables

Let ℎ1(𝝎) and ℎ2(𝝎) denote the primary period and
secondary occasion within this primary period, respec-
tively, on which an individual with true capture his-
tory 𝝎 is first captured (and marked). Let ℎ(𝝎) =

(ℎ1(𝝎), ℎ2(𝝎)). It is noted that 𝑚𝑘𝑡 =
∑𝑁

𝑖=1
{ℎ(𝝎𝑖) =

(𝑘, 𝑡)} =
∑

𝝎∈Ω
𝑥𝝎{ℎ(𝝎) = (𝑘, 𝑡)}, where 𝑥𝝎 denotes the

number of individuals with true capture history𝝎,Ω is the
set of all latent capture histories, and (⋅) is the usual indi-
cator function. This means that each element of𝒎 can be
written as a linear transformation of the latent vector𝒙 and
so we can define

𝒎 = 𝑨𝒙, (1)

where𝑨 is a knownmatrix with only 0 and 1 entries. Simi-
larly, a linear relationship between 𝒏 and 𝒙 can be derived.
If 𝑘 < 𝑗, then 𝑛𝑘𝑗𝑡 =

∑
𝝎∈Ω

𝑥𝝎{ℎ1(𝝎) = 𝑘}(𝜔𝑗𝑡 = 1).
If 𝑘 = 𝑗, then 𝑛𝑘𝑗𝑡 =

∑
𝝎∈Ω

𝑥𝝎{ℎ1(𝝎) = 𝑘, ℎ2(𝝎) <

𝑡}(𝜔𝑗𝑡 = 1). It follows that we can construct a known
matrix 𝑩 such that

𝒏 = 𝑩𝒙. (2)

Combining Equations (1) and (2) gives 𝒚 = 𝑻𝒙 where 𝒚 =

(𝒎′, 𝒏′)′ denotes the concatenated vector of the observed
counts and 𝑻 = (𝑨′, 𝑩′)′ is the matrix formed by stacking
𝑨 and 𝑩. Since 𝒙 follows a multinomial distribution and 𝑻
is a knownmatrix, themodel falls within the class of latent
multinomial models (Link et al., 2010).

3.4 Unmarked individuals

The framework presented above does not consider the case
in which some individuals are captured but are released
without beingmarked due to time, cost or other constraints
(Cowen et al., 2017), because this does not exist in the
golden mantella data that motivated this study. However,
unmarked individuals can be readily incorporated into the
modeling framework here. We describe this in more detail
in Section A of the Supporting information.

3.5 Inference

We compute the maximum likelihood estimates and stan-
dard errors for the parameters based on the saddlepoint
approximation to the probability mass function of 𝒀,
the random variable associated with the observed vector
𝒚. This approach has been applied previously to latent
multinomial models allowing for identification errors by
Zhang et al. (2019, 2021). Briefly, if the moment generating
function of 𝑿 is 𝑀𝑿(𝒓), which can be computed explic-
itly for the multinomial distribution, then the moment
generating function of 𝒀 = 𝑻𝑿 can be computed as
𝑀𝒀(𝒔) = 𝑀𝑿(𝑻

′𝒔). The saddlepoint approximation to the
likelihood function, first introduced by Daniels (1954),
is 𝑓𝒀(𝒚; 𝜽) =

1

(2𝜋)𝐿∕2|𝐾′′
𝒀
(𝒔;𝜽)|1∕2 exp{𝐾𝒀(𝒔; 𝜽) − 𝒔′𝒚}where 𝜽

denotes the vector of all parameters (as above), 𝐾𝒀(𝒔; 𝜽) =

log{𝑀𝒀(𝒔; 𝜽)} denotes the cumulant generating function
of 𝒀, |𝐾′′

𝒀(𝒔; 𝜽)| denotes the determinant of the Hessian
matrix of 𝐾𝒀(𝒔; 𝜽) with respect to 𝒔 and evaluated at 𝒔, 𝐿
is the length of 𝒀, and 𝒔 = 𝒔(𝒚, 𝜽) solves the saddlepoint
equation

𝑑

𝑑𝒔
𝐾𝒀(𝒔; 𝜽) = 𝒚. (3)
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ZHANG et al. 5

The approximate likelihood is thenmaximized to compute
point estimates, and standard errors are obtained from
the inverse of the Hessian matrix as in the usual normal
approximation for maximum likelihood estimators.
Note that the saddlepoint equation (3) rarely has an

analytic solution and is instead solved numerically bymin-
imizing 𝐾𝒀(𝒔; 𝜽) − 𝒔′𝒚 with respect to 𝒔. In particular, we
apply the method of Zhang et al. (2019) which provides
the efficient computation of the saddlepoint approxima-
tion through the R package TMB (Kristensen et al., 2016).
Optimization and approximation of theHessianmatrix are
then conducted directly in R via the function nlminb().
To speed convergence of the optimization routine and
decrease the chances of finding a local maximum, we
compute initial values based on a modification of the
Manly–Parr approach (Manly & Parr, 1968). Section B of
the Supporting information provides details.

3.6 Computational issues

Two data-related challenges arose during the modeling of
mantella data using the latent multinomial approach. The
first is that estimates of the survival and entry probabili-
ties may be close to zero or one for some of the primary
periods in all of the models we fit (described below). This
leads to problems akin to separation in standard logistic
regression models. Separation occurs when the response
is completely explained by a linear combination of the
covariates. In this case, the likelihood is actually diver-
gent and continues to increase as the values of one or
more of the coefficients in the linear predictor move away
from 0. Optimization algorithms will end at some point
returning a supposed maximum likelihood estimate, but
the likelihood will in fact be non-concave. This violates
the assumptions of the standard asymptotics formaximum
likelihood estimators and means that the Hessian matrix
may not be invertible or, if it is, that the likelihood tends
to be close to flat and the resulting standard errors pro-
duced by inverting theHessianmatrix are very large and do
not accurately reflect the variance of the estimators. Often
the confidence intervals (CIs) produced by the asymptotic
normal approximation will cover the entire (0,1) interval,
after rounding (see Agresti 2012, Section 6.5 for further
details). To ensure that the likelihood is not divergent,
we can penalize the likelihood by subtracting a penalty
term  =

∑
𝜃∈Θ𝑝

logit(𝜃)2∕(2𝜎2𝑝), where Θ𝑝 denotes the
subset of parameters in the model that are probabilities
(i.e., are constrained between 0 and 1) and 𝜎𝑝 is a penalty
tuning parameter. We set 𝜎𝑝 = 3 in our simulation stud-
ies and mantella data analysis. In a Bayesian framework,
we could interpret the penalties as independent priors
such that logit(𝜃) ∼ 𝑁(0, 𝜎2𝑝) for each 𝜃. Given 𝜎𝑝 = 3, this
would mean, a priori, that 𝑃(0.003 < 𝜃 < 0.997) ≈ 0.95 for

each 𝜃 ∈ Θ𝑝. This is a very small penalty but we found
that it was sufficient to stop the probabilities from get-
ting too close to 0 or 1 so that standard errors could
be computed (see Sections 4 and 5). If needed, one can
change the value of 𝜎𝑝 to get a larger or smaller penalty
term.
The second challenge is that larger numbers of capture

occasions lead to a significant computational burden. The
run times are relatively short (at least in comparison to
conducting a Bayesian analysis through MCMC with data
augmentation of the full population), but memory usage
can be very high. Optimization of the likelihood for the
most complex model of the mantella data took almost 2
h, which is not too drastic, but required 95 GB of RAM.
This forced us to fit thesemodels using a high-performance
computing cluster, which may not be available to all users.
The reason why memory usage is so high is that the num-
ber of possible latent capture histories is very large. Even
after removing the latent histories that could not possibly
have occurred given the observed data there are still over
1.15 million latent histories that could have been realized
in generating the mantella data. The result is that matrices
𝑨 and 𝑩 are very large and consume a lot of memory even
when represented in sparse format.
As a solution,we tested the concept of prefiltering the set

of latent histories by computing their probabilities based
on the initial values and retaining only the 10% of histo-
ries with the highest probabilities. Results comparing the
analysis of the complete and prefiltered data are provided
for the application to the mantella data in Section 5. This
solution is admittedly ad hoc and the results will likely
depend on both the initial values and the proportion of cap-
ture histories that are retained. We discuss this further in
Section 6.

4 SIMULATION STUDY

We ran a set of simulations to assess the performance of
the proposed approach for parameter estimation. As an
example, we show here the results of a simulation based
on a study consisting of 𝐾 = 6 primary periods each with
𝑇𝑘 = 2 secondary occasions. We simulated 100 datasets
with the settings of 𝑁 = 5, 000, 𝜷 = (0.10, 0.24, 0.11,

0.12, 0.18, 0.25), 𝝓 = (0.87, 0.82, 0.93, 0.54, 0.52), and 𝒑 =

(0.27, 0.22, 0.25, 0.21, 0.17, 0.29, 0.33, 0.13, 0.19, 0.40, 0.14,

0.26). We generated the values of 𝜷 by simulating random
numbers from a multinomial distribution with size 100
and probability 1/6 for each of six classes and then dividing
the numbers by 100. 𝝓 and𝒑were generated from two uni-
form distributions over intervals (0.5, 0.95) and (0.1, 0.4),
respectively. We then fit the data-generating model to
each of the datasets using the original and penalized
saddlepoint likelihoods.
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6 ZHANG et al.

TABLE 2 Simulation results

Original Penalized
Parameter True Mean RMSE CIC% CIW Mean RMSE CIC% CIW
𝑁 5000.00 5036.75 160.01 96 614.63 5027.06 155.44 94 593.91
𝜙1 0.87 0.86 0.07 92 0.32 0.86 0.06 94 0.26
𝜙2 0.82 0.83 0.05 94 0.21 0.82 0.04 99 0.19
𝜙3 0.93 0.93 0.06 92 0.59 0.91 0.05 87 0.27
𝜙4 0.54 0.54 0.04 94 0.17 0.55 0.05 95 0.17
𝜙5 0.52 0.55 0.09 97 0.28 0.53 0.07 94 0.27
𝛽1 0.10 0.10 0.01 98 0.06 0.10 0.01 96 0.06
𝛽2 0.24 0.24 0.02 97 0.10 0.24 0.02 98 0.10
𝛽3 0.11 0.11 0.02 95 0.09 0.11 0.02 94 0.09
𝛽4 0.12 0.12 0.02 95 0.07 0.12 0.02 94 0.07
𝛽5 0.18 0.18 0.02 93 0.06 0.18 0.02 93 0.06
𝛽6 0.25 0.25 0.02 97 0.09 0.25 0.02 96 0.09
𝑝11 0.27 0.27 0.04 99 0.17 0.28 0.04 95 0.17
𝑝12 0.22 0.22 0.03 99 0.14 0.21 0.03 97 0.14
𝑝21 0.25 0.25 0.02 96 0.08 0.26 0.02 94 0.08
𝑝22 0.21 0.21 0.02 97 0.07 0.21 0.02 97 0.07
𝑝31 0.17 0.16 0.01 95 0.05 0.17 0.01 90 0.05
𝑝32 0.29 0.29 0.02 96 0.08 0.29 0.02 95 0.08
𝑝41 0.33 0.33 0.02 94 0.09 0.33 0.02 95 0.08
𝑝42 0.13 0.13 0.01 98 0.04 0.13 0.01 98 0.04
𝑝51 0.19 0.19 0.01 93 0.06 0.19 0.01 95 0.06
𝑝52 0.40 0.40 0.02 97 0.10 0.40 0.03 93 0.10
𝑝61 0.14 0.13 0.02 94 0.06 0.13 0.02 94 0.06
𝑝62 0.26 0.25 0.03 94 0.11 0.26 0.03 96 0.11

Notes: Parameter estimation results of a simulation study with 100 replicates in the setting of 𝐾 = 6, 𝑇𝑘 = 2 for 𝑘 = 1,… , 6, 𝑁 = 5, 000, 𝜷 =

(0.10, 0.24, 0.11, 0.12, 0.18, 0.25),𝒑 = (0.27, 0.22, 0.25, 0.21, 0.17, 0.29, 0.33, 0.13, 0.19, 0.40, 0.14, 0.26), and 𝝓 = (0.87, 0.82, 0.93, 0.54, 0.52). CIC% and CIW represent
95% confidence interval coverage, and mean 95% confidence interval width, respectively; RMSE: root mean square error.

Table 2 summarizes the results of the simulation study.
The estimators are almost unbiased for all of the model
parameterswith approximately nominal CI coveragewhen
the original saddlepoint likelihood is used for model fit-
ting. We noted that estimates of the survival rate 𝜙3 were
often close or equal to 1, given that the true value was 0.93
in the simulation. This resulted in rather wideWald CIs, as
indicated by the high mean CI width 0.59 in the table. It is
well known that the Wald approach does not work in the
case of boundary estimation. Zhang et al. (2021) adopted
a parametric bootstrapping method in this context for a
latent multinomial capture–recapture model for misiden-
tification, which improves the precision of inference but
is more time-consuming. Alternatively, the penalized like-
lihood approach is more efficient. As shown in Table 2,
fitting the model using the penalized likelihood yields
a negligible negative bias to the estimation of 𝜙3 and
the CI coverage rate (87%) is slightly below the nominal
value. However, the mean CI width for 𝜙3 is reduced by
about 54%, which means that the precision of inference is

greatly improved in the estimation results. In addition, the
mean CI width for 𝜙1 is reduced by 19% when the penal-
ized likelihood is used, but the coverage remains at 94%.
Except for 𝜙1 and 𝜙3, penalization does not have signifi-
cant effect on the estimation results of other parameters
in this simulation. In simulations where the boundary
estimation issue was rare, we did not notice obvious dif-
ferences between the estimation results of the original and
penalized likelihoods.

4.1 Model selection

Model selection needs careful consideration when ana-
lyzing real data. However, there is not a general method
available formodel selectionwhen the saddlepoint approx-
imation is used formaximum likelihood estimation. Zhang
et al. (2019) suggested that the saddlepoint-approximation-
based Akaike information criterion (AIC) works well for
model selection when the observed data of the latent
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ZHANG et al. 7

TABLE 3 Model selection

Likelihood 𝒑(𝒕)𝝓(𝒌) 𝒑(⋅)𝝓(𝒌) 𝒑(𝒕)𝝓(⋅) 𝒑(⋅)𝝓(⋅)

Original 69 0 31 0
Penalized 63 0 37 0

Notes: Summary of the simulations formodel selection. Each entry of the table
gives the number of cases (out of 100), where the model has the lowest AIC
value and is selected as the preferred model.

multinomial models consist mostly of large counts (e.g.,
no less than 5), which is the case for the mantella data we
analyze below. Here, we also use simulations to check the
performance of AIC based on the saddlepoint likelihood
formodel selection under the proposed latentmultinomial
model for extended batch-mark data.
We first considered the same datasets generated in the

simulation study above. For each dataset, in addition to the
true model, denoted by 𝑝(𝑡)𝜙(𝑘), we fit three simplified
models denoted by 𝑝(𝑡)𝜙(⋅), 𝑝(⋅)𝜙(𝑘), and 𝑝(⋅)𝜙(⋅). Here,
𝑝(𝑡) and 𝑝(⋅) represent the options of either completely
time-varying capture probabilities or constant capture
probability over all occasions, and 𝜙(𝑘) and 𝜙(⋅) repre-
sent the options of either period-dependent or constant
survival rates. Entry probabilities were allowed to be time-
dependent for all four models. We fit each model using
both the original and penalized likelihoods, and then com-
puted the AIC value in each case. In both cases, AIC can
always correctly select the data-generating model.
We further investigated the performance of AIC using

another simulation study, where 𝑁 was set to be 1,000,
while other parameters remained the same as in the
simulation above. Table 3 presents the results of model
selection for this simulation. When the original saddle-
point likelihood was used for model fitting, AIC selected
the data-generating model 𝑝(𝑡)𝜙(𝑘) for 69 out of the 100
datasets. For the remaining 31 datasets, the simpler model
𝑝(𝑡)𝜙(⋅) was favored by AIC. This indicates that AIC is
conservative and able to determine the model for capture
probabilities but often selects a simpler model for survival
probabilities. When model 𝑝(𝑡)𝜙(⋅) was preferred, the dif-
ference between the AIC values of this model and the true
model was not large. The largest difference was 5.7 and
35% of the time the difference was less than 2. We observed
that the AIC computed from the penalized likelihood per-
formed similarly and selected the data-generating model
𝑝(𝑡)𝜙(𝑘) for 63 of the 100 datasets, while model 𝑝(𝑡)𝜙(⋅)
was preferred for the remaining 37 datasets. In terms of the
inability of AIC computed using the original likelihood to
always determine that time-dependent survival is neces-
sary, we believe that this is due to a lack of power caused
by batch-marking and not collecting individual level data.
The lack of power is also evident from thewidths of the CIs
for the survival probabilities in Table 2. The performance of

AIC for model selection improves significantly for simula-
tions with larger abundance or capture probabilities, while
other parameter values remain the same as those for the
simulation study here. See Tables 6 and 7 in Section C of
the Supporting information.

5 APPLICATION

We fit six different models to the mantella data formed
by combining three alternatives for the capture probability
and two for the survival probability. The three alternatives
considered for the capture probability were: (1) distinct
on every secondary period within each primary period
(model 𝑝(𝑡) as in Section 4.1), (2) equal for all secondary
periods within each primary period (model 𝑝(𝑘)), and (3)
constant over all secondary periods (model 𝑝(⋅)). For the
survival probability, we considered the model with a dis-
tinct parameter for each primary period (model 𝜙(𝑘) as in
Section 4.1) and a model with a constant monthly survival,
denoted by 𝜙(𝑚). This is a variation of the constant sur-
vival model denoted by 𝜙(⋅) in Section 4.1 which accounts
for the fact that the primary periods in the mantella study
are not equally spaced. Survival between periods 𝑘 and
𝑘 + 1 for this model is defined as 𝜙𝑘 = 𝑆Δ

𝑚
𝑘 , where 𝑆 is the

monthly survival rate and Δ𝑚
𝑘
denotes the time in months

between the two periods. If the time between consecutive
periods is constant,Δ𝑚

𝑘
= 𝑑, then𝜙𝑘 = 𝑠𝑑 recovers the con-

stant survival model, 𝜙(⋅). No constraints were placed on
the recruitment parameters in any of these models.
We also fit these models with all three of the methods

described in Section 3: (1) constructing the likelihood from
the complete set of latent histories without penalization
(original), (2) constructing the likelihood from the com-
plete set of latent histories with penalization (penalized),
and (3) constructing the likelihood from the prefiltered set
of latent histories with penalization (prefiltered). Table 4
compares the different models in terms of the fit to the
data (AIC), run time, andmemory usage computedwith all
threemethods of fitting. The absolute values of the AIC are
different when comparing the three variants of the same
model, but the qualitative results are exactly the same. For
all threemethods, the AIC provides very strong support for
the most complicated model, Model 2: 𝑝(𝑡)𝜙(𝑘). However,
the model fit using the complete set of latent histories ran
for almost 2 h and required almost 96GBofRAM,while the
prefiltered version ran in under 16 minutes and required
less than 9 GB of RAM. This makes it feasible to fit these
models on a personal computer and to reasonably compare
different models to test alternative hypotheses.
Table 5 displays point estimates and CIs of the demo-

graphic parameters for the three versions of the selected
model, Model 2, while Figure 1 compares the estimates
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8 ZHANG et al.

TABLE 4 Model comparison

Original Penalized Prefiltered
Model AIC Mem. Time AIC Mem. Time AIC Mem. Time
1: 𝑝(𝑡)𝜙(𝑚) 1131.15 95.77 96.65 1155.95 94.98 88.43 1159.92 8.33 12.73
2: 𝑝(𝑡)𝜙(𝑘) 1007.51 95.77 116.75 1029.34 94.94 93.43 1034.87 8.32 15.80
3: 𝑝(𝑘)𝜙(𝑚) 1321.31 95.47 57.25 1330.79 95.44 46.85 1334.50 9.24 11.95
4: 𝑝(𝑘)𝜙(𝑘) 1201.96 95.52 71.32 1212.58 95.50 59.90 1217.27 7.90 12.67
5: 𝑝(⋅)𝜙(𝑚) 2645.83 95.38 39.35 2660.74 95.37 52.33 2662.63 9.25 11.08
6: 𝑝(⋅)𝜙(𝑘) 1443.91 95.39 54.33 1453.14 95.33 42.27 1454.74 7.76 10.57

Notes: Comparisons for the six models fit to the golden mantella data retaining the complete set of latent histories without penalization (original), retaining
the complete set of latent histories with penalization (penalized), or retaining only the 10% with the highest probability given the initial values with penaliza-
tion (prefiltered). Each model is defined by the structure of the capture and survival probabilities. Results include the AIC, memory usage in GB, and run time
in minutes.

TABLE 5 Point estimates

Parameter Original Penalized Prefiltered
𝑁 5699(5321,6133) 5467(5024,5995) 5567(5145,6063)
𝜙1 0.5(0.42,0.58) 0.5(0.42,0.58) 0.5(0.42,0.58)
𝜙2 1(0,1) 0.98(0.77,1) 0.98(0.78,1)
𝜙3 0.64(0.53,0.74) 0.65(0.54,0.74) 0.66(0.55,0.76)
𝜙4 0.36(0.29,0.44) 0.36(0.29,0.43) 0.37(0.3,0.45)
𝜙5 1(0,1) 0.72(0.18,0.97) 0.85(0.21,0.99)
𝛽1 0.43(0.38,0.47) 0.44(0.39,0.5) 0.44(0.39,0.49)
𝛽2 0.18(0.14,0.24) 0.19(0.14,0.25) 0.18(0.13,0.24)
𝛽3 0(0,1) 0.01(0,0.09) 0.01(0,0.09)
𝛽4 0.13(0.09,0.18) 0.13(0.09,0.18) 0.13(0.09,0.18)
𝛽5 0.1(0.08,0.13) 0.11(0.09,0.14) 0.11(0.08,0.13)
𝛽6 0.16(0.11,0.22) 0.12(0.07,0.21) 0.14(0.08,0.22)
𝑁1 2431(2187,2703) 2427(2184,2696) 2427(2184,2697)
𝑁2 2259(1915,2664) 2233(1890,2639) 2232(1891,2635)
𝑁3 2259(1915,2664) 2227(1878,2641) 2229(1883,2639)
𝑁4 2185(1939,2462) 2164(1922,2437) 2192(1948,2467)
𝑁5 1385(1178,1630) 1364(1161,1602) 1403(1196,1646)
𝑁6 2285(1902,2746) 1649(855,3178) 1948(1223,3104)

Notes: Point estimates and 95% confidence intervals of the demographic
parameters from the selected model fit to the golden mantella data. The sec-
ond and third columns provide the results from fitting with the complete set of
latent histories using the original and penalized likelihoods, while the fourth
column provides the results from fitting with the 10% of latent histories having
the highest probabilities given the initial values.

of the capture probabilities. Estimates and CIs from
the original fit and penalized fit were almost identical
except when the estimate from the original fit lay on
the boundary and the corresponding CI covered all of
(0,1). In most cases, the estimate from the penalized fit
was pulled slightly inside the (0,1) interval, as in the
case of 𝛽3, and the CI narrowed to a reasonable range.
The only exceptions to this are the parameters relating
to the final primary period including the probability of
survival from period 5 to 6 (𝜙5), the probability of entry

in period 6 (𝛽6), and the abundance during the period
(𝑁6). Penalizing the likelihood reduced the estimate of
𝜙5 from 1 (95%CI=0,1) to 0.72 (95%CI=0.18,0.97) and of
𝛽6 from 0.16(95%CI=0.11,0.22) to 0.12(95%CI=0.07,0.21).
These changes lead to the conclusion that there were
fewer individuals alive during this period, either sur-
viving from previous periods or entering the population
in that period, and that the capture probabilities are
higher. This in turn acts to reduce the estimate of abun-
dance during this period, 𝑁6, which decreased from
2285(95%CI=1902,2746) to 1649(95%CI=855,3178), and the
estimate of the super-population size, 𝑁, which decreased
from 5699(95%CI=5321,6133) to 5467(95%CI=5024,5995).
This difference was not observed in the simulation study,
and we believe that it is related to the fact that the num-
ber of recaptures during the sixth primary period was so
low making the results relating to this occasion highly
unstable. This may also indicate a violation of the model
assumptions, which we discuss below. That said, the CIs
for the abundance, both in period 6 and over all periods,
overlap considerably so that there is no difference in the
qualitative results.
Point estimates and CIs for all parameters from the

penalized and prefiltered methods were almost identical,
except again on the final period. This suggests that there
was almost no loss or change in the information by remov-
ing 90% of the latent histories and that prefiltering based
on the initial parameter values provides a valid approach
to reduce the computational burden.
One important observation is that there seem to be pat-

terns in the estimates that may be indicative of systematic
changes that have not been accounted for by any of the
proposed models. Point estimates of the recruitment prob-
abilities show a continual decrease within each of the
two breeding seasons (i.e., periods 1–3 and again in peri-
ods 4–6) and the estimated capture probabilities seem to
vary in a smooth, almost seasonal fashion. We believe that
this may indicate that individuals are entering and leaving
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F IGURE 1 Estimated capture probabilities. Estimates of the capture probabilities from the selected model using (1) the complete set of
latent histories without penalization (red circles), (2) the complete set of latent histories with penalization (green triangles), and (3) the
prefiltered histories with penalization (blue squares). Vertical bars show the extents of the 95% CIs. Points for each version of the model have
been offset to avoid overlap. This figure appears in color in the electronic version of this article, and color refers to that version.

the breeding grounds at different times during the breed-
ing season, violating the assumption of closure within the
primary periods. We did not explore more complicated
models to account for this phenomenon in this research,
and plan to do so in the future.

6 DISCUSSION

The latent multinomial model offers a flexible framework
for modeling extended batch-mark data. The ability to
express the model in terms of the unobserved latent cap-
ture histories allows the model to accurately reflect the
data-generating process and does not require unrealistic
and overly simplisticmodel assumptions to bemade. Batch
marking studies are typically more time and cost effective
and can be used for species that are difficult or impossi-
ble to mark individually. We have demonstrated that it is
possible to estimate key parameters of interest with good
precision from this type of data.
In practice, we have observed that the model works well

in both the simulated and real-data applications. Boundary
estimation issues were encountered which are overcome
with appropriate penalizationmethods. Themodel is com-
putationally efficient in terms of time, but for scenarios
with large numbers of primary and secondary occasions
a large amount of computer memory was required. Given
that not everyone has access to high-performance com-

puting resources, we have demonstrated that prefiltering
the possible latent capture histories to those that are most
likely to occur based on initial parameter estimates reduces
the required RAM.
The results of prefiltering the data will depend on both

the initial parameter estimates and the proportion of latent
capture histories retained. If either the initial values are
far from the true value or the proportion of capture his-
tories retained is too small then the likelihood function
will be distorted toomuch, and the resulting inference will
not be accurate. In the analysis of the mantella data, we
were able to conduct the analysis with the full set of latent
capture histories and confirm that the results with and
without prefiltering were almost identical. However, this
negates the purpose of prefiltering. If sufficient RAM is
available to conduct the analysis with the full set of latent
capture histories then this is always preferable. If prefilter-
ing is performed in practice thenwe recommend repeating
the analysis starting frommultiple sets of initial parameter
estimates and comparing the results. The different sets of
initial parameters should be chosen so that they are diffuse
within the space of possible parameters, as is the case for
choosing multiple sets of initial values for standard opti-
mization routines to reduce the chances that the algorithm
reaches a localmaximum/minimum. This will require that
the model is fit repeatedly, but this should not represent a
computational burden as the jobs could be run in parallel.
If the results differ significantly then the analysis should be
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10 ZHANG et al.

repeated from the same initial values but retaining a larger
proportion of the latent capture histories.
As an example, we repeated fitting the selected model to

the golden mantella data starting from two alternative sets
of initial parameter values. These were generated by either
setting 𝑝1 = ⋯ = 𝑝6 = 0.10 or 𝑝1 = ⋯ = 𝑝6 = 0.40 and
then computing initial estimates for the remaining param-
eters as given in Section B of the Supporting information.
These values were chosen as they are expected to bound
the capture probabilities based on the advice of the experts
in the field. Table 11 in Section D of the Supporting infor-
mation presents the different sets of initial values. Table 12
and Figure 1 in Section D of the Supporting information
compare the point estimates and 95% CIs of the parame-
ters for the fitted models. The results do differ, but this is
to be expected given that different sets of the latent capture
histories are retained. However, the changes are small and
the qualitative conclusions are practically identical. Esti-
mates of the total population size from the new analysis
are within 95 of the original estimate (a difference of< 2%)
and the 95% CIs overlap almost completely. Estimates of
the population size by the primary period are within 110 (a
difference of 5%) except for the final periodwhen the differ-
ence is as high as 284 (nearly 15%), but these estimates are
very uncertain and the 95% CI for the estimate of 𝑁6 from
the original initial values is completely contained within
the 95% CI computed with the initial estimate 𝑝𝑘 = 0.10,
𝑘 = 1,… , 6. These results suggest that prefiltering is not
affecting the overall conclusions of the analysis and sup-
port the results without having to fit the model including
the complete set of latent capture histories.
We have observed that population size and capture prob-

abilities are estimated well from batch-mark data as is
evident fromboth the simulation study andmantella appli-
cation results. However, we have also seen that survival
estimates are much less precise. This observation is not
surprising, since estimation of survival relies on recaptures
of individuals from batches of previously marked cohorts
of animals and these observations will typically be fairly
small relative to the number of individuals marked. The
lack of individual-level information in batch-mark data
means that the data are a lot less informative for the esti-
mation of survival than for other types of data such as
capture–recapture or ring–recovery data. We observed this
through the wider CIs of survival probabilities in the sim-
ulation study. Similar results were also shown by Cowen
et al. (2014) who conducted a simulation study to com-
pare estimates from the Jolly–Seber model with complete
identity information and an associated batch-mark model
in which identities were removed. They reported that esti-
mates of the survival probabilities from batch-mark data
were between 30% and 40% as efficient as those from
data with complete identities, though the exact results

depended heavily on the choice of parameters. This obser-
vation should guide those planning studies to consider
what the parameters of interest are when selecting which
type of data they should collect.
One key advantage of the latent multinomial approach

is that it is often much simpler to conceptualize the model
and write the probabilities for the latent histories than the
observed histories. It is clear that further adaptations could
be made to the model, for example, accounting for tempo-
rary emigration from the site, which we believe would be
possible due to the robust design nature of the data, fol-
lowing an approach similar to Zhou et al. (2019). It would
also be of interest to explore how batch-mark data could
be used in conjunction with other forms of data, such
as count data, to share information on common parame-
ters and to examine the relative information contained in
the different data types. Such an integrated approach may
alleviate some of the high correlations observed between
parameters for extended batch-mark data alone, see, for
example, Catchpole et al. (1998). The treatment of multiple
data types using a latent multinomial approach may also
offer a practical solution to overcome needing to assume
independence between datasets.
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