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ABSTRACT

Geometrical designs of interacting nanomagnets have been studied extensively in the form of two-dimensional arrays called artificial spin
ice. These systems are usually designed to create geometrical frustration and are of interest for the unusual and often surprising phenomena
that can emerge. Advanced lithographic and element growth techniques have enabled the realization of complex designs that can involve
elements arranged in three dimensions. Using numerical simulations employing the dumbbell approximation, we examine possible magnetic
behaviors for bilayer artificial spin ice, in which the individual layers are rotated with respect to one another. The goal is to understand how
magnetization dynamics are affected by long-range dipolar coupling that can be modified by varying the layer separation and layer align-
ment through rotation. We consider bilayers where the layers are both either square or pinwheel arrangements of islands. Magnetic reversal
processes are studied and discussed in terms of domain and domain wall configurations of the magnetic islands. Unusual magnetic ordering
is predicted for special angles that define lateral spin superlattices for the bilayer systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0118078

I. INTRODUCTION

Artificial spin ice (ASI) are lithographically designed systems
consisting of interacting nanomagnets arranged to create effects
associated with geometrical frustration.1,2 A great advantage of
studying experimentally these systems is the possibility to directly
visualize local ordering using techniques such as magnetic force
microscopy and Lorentz microscopy.3 A variety of interesting phe-
nomena have been examined, such as emergent analogs for mag-
netic monopoles4,5 vertex-based frustration,6,7 chiral dynamics,8

and melting.9–11

The ASI are typically composed of nanometer-sized ferro-
magnetic islands, designed to be single domain and containing
roughly �105 magnetic atoms. The island geometry provides a
shape anisotropy that results in a preferred orientation for the
single magnetic domains. In this way, Ising-like spin behavior
appears in that the magnetization of each island prefers to align
along a single island determined axis. The first experimental reali-
zation of square ASI was done by Wang et al.3 in 2006. Since
then, a number of other geometries have been studied including
Kagome,5,12–15 Shakti,6,16 and Triangle.17,18 Recently, experimen-
tal creation of 3D ASI systems19–21 has become possible, which
brings additional degrees of freedom, inspiring new theoretical

studies.15,22,23 It allows increased configurability and optimization
of the magnetostatic interaction between different elements of the
system. One technique for fabricating 3D ASI uses two-photon
laser lithography21,24 through which it is possible to construct
complex individual structures.25 Another approach with potential
for the large scale system is through layering different films. The
idea, in this case, is to use lithography to pattern multilayers into
3D structures.26,27

In this paper, we examine two different types of layered struc-
tures where the layers go through an in plane rotation and create
an angle with respect to one another as sketched in Fig. 1. The
geometries of the individual layers are called square3 [Fig. 2(a)] and
pinwheel [Fig. 2(b)].8,28 Regardless of the geometry, the lattice for
each layer has element spacing a and the layers are separated by a
distance h. The angle f defines the relative orientation of the two
layers.

When the layers are sufficiently separated so as to not interact
(i.e., h ! 1), the square and pinwheel arrays have different ground
state orderings. The orderings can be most easily described in
terms of vertices. In the square and pinwheel ice, a vertex is
defined as the meeting point of four neighboring islands. These
configurations are classified into four classes based on energy and
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are defined as T1, T2, T3, and T4 as sketched in Fig. 3.
Configurations within a given type have the same energy, i.e.,
they are degenerate. For the square geometry, type T1 has the
lowest energy, is twofold degenerate, and a tiling in one of the T1
configurations defines the ground state of a square lattice. These
two type T1 subtypes are defined as T1(a) and T1(b). The three
other classes have higher energies and are excitations above the
ground state. The classification of the type of vertices in pinwheel
geometry remains the same as for square ice, but now the lowest
energy vertex is T2 and it is fourfold degenerate. These four
degenerate subtypes are denoted as T2(a), T2(b), T2(c), and
T2(d). Type T2(a) and T2(b) have opposite magnetization direc-
tions. The same goes for T2(c) and T2(d) pair. The other vertices
are excitations above the ground state configured as a tiling of T2
vertices.

In this paper, we use numerical simulations to discuss how
different values of h and f affect magnetic ordering under the
influence of an applied external magnetic field for the BASI

systems sketched in Fig. 1. We begin the discussion in Sec. II where
we describe the model used for the simulations.

II. MODEL AND METHODS

The mutual interactions between the islands determine the
collective behavior of the system. To model this, we approximate
each magnetic island as a charged dumbbell of length L with mag-
netic charges of equal but opposite polarity sitting at either end as
illustrated in Fig. 4(a). The charges +qi are attached to lattice site i
and separated by a distance L such that μs ¼ qL, where μs is the
dipole moment of the spins and q is the magnitude of the magnetic
charge. This dumbbell approximation is a powerful tool to under-
stand the physics of artificial spin ice systems, specially to study the
magnetic monopoles and their propagation through the ASI
systems.29,30 In this model, the ratio L=a plays an important role:
for example, Möller and Moessner23 demonstrated that a larger
value of the ratio L=a results in the broadening of the temperature
range for the ice rule obeying T1 and T2 vertices to form. In our
work, we implement this charged dumbbell model since coupling
between layers may be very sensitive to L=a, especially for small
layer separations.

The positions of each charge are described by the vectors ~r

and~d as shown in Fig. 4(b). The vectors~r are taken with respect to
the global Cartesian reference frame with the origin located at the
center of the bottom layer. Subscripts on these vectors identify the
lattice site within a layer such that the position of þqi, for example,

is given by ~ri þ ~dþi .
The configuration energy is computed as the sum of pairwise

interactions of magnetic charges,

Eij ¼ K
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Each of the denominators represents a charge pair distance.
Here, K is a dimensionless quantity defined as K ¼ μ0

4πkBT
, where kB

is the Boltzmann constant and T is the temperature. In what

FIG. 1. A square BASI structure with its upper layer rotated at an angle, f rela-
tive to the lower layer. a and h are the lattice constant and separation between
the layers, respectively.

FIG. 2. Two types of bilayer ASI (BASI): (a) a square and (b) a pinwheel. In this example, each layer is composed of only T1 (for square) and T2 (for pinwheel) vertices.
The lattice spacing in each layer is a, the distance between layers is h, and the angle f defines the relative orientation of the two layers.
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FIG. 3. (a) Sixteen possible vertex configurations in square artificial spin ice are classified into four types. Vertex energy increases from left to right with the T1 being the
lowest, followed by T2, then T3 and with T4 the highest. (b) Corresponding vertex types in pinwheel artificial spin ice. In this case, the lowest energy vertex is T2, followed
by T3, then T1, with T4 again being the highest.

FIG. 4. Dumbbell model: Each island
is approximated as a charged dumbbell
of length L in which two charges of
equal magnitude but opposite signs sit
at each end. In (a), a square vertex
formed by four islands is shown with
charges +qi at each site i. In (b), the
vector location is shown for two dumb-
bells lying in the xy plane. ~r i and ~r j
are the vectors locating lattice sites i
and j. The ~d’s have a magnitude that
is half the length of the dumbbell, i.e.,
L=2 and specifies the location of each
magnetic charge relative to its associ-
ated lattice site.

FIG. 5. Energy of interaction between
the layers of a f ¼ 0� (a) square and
(b) pinwheel BASI as a function of
layer separation h. In the anti-parallel
state, the layers experience a mutual
attraction while for the parallel state,
the potential is repulsive.
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follows, the charges are assumed to interact strongly, which is
described by a dumbbell length L ¼ a=2. The moment, μs, is deter-
mined by the cross sectional area of the element end and is
assumed constant. The charge magnitude is then expressed as
q ¼ μs=L ¼ μs

a=2.
Unless otherwise stated, each layer is a 20� 20 array of

elements for a total of 800 moments in both layers. For a single
ASI layer, the vectors in Eq. (1) run over directions x and y,
restricted to the layer plane. For the spins residing in the lower

layer, ~ri ¼ (xi, yi, zi ¼ 0) and for the upper layer spins,
~ri ¼ (xi, yi, zi ¼ h), where h is the layer separation.

III. INTERLAYER ENERGY AND ALIGNMENT ANGLE

The energy of interaction between the layers depends on (h)
and alignment angle (f). Consider the aligned case where f ¼ 0
for each geometry tiled with ground state vertices. As noted earlier,
the ground states are twofold degenerate for the square geometry,

FIG. 6. Normalized potential energy of
interaction between the layers of a
square BASI structure [with T1(a)-T1
(b) configuration] as a function of layer
rotation at varying heights. There are
distinctive peaks at certain angles.

FIG. 7. Normalized potential energy of
interaction between the layers of a pin-
wheel BASI structure [with T2(a)-T2(b)
configuration] as a function of layer
rotation at varying heights.
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which we denote here as “T1(a)” and “T1(b).” When one layer is
T1(a) and the other is T1(b), the layered spins are anti-parallel for
f ¼ 0 and the arrangement is called T1(a)-T1(b). Likewise, when
the layers have the same ground state arrangement, the layered
spins are parallel. This configuration is called T1(a)-T1(a). For the
pinwheel geometry, the anti-parallel, low energy type T2 subtypes
T2(a)and T2(b) are chosen. The configurations T2(a)-T2(b) and
T2(a)-T2(a) are explored.

We define the energy of interaction between layers, in the
absence of an applied magnetic field, as V ¼ E(f, h)� E1. Here,
E(f, h) is the energy of a BASI structure at layer separation h and
rotation angle, f, and E1 is the energy for decoupled layers, i.e.,
the energy of the system when the layers are far apart (h ! 1) so
that they behave as isolated layers.

First, we examine the interaction energy between the layers as a
function of separation, h with f ¼ 0. The energy V is given in units
of K as a function of the separation h (measured in units of lattice
parameter a). Results are shown in Fig. 5(a) for square ASI layers with
T1 tiling and in Fig. 5(b) for the pinwheel geometry with T2 tiling.

For the square geometry, when the layers have anti-parallel con-
figuration [T1(a)-T1(b)], V is strongly negative at very small height
offsets (h � a) and rapidly rises with increasing h and vanishes as
h . a. This is shown in Fig. 5(a) where V is plotted as a function of
h. However, when in parallel [T1(a)-T1(a)] configurations, the oppo-
site trend is observed with V(f ¼ 0�, h) although still vanishing as
h > a [Fig. 5(a)]. When in anti-parallel [T1(a)-T1(b)] configurations,
the layers attract each other while a mutual repulsion is experienced
for the T1(a)-T1(a) parallel state. These results for the square ASI

FIG. 8. Overlapping spin configura-
tions in (a) a square and (b) a pin-
wheel BASI structure rotated at an
angle f = 38� and 54�, respectively.
Superlattice spin configurations appear
for the bilayer structure.

FIG. 9. Illustration of the layer rotation angle f and field angle θH in (a) square and (b) pinwheel BASI. (a) In square BASI, the applied field angle θH is measured with
respect to the +x axis. (b) The diagonal to the +x and +y axes is used as the reference direction (black dotted arrow) for the field orientation in pinwheel BASI.
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layers are in agreement with results from Nascimento et al.31 for no
rotation (f ¼ 0).

Similar behavior is observed for pinwheel BASI, except now the
rate of change of the interaction potential between the layers is less
than that for the square BASI geometry. This is shown in Fig. 5(b).

The effects on V for the misalignment of the layers (f = 0) are
shown in Figs. 6 and 7, for square and pinwheel geometries, respec-
tively. Here, V is normalized to be unitless and the normalized poten-
tial per spin is plotted for h ¼ 0:3a, 0:5a, and 0:6a at different values
of f. In both array geometries, distinct peaks are observed in V at
certain rotation angles. The closer the layers are, the sharper the peaks
become. For the square array, the most significant peaks in V(f, h)
are observed at rotation angles f = 38� and 54�. Although not as
large as in the square array, peaks are also noticeable in the pinwheel
geometry at rotation angles f ¼ 54� and 128�. These peaks originate
from the competition between interlayer neighbor interactions. Since

the square geometry has an antiferromagnetic ground state, the nor-
malized potential baseline is flat. However, the ground state being fer-
romagnetic, the pinwheel BASI layers behave like two ferromagnets.
Depending on the layer spacing, the contributions of the dipole
moment, quadrupole moment, and discrete spin elements dominate
the characteristics of the potential plot.

The peaks can be understood as follows. Certain rotation
angles are special in that they define periodic arrangements of
spins. Consider the geometries shown in Fig. 8 where anti-parallel
configurations [T1(a)-T1(b) and T2(a)-T2(b)] are sketched at
special angles in both geometries. The square geometry with rota-
tion angle f ¼ 38� and the pinwheel geometry with f ¼ 54�

exhibit a lateral “superlattice” structure where the two layers are
superposed on one another. This structure consists of overlapping
spins from adjacent layers with complex structure periodic on a
scale larger than a, the lattice parameter. The structure is arranged
in such a way that the ground state remains anti-ferromagnetic for
square ice and ferromagnetic for pinwheel ice. The spin overlap
contributes toward stronger interlayer coupling and, as discussed
below, leads to interesting consequences for magnetization dynam-
ics when driven by an applied magnetic field.

IV. MAGNETIC FIELD DRIVEN DYNAMICS

Magnetic ordering in the bilayer structures is affected by the
presence of externally applied magnetic fields. Consider the magne-
tization reversal process in BASI under the influence of a spatially
uniform external magnetic field applied parallel to the layers. In
single layer square ASI, chain avalanche reversal is found32,33

whereas collective ferromagnetic behavior leads to domain growth
and shrinking in pinwheel single layer ASI.34

With the application of a spatially uniform magnetic field
μ0~H, an additional energy term must be included when calculating
the energy of the system: Eext ¼ �μ0

P
i ~μi � ~H. Here, μi is the

dipole moment of the ith dumbbell, and the sum is over all dumb-
bells in the bilayer system. The geometry for the applied field is
defined in Fig. 9 for the square (a) and pinwheel (b) lattices. The
applied field is in the xy plane and makes an angle θH with respect
to a symmetry axis of the bottom layer. For the square lattice, the

FIG. 10. Normalized net magnetization of a unrotated (f ¼ 0) square BASI
configuration during a field sweep for θH ¼ 0:2�. The down (decreasing H) and
up (increasing H) branches are indicated by the symbol color blue and red,
respectively. The inset illustrates the relative orientation of the applied field with
respect to the +x axis along with the layer rotation with respect to the +y axis.

FIG. 11. T3 propagation process on a T2 background. (a) T3 propagation with T1 creation. (b) T3 propagation without T1 creation. The boxed spin is the one that has
flipped. The notation i refers to a vertex of type i.
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reference axis is x. For the pinwheel lattice, the symmetry axis is
taken as the xy diagonal as this is one of the preferred ground state
orientations of the ferromagnetic ordering.

In order to model the reversal dynamics instigated by the
applied field, a self-consistent iterative algorithm is employed.
The algorithm begins by choosing a direction and magnitude for
the applied field, and then randomly choosing a lattice site on one
of the layers. At a chosen site i, the orientation of the moment~μi is
chosen to minimize its energy. Note that in the dumbbell picture, a
reorientation corresponds to changing the signs of the endpoint
charges of that dumbbell. Keeping the field orientation and magni-
tude constant, the process is repeated for all lattice sites in the
bilayer, each chosen in random order, until no reorientations
occur. This usually occurs in less than 100 iterations. The algorithm

ensures that every lattice site is visited during each iteration. This
configuration corresponds to a local minimum in the global energy
for that field orientation and magnitude. The average number of
vertices is then recorded. The field magnitude is then changed, and
the iterative algorithm is repeated.

Using this algorithm, a hysteresis loop is calculated by first
setting a field large enough to align all spins as much as possible,
then reducing the field in small steps until the spins align as
much as possible along the reversed field direction. This process
is repeated 20 times for 20 individual runs to get an average
behavior and the corresponding average magnetization as a func-
tion of the field value is studied. Also, in order to avoid trapping
in metastable states due to high symmetry, the field is applied
slightly away (�0:2�) from high symmetry directions. This

FIG. 12. Vertex configurations at applied field H = 0 for a f ¼ 0� square BASI configuration subject to a field applied at 0:2� to the +x axis. Color-coded arrows represent
type T2 and T3 vertex magnetization orientations. The circles represent alternating types of type T1 vertices. Type T4 vertices are not observed. At the bottom, the spin
arrangements corresponding to the vertex magnetization orientations are presented for one from each type. Note that for this field with aligned layers, the layer spins are
perfectly antiparallel with respect to one another throughout the avalanche vertex processes.
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contributes to the slight asymmetry in the hysteresis loops as we
shall find out in Secs. IV A and IV B. Both low and high field
angles (θH) are considered. We take the anticlockwise rotation
direction to be positive.

A. Square BASI

Results of the simulation algorithm described above are pre-
sented here for superlattice angle (f ¼ 38�) and unrotated
(f ¼ 0�) square BASI structures, induced by fields applied along
directions θH ¼ 0:2� and 30:2� offset from the +x axis. The layers
are assumed to be very close, separated by a distance h ¼ 0:3a in
order to produce strong interlayer coupling. The saturated high
field spin configuration is polarized so that the tiling is T2 vertices
in both layers aligned parallel to the magnetizing field for the
initial saturated state.

1. Square f = 0° configuration

In Fig. 10, we illustrate magnetization hysteresis loops
obtained by taking averages of 20 individual runs for square unro-
tated (f ¼ 0) configurations at small field angle θH ¼ 0:2�. The
uncertainties are usually negligible (,2%). The simulation is begun
at a large field so that the array net moments are aligned with the
+x axis, and the magnetization is saturated. The field is decreased
in strength in steps of 0:2 in our reduced units until saturated mag-
netization is achieved along the �x direction.

As seen in Fig. 10, the overall structure is suggestive of a
double loop with small nearly closed loops at large field magni-
tudes and larger main loops at smaller fields. Starting at saturation,
the magnetization remains constant until the field is reduced to
H ¼ 8:8. At this point, the edge spins in both arrays start to flip as
they are coupled to fewer neighbors than the bulk spins are.

FIG. 13. Normalized net magnetization of a unrotated (f ¼ 0�) square BASI
configuration during a field sweep for θH ¼ 30:2�. The down (decreasing H)
and up (increasing H) branches are indicated by the symbol color blue and red,
respectively. The inset shows the relative orientation of the applied field with
respect to the +x axis along with the layer rotation with respect to the +y axis.

FIG. 14. (a) T3 propagation via vertex process ③②→②③. The notation i refers to a vertex of type i. The boxed spin is the one that has flipped. (b) The relative angles
between the applied field and the array sublattices. It can be clearly seen that sublattice 2 makes a larger angle with the field. Hence, the spin on that sublattice is the one
that has flipped and converted a ③② vertex pair to a ②③ vertex pair.
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Upon decreasing the field, a sharp drop in the magnetization
is observed. This drop corresponds to the creation of T3 vertices
along the array edges and their propagation in cascades of spin
flips, leaving “trails” of T1 vertices through the array. Dynamics on
a uniform T2 background always involve T3 vertex propagation
because flipping a single spin in a T2 vertex always creates a T3
vertex. T3 propagation can occur in two processes: ③②→①③

and ③②→②③, which are shown in Fig. 11. Here, we describe
vertex processes using a notation where ⓘ refers to a vertex of type
i. So that a spin flip that converts a T3–T2 pair into a T1–T3 pair
is written as ③②→①③.

When the field angle θH is small (i.e., when the array net mag-
netization makes a relatively small angle with the field direction),
the T3 propagation process ③②→①③ is favored. This is because
it is difficult to start dynamics if the array net magnetization is
almost aligned with the field. Furthermore, since T1 vertices have
the lowest energy, they are energetically favorable. As a result, T3
propagation via the creation of T1 vertices is energetically less
expensive than the ③②→②③ process.

As the field is decreased further, other types of vertex pro-
cesses appear, and chains/avalanches are blocked; for example, the

FIG. 15. Vertex configurations at applied field H = 6.8 for a f ¼ 0� square BASI configuration subject to a field applied at θH ¼ 30:2� to the +x axis. Unlike the small θH
case, for an angle of θH ¼ 30:2� the spins in the two layers do not track one another. Color-coded arrows represent type T2 and T3 vertex magnetization orientations.
Type T3 vertex propagation via process ③②→②③ can be observed in the upper layer. At the bottom, the spin arrangements corresponding to the vertex magnetization ori-
entations are presented for one from each type.

FIG. 16. Normalized net magnetization of a rotated (f ¼ 38�) square BASI
configuration during a field sweep for θH ¼ 0:2�. The down (decreasing H) and
up (increasing H) branches are indicated by the symbol color blue and red,
respectively. The inset shows the relative orientation of the applied field with
respect to the +x axis along with the layer rotation with respect to the +y axis.
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appearance of T3 vertices in the bulk via the process ②②→③③.
Also, the field being weak, interlayer coupling slowly takes over and
favors certain configurations where the spins in the adjacent layers
try to achieve a local anti-parallel state. These are metastable states
and give rise to a plateau-like feature where the net magnetization
remains unchanged for a range of field values. The largest plateau
corresponds to magnetization MH=MS ¼ 0 as seen in Fig. 10. As
the field becomes sufficiently small, the interlayer coupling forces
the vertex moments in the adjacent layers to achieve a complete
anti-parallel configuration, and the net magnetization vanishes.
Hence, we do not observe any remnant magnetization at 0 field,
although individual arrays contain a small net moment. The corre-
sponding vertex configurations for one of the sample runs are
shown in Fig. 12. The full reversal process along with snapshots of
vertex configurations at some certain field values can be found in
Appendix A.

As the field is decreased further, a slow evolution toward the
completely reversed state is observed. Most significantly, the corre-
sponding spins on the two separate layers remain anti-parallel and
track each other perfectly during avalanche reversal processes.

The double loop structure seen in Fig. 10 is found only for rel-
atively small θH . At a larger angle θH ¼ 30:2� with respect to the

FIG. 17. Vertex configurations at
applied field H = 0.6 for a f ¼ 38�
square BASI configuration subject to a
field applied at 0:2� to the +x axis.
Color-coded arrows represent type T2
and T3 vertex magnetization orienta-
tions. The circles represent alternating
types of type T1 vertices. Type T4 ver-
tices are not observed. At the bottom,
the spin arrangements corresponding
to the vertex magnetization orientations
are presented for one from each type.

FIG. 18. Normalized net magnetization of a unrotated (f ¼ 0�) pinwheel BASI
configuration during a field sweep for θH ¼ 0:2�. The down (decreasing H) and
up (increasing H) branches are indicated by the symbol color blue and red,
respectively. The inset shows the relative orientation of the applied field with
respect to the xy diagonal along with the layer rotation with respect to the +y
axis.
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þx axis, only the two small field main loops appear. An example
hysteresis is shown in Fig. 13.

Spins on one of the array sublattices make a much larger angle
with the applied field, and as sketched in Fig. 14, this results in T3
vertex propagation via the ③②→②③ process. Example vertex
configurations for one of the sample runs at H ¼ 6:8 are shown in
Fig. 15 for each layer. In this case, processes and spins in the sepa-
rate layers do not track one another despite strong interlayer

coupling due to the close proximity of the layers. The full reversal
process along with snapshots of vertex configurations at some
certain field values can be found in Appendix A.

2. Square f = 38° configuration

Figure 16 shows magnetization hysteresis loops obtained
by taking averages of 20 individual runs for a layer rotation of

FIG. 19. Vertex configurations at
applied field H = 0 for a f ¼ 0� pin-
wheel BASI configuration subject to a
field applied at an angle 0:2� to the xy
diagonal. Color-coded arrows represent
type T2 and T3 vertex magnetization
orientations. The circles represent T1
vertices, while T4 vertices are indicated
by the diamond symbols. At the
bottom, the spin arrangements corre-
sponding to the vertex magnetization
orientations are presented for one from
each type.

FIG. 20. Normalized net magnetization of a unrotated
(f ¼ 0�) pinwheel BASI configuration during a field
sweep for θH ¼ 30:2�. The down (decreasing H) and up
(increasing H) branches are indicated by the symbol color
blue and red, respectively. The inset shows the relative
orientation of the applied field with respect to the xy diag-
onal along with the layer rotation with respect to the +y
axis.
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FIG. 21. (a) Vertex process ③②→②③ in a unrotated (f ¼ 0�) pinwheel BASI configuration during a field sweep for θH ¼ 30:2�. The notation i refers to a vertex of type
i. The boxed spin is the one that has flipped. (b) The relative angles between the applied field and the array sublattices. It can be clearly seen that sublattice 1 makes a
larger angle with the field. Hence, the spins on that sublattice are the ones that have flipped.

FIG. 22. Vertex configurations at
applied field H ¼ 4 for a f ¼ 0� pin-
wheel BASI configuration subject to a
field applied at an angle 30:2� to the
xy diagonal. Color-coded arrows repre-
sent type T2 and T3 vertex magnetiza-
tion orientations. At the bottom, the
spin arrangements corresponding to
the vertex magnetization orientations
are presented for one from each type.
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f ¼ 38� at a small field angle θH ¼ 0:2�. The uncertainties are
negligible (,2%). As before, hysteresis begins as a large field with
saturated magnetization. As seen in Fig. 16, the magnetization
remains constant until the field is reduced to H ¼ 4:2. The net
magnetization in the bottom array initially makes an angle of 37:8�

with the applied field whereas, for the upper array, the magnetiza-
tion is aligned as near parallel to the field as possible. Unlike the
unrotated (f ¼ 0�) configuration, several vertex processes are now
involved including the two T3 vertex propagation processes
(③②→①③ and ③②→②③). This leads to complex configura-
tions such as those shown in Fig. 17 for one of those individual
runs. Note that processes in each layer are very different from one
another.

Because of the relative angle between the layers, interlayer
coupling fails to force the vertex moments in the adjacent layers
to achieve a complete antiparallel alignment. There are conse-
quently no plateaus in the magnetization curves shown in Fig. 16.

At H ¼ 0, the array moments do not cancel each other
completely, and there is a remnant magnetization at θH ¼ 0:2�.
As the field increases in the negative direction, the magnetization
increases smoothly until it jumps to saturation. The full reversal
process along with snapshots of vertex configurations at some
certain field values for one of the sample runs are included in
Appendix A.

At a large field angle when θH ¼ 30:2�, the H field at which
spin reversals occur and the dynamics begin is the same as for
other field orientations. The magnetization reversal process is also
similar.

B. Pinwheel BASI

In this section, magnetization reversal dynamics are examined
for superlattice angle (f ¼ 54�) and unrotated (f ¼ 0�) pinwheel
BASI structures, induced by fields applied along directions

FIG. 23. Normalized net magnetization of a rotated (f ¼ 54�) pinwheel BASI configuration during a field sweep for θH ¼ 0:2�. The down (decreasing H) and up (increas-
ing H) branches are indicated by the symbol color blue and red, respectively. The inset shows the relative orientation of the applied field with respect to the xy diagonal
along with the layer rotation with respect to the +y axis.

FIG. 24. Type T3 vertex creation in bulk in double pairs. Only a single spin flip is needed for this. The boxed spin is the one that has flipped.
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θH ¼ 0.2� and 30.2� offset from the diagonal to the þx and þy
axes. Note that single layer pinwheel ASI has a ferromagnetic
ground state,28 and effects from stray fields produced at the array
edges will strongly affect the resulting magnetization processes. The
following results were obtained with separation h ¼ 0:5a which
reduces this effect for the size of the arrays considered.

1. Pinwheel f = 0° configuration

Magnetization hysteresis results obtained by taking averages of
20 individual runs are shown in Fig. 18 for unrotated pinwheel
layers (f ¼ 0�) at a small field angle θH ¼ 0:2�. The uncertainties
are usually negligible (,2%). The simulation is begun as before
with a large field that saturates the magnetization of both layers
along the diagonal to the +x and +y axes. The field is then
decreased in strength in steps of 0.2 in reduced units and then
increased in the reverse direction until saturated magnetization is
again achieved.

As seen in Fig. 18, the magnetization remains constant until
the field is reduced to H ¼ 3:4. Domains of different shapes and
sizes appear in the spin configurations of each layer in response to
stray fields from the array edges. At sufficiently small fields, spins
in the adjacent layers align antiparallel, and the net magnetization

vanishes. This transition is signaled by the sharp drops in MH=MS

in Fig. 18 at a field around H ¼ 2:5. The system remains in this
stable configuration for a range of field values. The vertex configu-
rations at H ¼ 0 for one of the sample runs are shown in Fig. 19.
The full reversal process along with snapshots of vertex configura-
tions at some certain field values are included in Appendix B.

A very different double loop hysteretic behavior is observed
when the field is applied at a larger angle. An example for θH ¼ 30:2�

relative to the diagonal in the xy plane is shown in Fig. 20. Spins on
one of the array sublattices make a much larger angle with the applied
field than on the other sublattice. For this angle, the vertex process
③②→②③ is favored in both arrays. A sketch of how spins reverse
in this process is shown in Fig. 21.

The initial reversal starts at one of the corners (perpendicular
to the field direction) and leads to T2 domain formation with a
domain wall consisting of T3 vertices. The domain expands in
size gradually, and reversals begin to appear at other locations. A
stable configuration is reached where spins on one of the sublatti-
ces align anti-parallel to their nearest neighbors on the other
layer. This results in the magnetization plateau at MH=MS ¼ 0:5
(see Fig. 20). The associated vertex configurations are shown
in Fig. 22.

FIG. 25. Vertex configurations at
applied field H ¼ 0:4 for a f ¼ 54�
pinwheel BASI configuration subject to
a field applied at an angle 0:2� to the
xy diagonal. Color-coded arrows repre-
sent type T2 and T3 vertex magnetiza-
tion orientations. The circles represent
T1 vertices while T4 vertices are indi-
cated by the diamond symbols. At the
bottom, the spin arrangements corre-
sponding to the vertex magnetization
orientations are presented for one from
each type.
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With the decreasing field, small domains form and interlayer
coupling forces the vertex moments in the adjacent layers to
achieve a complete anti-parallel configuration, and MH=MS

becomes zero and remains for small magnitude fields. As the field
becomes larger in the negative direction, the spins evolve back
toward saturation with another plateau at larger fields. The full
reversal process along with snapshots of vertex configurations for
one of the sample runs can be found in Appendix B.

2. Pinwheel f = 54° configuration

The hysteresis shown in Fig. 23 is for a pinwheel rotated
lattice at the superlattice angle f ¼ 54� with respect to the other
pinwheel lattice with a field applied at θH ¼ 0:2�. The results are
obtained by taking averages of 20 individual runs. The uncertain-
ties are negligible (,2%). Similar hysteresis loops are found for the
field applied at larger angles.

The spin reversal dynamics begins at H � 1:2 for all field orien-
tations, and it takes place in the regions where the layers do not
overlap. Moreover, the initial reversals are suppressed in the layer with
the field aligned along the T2 moment direction and begin instead in
the other layer where alignment of the T2 vertex moments is less favor-
able. Initially, T3 vertices are created around the edges and propagated
via the process ③②→②③. However, as the field approaches
H � 1:2, T3 vertices are created in bulk as well in double pairs (see
Fig. 24).

As the field is reduced in strength, other vertex processes start
to occur and a complex configuration is achieved. The correspond-
ing vertex configurations are shown in Fig. 25 for one of the
sample runs. It should be mentioned that the reversal process that
takes place in this superlattice angle geometry is significantly differ-
ent from the unrotated one. Here, clear domain formation and
domain wall propagation are not observed, unlike the unrotated
pinwheel geometry (see Fig. 25). The full reversal process can be
found in Appendix B.

Due to the geometrical constraints, anti-parallel alignment of
the vertex moments in adjacent layers is not possible. As a conse-
quence, a remnant magnetization at H ¼ 0 exists. Reversal occurs
smoothly without the presence of any plateau-like feature.

V. CONCLUSION

The magnetization reversal processes in bilayer artificial spin
ice (BASI) systems have been studied using numerical simulations
for square and pinwheel geometries. The relative orientation of
each layer is varied and shown to strongly affect reversal pro-
cesses. Moreover, at certain angles, a superlattice structure
appears which, when the layers are strongly coupled, leads to
complex reversal dynamics that are mirrored in each layer.
Interestingly, both square and pinwheel geometries exhibit a very
different hysteretic behavior at the superlattice angle when com-
pared to other angles. Also, changing the orientation of the
applied field has less effect on reversal for the superlattice angles
regardless of the geometry.

As in isolated layers, reversal in the square geometry occurs
via T2 chain avalanche, whereas domain growth and shrinking
drive reversal processes in pinwheel geometry. Square rotated and
unrotated configurations reverse differently under the influence of

an external field. Zero field remnant magnetization is absent in
unrotated square BASI but is present in configuration with super-
lattice angle. Also, the magnetization curve for unrotated (f ¼ 0�)
square BASI exhibits plateau-like features and sharp drops in mag-
netization. On the other hand, for rotated (f ¼ 38�) square BASI,
it is relatively smoother with no plateau-like features.

A similar trend is observed in pinwheel geometry.
Magnetization curves for pinwheel rotated and unrotated configu-
rations display different features. Unlike unrotated (f ¼ 0�) pin-
wheel BASI, the superlattice angle (f ¼ 54�) exhibits a remnant
magnetization at zero field. Plateaus can be seen in the magnetiza-
tion curve for f ¼ 0� pinwheel BASI. However, this is not the
case for the rotated (f ¼ 54�) structure. Also, reversal processes
in the unrotated and superlattice angle (f ¼ 54�) pinwheel geom-
etry are quite distinctive. While the unrotated one exhibits the for-
mation of domains of different shapes and sizes along with
domain wall motion during the process, the f ¼ 54� rotated
geometry shows no such behavior. Instead, patterns with different
shapes are observed. It should be noted that when the layers are
very close (e.g., h ¼ 0:3a), strong interlayer coupling tends to
break the order into smaller domains and the system gets stuck in
a metastable state.

The significance of the bilayer structure is that by adjusting
height, the geometry allows us to explore interactions between
vertex dynamics in otherwise independent two-dimensional arrays.
We note that fabrication may be challenging; however, there might
be a way to construct the BASI system as two separate layers grown
on different substrates and then utilize their repulsive behavior as
found from our study to keep them apart. On the macroscopic
level, these attractive and repulsive forces between the layers might
also be of interest for applications along lines of magnetic levitation
or magnetic damping for mobile nanoscaled systems.

On the scale of elements and vertices, we have shown that
interactions between separate layers influence dynamics in each
layer and can produce different dynamics and resulting configura-
tions in the separate layers. The increase in the number of near
neighbor interactions for most spins provides an additional degree
of freedom for magnetic ordering processes which may be of inter-
est for application which depend upon the number of possible con-
figurations and control over their evolution as, for example, in
neuromorphic computing schemes based on Artificial Spin Ice.1,35

Some progress using single layers has already been
documented.36–38 Also, our choice of square lattices led to relatively
large non-overlapping regions when rotated. The lattice shape
could be modified to be more rounded and thereby maximizing the
overlapping region where the extra near neighbor connections
exist.

For closely spaced layers, this can lead to regions that are
more susceptible to spin flips than others, thereby possibly creating
stable spin “skeleton” structures to appear. This can be better
understood from Fig. 8 where different overlapping spin structures
appear which might have different stability under the influence of
an external factor. The lowest energy ground states of BASI systems
were not determined in the present work. From our findings, it can
be assumed that the lowest energy BASI ground states will be dif-
ferent from their single layer counterpart. At the small height limit,
spins from adjacent layers prefer to align antiparallel to each other.
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If this is the only contributing factor, then the BASI ground states
would be antiparallel mirrors of the single layer ground states.
While this may be the case for some rotations, for other rotation
angles there may be competition, and indeed at special superlattice
angles one might guess from the figures presented in this work that
an antiparallel state will not be of the lowest energy. Assuming the
presence and state of low energy BASI configurations for different
rotation angles are known, it will be interesting to see if there exist
any localized spin configurations that are excitations above the
ground state. This may show interesting and novel effects for
closely spaced layers at certain rotation angles.

One of the motivations for this work came from reports of
electronic band structures in bilayer graphene superlattices.39,40 In
our present work, we have concentrated on static and quasi-static
phenomena that can be observed in artificial spin ice structures.
This can be useful to study the spin wave dynamics associated with
the stable static configurations. Analogies for high frequency
dynamics associated with ferromagnetic resonance and spin wave
propagation could be interesting to explore in these structures
where twist angle is an additional parameter available for engineer-
ing magnonic band structures.
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APPENDIX A: MAGNETIZATION REVERSAL PROCESS
IN SQUARE BASI

Figures 26–28 show the magnetization reversal process in a
f ¼ 0� square BASI configuration subject to a field applied at
an angle 0:2� to the +x axis; magnetization reversal process in a
f ¼ 0� square BASI configuration subject to a field applied at
an angle 30:2� to the +x axis; magnetization reversal process in a
f ¼ 38� square BASI configuration subject to a field applied at an
angle 0:2� to the +x axis.

FIG. 26. Magnetization reversal process in a f ¼ 0� square BASI configuration subject to a field applied at an angle 0:2� to the +x axis. Six points are marked in the
hysteresis loop across the reversal. The snapshots of the vertex configurations at each of these marked points are also given. Color-coded arrows represent type T2 and
T3 vertex magnetization orientations. The circles represent alternating types of type T1 vertices. Type T4 vertices are not observed.
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FIG. 27. Magnetization reversal process in a f ¼ 0� square BASI configuration subject to a field applied at an angle 30:2� to the +x axis. Six points are marked in the
hysteresis loop across the reversal. The snapshots of the vertex configurations at each of these marked points are also given. Color-coded arrows represent type T2 and
T3 vertex magnetization orientations. The circles represent alternating types of type T1 vertices. Type T4 vertices are not observed.

FIG. 28. Magnetization reversal process in a f ¼ 38� square BASI configuration subject to a field applied at an angle 0:2� to the +x axis. Five points are marked in the
hysteresis loop across the reversal. The snapshots of the vertex configurations at each of these marked points are also given. Color-coded arrows represent type T2 and
T3 vertex magnetization orientations. The circles represent alternating types of type T1 vertices. Type T4 vertices are not observed.
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APPENDIX B: MAGNETIZATION REVERSAL PROCESS
IN PINWHEEL BASI

Figures 29–31 show the magnetization reversal process in a
f ¼ 0� pinwheel BASI configuration subject to a field applied at an

angle 0:2� to the xy diagonal; magnetization reversal process in a
f ¼ 0� pinwheel BASI configuration subject to a field applied at an
angle 30:2� to the xy diagonal; magnetization reversal process in a
f ¼ 54� pinwheel BASI configuration subject to a field applied at
an angle 0:2� to the xy diagonal.

FIG. 30. Magnetization reversal process in a f ¼ 0� pinwheel BASI configuration subject to a field applied at an angle 30:2� to the xy diagonal. Five points are marked
in the hysteresis loop across the reversal. The snapshots of the vertex configurations at each of these marked points are also given. Color-coded arrows represent type T2
and T3 vertex magnetization orientations. The circles represent T1 vertices while T4 vertices are indicated by the diamond symbols.

FIG. 29. Magnetization reversal process in a f ¼ 0� pinwheel BASI configuration subject to a field applied at an angle 0:2� to the xy diagonal. Four points are marked in
the hysteresis loop across the reversal. The snapshots of the vertex configurations at each of these marked points are also given. Color-coded arrows represent type T2
and T3 vertex magnetization orientations. The circles represent T1 vertices while T4 vertices are indicated by the diamond symbols.
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