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ABSTRACT: Exploration of an ambitious new strategy for the
total synthesis of the cytotoxic marine natural product
amphidinolide F is described, which features fabrication of the
core structure from four readily accessible fragments and
macrocycle construction through C9−C10 bond formation by
intramolecular Stille coupling between an alkenyl iodide and
alkenyl stannane. Efficient stereoselective synthesis of each of the
four building-blocks and subsequent coupling of them to produce
the requisite cyclization precursor has been accomplished, but
suitable conditions for high-yielding palladium-mediated closure of
the macrocycle to produce the fully protected amphidinolide F ring
system have yet to be identified.

Amphidinolide F is a structurally complex cytotoxic marine
natural product produced by a dinoflagellate of the genus

Amphidinium (Figure 1). The isolation of amphidinolide F

from cultures of the dinoflagellate and its subsequent
characterization were reported by the group of Kobayashi in
1991.1 The complete structure of amphidinolide F and both
the relative and absolute configurations of the 11 stereogenic
centers embedded in it were assigned by comparison of NMR
data with the data for amphidinolide C,2 a closely related
natural product that had been isolated and characterized by
Kobayashi and co-workers prior to the isolation of

amphidinolide F. This work established that the macrolactone
cores of amphidinolides F and C are identical; the structure of
the latter was determined by comparison of NMR data with
those of key subunits prepared by de novo synthesis.3

Amphidinolide F and related amphidinolides are alluring
synthetic targets because of their structural complexity and
reported biological activities. Myriad synthetic strategies for
the stereoselective construction of key fragments of amphidi-
nolide F have been explored in recent years, and many of them
are also directly applicable to the synthesis of members of the
amphidinolide C series because of the structural similarity of
the compounds.4−14 This work has resulted in the total
syntheses of amphidinolide F by the groups of Fürstner,15

Carter,16 and Ferrie;́17 syntheses of amphidinolides C and C2
have also been completed by these research groups.
We have already reported the synthesis of the C1−C17 and

the C18−C29/C18−C34 fragments of amphidinolides F, C,
C2, and C3.18 More recently, we have constructed the entire
C1−C29 framework of amphidinolide F by a convergent route
in which fragments corresponding to C1−C9, C10−C17, and
C18−C29 were coupled.19 Although the latter approach
delivered the required linear C1−C29 precursor required for
formation of the lactone by direct cyclization, problems were
encountered when the C1−C17 segment was coupled to the
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Figure 1. Amphidinolide F and its disconnection.
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C18−C29 fragment at a late stage in the synthesis, and so the
alternative synthetic strategy described herein was explored.
The new strategy evolved from a retrosynthetic analysis of

amphidinolide F in which the core structure is disconnected to
produce four fragments (i−iv) of variable size and complexity
(Figure 1). The two most complex fragments (i and iv) each
contain a single tetrahydrofuran and are similar in structure to
intermediates used in our recently published study. The C19−
C29 fragment, which corresponds to fragment iv in the
retrosynthetic analysis, was prepared as shown in Scheme 1.

The route commenced with the known 2,5-disubstituted
tetrahydrofuran 1, which was prepared directly from an open
chain γ-hydroxyalkene by use of a modified version of
Mukaiyama’s cobalt-catalyzed oxidative cyclization reaction,
in the manner described by Pagenkopf and co-workers.20,21

The alcohol 1 was subjected to oxidation, and the resulting
aldehyde was reacted with a Grignard reagent generated from
trimethylsilylacetylene. Removal of the trimethylsilyl group
then delivered the alcohol 2 as a mixture of diastereomers at
the propargylic stereogenic center. A palladium-mediated
Sonogashira coupling reaction between the alkyne 2 and 1-
bromo-2-methyl-1-propene afforded the enyne 3, and sub-
sequent alkyne reduction with Red-Al produced the corre-
sponding diene with excellent Z-selectivity.22,23 Dess−Martin
oxidation of the diastereomeric mixture of allylic alcohols (5a
and 5b) afforded the ketone 4, and diastereoselective reduction
of the carbonyl group under Luche conditions yielded the
alcohol 5a (8:1, 5a:5b). Stereochemical assignment at the
hydroxy-bearing stereogenic center (C24) was made based on
literature precedent and the outcome of Luche reduction
reactions of closely related ketones in our own previous
work,24,18b and the subsequent use of the reaction for the
reduction of analogous substrates during the synthesis of
amphidinolide F by Ferrie ́ and co-workers.17 Protection of the
free secondary hydroxyl group as a tert-butyldimethylsilyl
(TBS) ether and deprotection of the primary hydroxyl group
produced the alcohol 6, which corresponds to fragment iv in
the retrosynthetic analysis (Figure 1).

Synthesis of the C14−C18 fragment that corresponds to
fragment iii in the retrosynthetic analysis (Figure 1)
commenced with the known β-hydroxy ester 7, which was
prepared by Frat́er−Seebach alkylation of commercially
available methyl (R)-3-hydroxybutyrate (Scheme 2).25 The

hydroxyl group of the β-hydroxy ester 7 was first protected as
the 1-ethoxyethyl ether and the ester group was reduced with
lithium aluminum hydride to provide the primary alcohol 8.
The alcohol was converted into the corresponding iodide, and
subsequent nucleophilic displacement with lithiated 1,3-
dithiane afforded the C14−C18 fragment 9 suitable for
attachment to the C19−C29 fragment.
The starting compound for synthesis of the C10−C13

fragment was the known alkyne 10, which was prepared from
commercially available methyl (S)-3-hydroxy-2-methyl-buty-
rate by a five-step sequence, analogous to that described by Lee
and co-workers (Scheme 3).26 The alkyne 10 was converted

into the alkenyl iodide 11 by zirconium-mediated carboalumi-
nation followed by quenching with iodine according to
Negishi’s protocol,27 as performed by Maier and co-workers
on an analogous alkyne.28 Subsequent cleavage of the silyl
ether delivered the alcohol 12. Treatment with Dess−Martin
periodinane produced the aldehyde 13, which corresponds to
fragment ii in the retrosynthetic analysis (Figure 1).
The final fragment�C1−C9�required for the synthesis

was obtained by functionalization of the ester 14, a compound
we had used in our previously published work on the synthesis
of amphidinolide F (Scheme 4).19 Thus, reductive cleavage of
the pivaloyl group from the ester 14 afforded the alcohol 15.
Dess−Martin oxidation of the alcohol 15 to give the aldehyde
16 and subsequent Pinnick oxidation delivered the carboxylic
acid 17 (fragment i in Figure 1).15,17

Completion of the syntheses of the C1−C9, C10−C13,
C14−C18, and C19−C29 fragments allowed construction of
the complete framework of amphidinolide F to be explored.
Coupling commenced with attachment of the C14−C18
fragment to the C19−C29 fragment (Scheme 5). The alcohol
6 was first converted into the corresponding iodide by
treatment with iodine and triphenylphosphine. Subsequent

Scheme 1. Preparation of the C19−C29 Fragment

Scheme 2. Preparation of the C14−C18 Fragment

Scheme 3. Preparation of the C10−C13 Fragment
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fragment coupling was accomplished by nucleophilic attack of
the iodide with the anion generated by deprotonation of the
dithiane 9 with tert-butyllithium. Removal of the ethoxyethyl
protecting group from the coupled product 18 under acidic
conditions delivered the alcohol 19 in 44% yield over three
steps. Parikh−Doering oxidation of the alcohol produced the
ketone 20 and subsequent removal of the TBS protecting
group revealed the alcohol 21, which was immediately
reprotected as the more labile triethylsilyl (TES) ether to
give the ketone 22.
Ketone 22 corresponds to the C14−C29 segment of the

natural product and possesses the requisite functionality for
attachment of the C10−C13 fragment by an aldol
condensation reaction (Scheme 6). Generation of a boron
enolate by treatment of the methyl ketone 22 with
dicyclohexylboron chloride and triethylamine followed by
addition of the aldehyde 13 at −78 °C afforded the
diastereomeric alcohols 23a and 23b (2.2:1). The config-
uration at the newly created hydroxyl-bearing stereogenic
center was made by conversion of the alcohol 23a into
diastereomeric Mosher esters and subsequent 1H NMR
analysis according to the protocol of Hoye and co-workers
(see the Supporting Information).29 Chromatographic separa-

tion of the alcohols was challenging, but samples of each
diastereomer were isolated and then protected as TBS ethers
to give the ketones 24a and 24b.
Construction of the C10−C29 segment meant that coupling

to the C1−C9 fragment to produce the entire C1−C29
framework of amphidinolide F could be explored. The first
approach that was investigated involved direct intermolecular
Stille coupling of the vinylic stannanes 15 and 17,
corresponding to the C1−C9 fragment, to the C10−C29
iodide 24b (Scheme 7). In recent studies performed by us,

Stille coupling had been used to attach the vinylic stannane 14
(Scheme 4) to a truncated C10−C17 fragment.19 This
reaction had proceeded in high yield, and so the proposed
coupling reaction was not expected to be problematic.
However, when the reagents and conditions used previously
were employed perform Stille coupling between the alkenyl
iodide 24b and either vinylic stannane 15 or 17, neither of the
expected coupled products 25 or 26 was obtained. The failure
of the coupling reaction was both unexpected given that Ferrie ́
and co-workers were able to couple the vinylic stannane 17 to
a very closely related analogue of the C10−C29 segment 24b
under similar reaction conditions during their recent synthesis
of amphidinolide F.17 Alternative Stille reaction conditions are
clearly required to accommodate the bulky alkenyl iodide 24b
and/or the acidic coupling partners 15 and 17.
The failure of the direct intermolecular Stille coupling

reaction to deliver either of the expected coupled products (25
or 26) corresponding to the C1−C29 framework of
amphidinolide F meant that a new endgame strategy was
required. The decision was made to investigate an alternative
route in which the reactions used to assemble the complete
carbon framework and construct the macrocycle were

Scheme 4. Functionalization of the C1−C9 Fragment

Scheme 5. Fragment Coupling to Produce the C14−C29
Segment

Scheme 6. Construction of the C10−C29 Segment

Scheme 7. Attempted Intermolecular Stille Coupling of the
C1−C9 Fragment to the C10−C29 Segment
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reordered. We opted for an approach in which an ambitious
intramolecular Stille coupling reaction would be employed to
accomplish simultaneous formation of the complete carbon
framework and the macrolactone in a single operation
(Scheme 8).30 To investigate this approach, the C18 carbonyl

group and the C24 hydroxyl group in the C10−C29 segment
24a (Scheme 6) were unmasked by hydrolysis of the dithiane
group under standard conditions with concomitant cleavage of
the TES ether. The resulting alcohol 27 was then subjected to
esterification with the carboxylic acid 17 under standard
Yamaguchi conditions31 to produce the ester 28 in good yield.
Intramolecular Stille coupling to produce the macrolactone 29
was then explored. Global deprotection of the lactone 29
would deliver 13-epi-amphidinolide F, and it was anticipated
that the diastereomeric compound 24b would be subjected to
a parallel sequence of reactions to give amphidinolide F.
Attempted intramolecular Stille coupling reaction of the ester
28 to give the lactone 29 produced a complex mixture of
products, and so we attempted to isolate 13-epi-amphidinolide
F by immediate deprotection of the crude material. However,
the required product was not isolated after complete silyl ether
cleavage to reveal the free hydroxyl groups at C7, C8, and C13.
In summary, an innovative new strategy for the total

synthesis of the amphidinolide F has been investigated in
which macrocycle formation was to be accomplished by an
intramolecular Stille coupling reaction. Fragments that
correspond to C1−C9, C10−C13, C14−C18, and C19−C29
units were prepared from readily available starting materials in
an efficient and stereoselective manner, and then coupled to
provide the substrate required for the proposed macro-
cyclization reaction. A limited number of reaction conditions
have been explored for the intramolecular Stille coupling
reaction to give fully protected amphidinolide F. However,
further studies are required to identify the appropriate
palladium catalyst and reaction conditions necessary to effect
high-yielding macrocyclization.
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