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Abstract 1 

Background and objectives 2 

Individuals with type 2 diabetes are at higher risk of developing kidney failure. The objective 3 

of this study was to develop and validate a decision support tool for estimating 10-year and 4 

lifetime risk of kidney failure in individuals with type 2 diabetes as well as estimating 5 

individual treatment effects of preventive medication. 6 

Design, setting, participants, and measurements 7 

The prediction algorithm was developed in 707,077 individuals with prevalent and incident 8 

type 2 diabetes from the Swedish National Diabetes Register (NDR) for 2002-2019. Two Cox 9 

proportional regression functions for kidney failure (first occurrence of either kidney 10 

transplantation, long-term dialysis or persistent estimated glomerular filtration rate <15 11 

ml/min/1.73m2) and all-cause mortality as respective endpoints were developed using 12 

routinely available predictors. These functions were combined into life-tables to calculate 13 

predicted survival without kidney failure, while using all-cause mortality as competing 14 

outcome. The model was externally validated in 256,265 individuals with incident type 2 15 

diabetes from the Scottish Care Information (SCI)-Diabetes database between 2004 and 2019.  16 

Results 17 

During a median follow-up of 6.8 years (IQR 3.2-10.6), 8,004 (1.1%) of individuals with type 18 

2 diabetes in the Swedish NDR cohort developed kidney failure and 202,078 (29%) died. The 19 

model performed well with a c-statistic for kidney failure of 0.891 (95%CI 0.881-0.899) for 20 

internal validation and 0.741 (95%CI 0.726-0.756) for external validation. Calibration plots 21 

showed good agreement in observed vs. predicted 10-year risk of kidney failure for both 22 

internal and external validation.  23 

Conclusions 24 
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This study derived and externally validated a prediction tool for estimating 10-year and 1 

lifetime risk of kidney failure as well as life-years free of kidney failure gained with 2 

preventive treatment in individuals with type 2 diabetes using easily available clinical 3 

predictors.  4 

 5 

Introduction 6 

Worldwide, the prevalence of type 2 diabetes is rapidly increasing(1). Individuals with type 2 7 

diabetes have three to five times higher risk of developing kidney failure compared with 8 

individuals without type 2 diabetes(2). Treatment options to prevent or delay kidney failure in 9 

individuals with type 2 diabetes include smoking cessation(3), intensive glucose- and blood 10 

pressure (BP)-lowering(4, 5), treatment with angiotensin-converting enzyme-inhibitors 11 

(ACEi) or Angiotensin-II Receptor Blockers (ARB)(6), sodium-glucose cotransporter-2 12 

inhibitors (SGLT2i)(7) and glucagon-like peptide-1 receptor agonists (GLP1-RA)(7). The 13 

absolute benefit an individual may derive in terms of kidney failure risk reduction from these 14 

treatments depends on several different factors including risk factor burden, duration of 15 

treatment and overall life expectancy. 16 

 17 

Few prediction models exist for kidney failure in individuals with type 2 diabetes(8-11). 18 

These models have important limitations since they predict risk over a relatively short time 19 

period and often predict intermediate outcomes such as doubling of serum creatinine(8), 20 

which might be less relatable to an individual than kidney failure as a hard outcome. Notably, 21 

shared risk factors associated with kidney failure also contribute to a high cardiovascular 22 

disease and mortality risk (12). Therefore it is crucial to take all-cause mortality into account 23 

as a competing risk to avoid overestimation of kidney failure risk, since most individuals with 24 

type 2 diabetes will die from other causes before developing kidney failure. These gaps 25 
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highlight the need to develop prediction models for long-term risk of kidney failure in 1 

individuals with type 2 diabetes.  2 

 3 

Therefore, the aim of the current study was to develop and validate a prediction model for risk 4 

of kidney failure in large population-based cohorts of individuals with type 2 diabetes. 5 

Further, we aimed to predict life expectancy free of kidney failure and include treatment 6 

effects of preventive therapy. 7 

 8 

Methods 9 

Data sources and participants 10 

The prediction model was developed and internally validated in the Swedish National Diabetes 11 

Register (NDR) (n = 707,077), which includes individuals with both incident and prevalent 12 

type 2 diabetes. Participants in NDR were included from January 1st 2002 until 25th 13 

September 2019. 14 

The model was externally validated in an extract of the Scottish Care Information (SCI)-15 

Diabetes database (n = 256,265), which includes individuals with incident type 2 diabetes. 16 

Participants from SCI-Diabetes were included if their date of diagnosis of diabetes was between 17 

January 1st 2004 and January 1st 2019. Both registers have close to complete coverage of the 18 

population with a diagnosis of type 2 diabetes during the study period. Register details for both 19 

cohorts have been described elsewhere(13, 14). All participants were aged >30 years at cohort 20 

entry with a diagnosis of type 2 diabetes (table S1) without kidney failure at baseline. All use of 21 

data from these registers received appropriate local data governance approvals and all studies 22 

complied with the Declaration of Helsinki. 23 

 24 

Predictor and outcome variables 25 



6 
 

Kidney failure was defined as chronic kidney disease (CKD) stage 5 (sustained estimated 1 

glomerular filtration rate (eGFR) <15ml/min/1.73 m2), long-term dialysis or kidney 2 

transplantation(15), and all-cause mortality was defined as death from any cause. Linkage of 3 

the NDR and SCI-Diabetes to national death registrations and hospital admission/discharge 4 

registries enabled the identification of kidney failure using ICD-10 and procedure codes (table 5 

S2). 6 

Predictors were pre-selected based on existing risk scores for kidney failure(9-11) and their 7 

availability in clinical practice. Pre-selection of variables was applied to prevent overfitting(16). 8 

The predictors included age, sex (male/female), current smoking (yes/no), systolic BP, body 9 

mass index (BMI), Hemoglobin A1c, eGFR(17), non-high-density lipoprotein (HDL) 10 

cholesterol, albuminuria (none/moderate/severe), duration of type 2 diabetes (years since 11 

diagnosis), insulin treatment (yes/no) and history of cardiovascular disease (yes/no) (table S1). 12 

Non-HDL-cholesterol was chosen as single marker to represent lipid profile(18). Albuminuria 13 

was defined as a urine-albumin/creatinine ratio (UACR) of 3-30 mg/mmol for moderate 14 

albuminuria and UACR >30mg/mmol for severe albuminuria. An individual’s baseline was set 15 

as the date of the first eGFR measurement following enrollment in NDR or diagnosis of 16 

diabetes in SCI-Diabetes and the values of other predictors were defined at the first 17 

measurement within 12 months after this date.  18 

 19 

Statistical analyses 20 

Baseline characteristics are described as median and interquartile range (IQR) for continuous 21 

variables and as count (%) for categorical variables. 22 

 23 

Development of the prediction model 24 
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A split-sample approach was used for development and internal validation of the prediction 1 

model. A random sample of 75% of participants from NDR (n=530,308) was used as the 2 

development dataset. Missing data were imputed using single imputation with predictive mean 3 

matching. Details are described in the Supplementary material, Predictors and missing data.  4 

In the derivation dataset, two Cox proportional hazards functions with left truncation and right 5 

censoring were developed using age as the time-axis: one for prediction of kidney failure-events 6 

(function A) and one for prediction of all-cause mortality (function B).  7 

Baseline hazards for kidney failure (function A) were derived using 1-year intervals (due to the 8 

low amount of kidney failure events) and thereafter smoothed and interpolated to 3-month 9 

intervals. Baseline hazards for all-cause mortality (function B) were derived using 3-month 10 

intervals (figure S1).  11 

By combining the coefficients from the Cox proportional hazards functions A and B and the 12 

smoothed baseline hazards, kidney failure-free survival, 10-year and lifetime risk of kidney 13 

failure and all-cause mortality were calculated using previously validated life-tables(19). 10-14 

year risk of kidney failure was calculated by summation of the predicted kidney failure and all-15 

cause mortality risk, respectively, in the first 10 years and beyond from a person’s age at cohort 16 

entry. Similarly, lifetime risk of kidney failure was calculated by the summation of the predicted 17 

kidney failure risk from an individual’s age at cohort entry until the maximum age of 95 years. 18 

All analyses were performed with R-statistic programming (version4.0.3,R Foundation for 19 

Statistical Computing, Vienna,Austria). A detailed description of statistical methods is 20 

provided in the Supplementary material, Statistical analyses.  21 

 22 

Model validation for 10-year predictions 23 

Goodness-of-fit was assessed in the remaining 25% of NDR by calibration plots. Observed risks 24 

of kidney failure were calculated using cumulative incidence functions with the competing 25 
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event being all-cause mortality. For external validation in SCI-Diabetes, the models were 1 

recalibrated based upon the incidence of kidney failure and all-cause mortality, using the 2 

expected vs. observed ratios. The logarithm of the expected vs. observed ratio was subtracted 3 

from the linear predictor for both outcomes. Discrimination was quantified using Harrell’s c-4 

statistic for survival data(20). Our approach to model development and validation complies 5 

with PROBAST guidelines(21) and TRIPOD(22). 6 

 7 

Prediction of treatment effects 8 

To estimate the individual treatment benefit, the linear predictor for function A was combined 9 

with hazard ratios (HRs) from the most recent high quality meta-analyses describing effect sizes 10 

for each intervention. For the current study, we derived estimates of the effect of glucose-11 

lowering, BP-lowering, GLP1-RA, SGLT2i, ACEi/ARB treatment and smoking cessation as 12 

described in in the Supplementary material, Relative treatment effects. The HR of smoking 13 

cessation, BP-lowering and initiation of GLP1-RA or SGLT2i for all-cause mortality were 14 

added to the linear predictor for model B(5, 23-25). 15 

The lifetime benefit of treatment was calculated as the difference between predicted median 16 

kidney failure-free life expectancy with and without treatment. Similarly, 10-year absolute risk 17 

reduction was estimated by calculating the difference between the predicted 10-year kidney 18 

failure risk with and without treatment. This same approach was used for estimating lifetime 19 

kidney failure risk reduction with initiation of treatment. All model assumptions are provided in 20 

table S9. 21 

 22 

Sensitivity analyses 23 
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To incorporate the natural decline of eGFR in the predictions of kidney failure-risk several 1 

sensitivity analyses were performed to incorporate functions of eGFR over time, see 2 

Supplementary materials, Sensitivity analyses.  3 

 4 

Results 5 

Baseline characteristics 6 

Selection of the development and the validation cohorts in NDR is illustrated in figure S2. For 7 

NDR median(IQR) follow-up was 6.8(3.2-10.6) years with 8004 individuals(1.1%) 8 

developing incident kidney failure and 202,078(29%) deaths. The cohort consisted of 9 

401,433(57%) men, median(IQR) age was 65(57-74) years and median(IQR) eGFR was 85(68-10 

97) ml/min/1.73m2. In SCI-Diabetes, median(IQR) follow-up was 5.9(2.6-9.6) years with 11 

1653(0.7%) kidney failure-events and 45,056(18%) deaths. In this cohort, 145,753(57%) were 12 

men, median(IQR) age was 61(52-70) years and median(IQR) eGFR was 83(68-96) 13 

ml/min/1.73m2. 14 

 15 

Prediction model and validation 16 

Table S3 shows the HRs and 95% confidence intervals (95%CI) for functions A and B. The 17 

formulae for calculating survival for 3-month intervals, including coefficients and age-specific 18 

baseline hazards are included in tables S4 and S5.  19 

Predicted 10-year risk for kidney failure and all-cause mortality showed good agreement with 20 

the 10-year observed risk in the internal validation dataset(Figure 1). Internal model 21 

performance in terms of discrimination was good, reflected in c-statistics of 0.890(95%CI 22 

0.881-0.899) for kidney failure and 0.770(95%CI 0.767-0.772) for all-cause mortality.  23 

Kidney failure incidence rates (IR) were higher in NDR with an IR of 1.6/1,000 person-years 24 

compared to 1.0/1,000 person-years in SCI-Diabetes. Similarly, all-cause mortality also differed 25 
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between the cohorts: 39.5/1,000 person-years in NDR and 28.0/1,000 person-years in SCI-1 

Diabetes. For individuals with incident type 2 diabetes in NDR dataset (n = 229,635;32%), 2 

event rates were similar to those observed in SCI-Diabetes (IR were 0.7/1000 person-years for 3 

kidney failure and 27/1000 person-years for all-cause mortality). A table of baseline 4 

characteristics stratified for incident versus prevalent type 2 diabetes in NDR is provided as 5 

table S6. Due to the difference in event rates, the model was recalibrated according to predicted 6 

vs. observed kidney failure and all-cause mortality rates. Predicted 10-year risk for kidney 7 

failure and all-cause mortality showed good agreement with the 10-year observed risk in SCI-8 

Diabetes (Figure 2), although risk in the highest decile was overestimated. The model 9 

performed well regarding discrimination with c-statistics of 0.741 (95% CI 0.726-0.756) for 10 

kidney failure and 0.768 (95% CI 0.766-0.770) for all-cause mortality. A baseline table for 11 

predictors stratified according to predicted kidney failure risk is provided in table S7. 12 

 13 

Individual lifetime estimation of risk and treatment effects 14 

An interactive user-friendly calculator is provided as supplementary file and will be provided at 15 

www.U-Prevent.com. Individual effects from medication initiation can be modelled in terms of 16 

kidney failure-free life years gained and absolute risk reduction. Figure 3 illustrates kidney 17 

failure-free life expectancy and 10-year kidney failure risk for two individual examples with 18 

and without initiation of preventive medication. 19 

 20 

Sensitivity analyses 21 

When incorporating the natural decline of eGFR in the predictions of kidney failure-risk, model 22 

performance did not improve for 10-year predictions (Supplementary material, Sensitivity 23 

analyses).  24 

 25 
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Discussion 1 

The current study describes the development and external validation of a prediction model for 2 

estimation of 10-year and lifetime risk of kidney failure using data from almost one million 3 

individuals with type 2 diabetes. Furthermore, the model allows estimation of individual benefit 4 

of treatment with medication most often used for kidney protection in individuals with type 2 5 

diabetes expressed as life-years gained free of kidney failure with treatment initiation. The 6 

prediction tool is available as Supplementary material and will be provided as a calculator at 7 

www.U-Prevent.com to allow use in clinical practice. 8 

 9 

Existing kidney failure prediction models developed in individuals with type 2 diabetes are 10 

based on shorter prediction horizons of up to eight years(9-11, 26-28). These shorter term 11 

predictions remain relevant for use in some patient groups, i.e. those already having advanced 12 

kidney damage, for intensifying follow-up and timing of kidney replacement therapy(29). 13 

However, for patients with lower short-term risk, including younger patients, longer-term 14 

predictions will be valuable to support decisions about preventive treatment. All models failed 15 

to adjust for competing risks. This is critical to avoid overestimating predicted kidney failure 16 

risks and treatment effects(30), especially in older individuals and individuals at low risk for 17 

kidney failure, who are likely to die before developing kidney failure. Furthermore, only two 18 

previous kidney failure risk prediction models in individuals with type 2 diabetes performed 19 

external validation. Elley et al. performed external validation for 5-year risk of kidney failure in 20 

5,877 individuals with type 2 diabetes arising from the same geographical region as the 21 

derivation cohort with a c-statistic of 0.89 and reasonable calibration(11). Basu et al. performed 22 

external validation for 10-year risk of kidney failure in 1,018 individuals with type 2 diabetes 23 

with a c-statistic for kidney failure of 0.54 and did not perform calibration of this specific 24 

outcome(27). In the current model, c-statistics dropped from 0.89 for internal validation to 0.74 25 

http://www.u-prevent.com/
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for external validation. The lower discrimination ability in the external validation is likely due 1 

to the categorical definitions of albuminuria used rather than continuous data that may provide a 2 

better predictor, as well as the lower availability of albuminuria in the validation cohort (54% 3 

missing data). Also, diabetes duration is a relevant predictor in NDR (since this was a cohort 4 

with both prevalent and incident type 2 diabetes), however not in SCI-Diabetes (since this was 5 

a cohort with incident type 2 diabetes).  6 

 7 

In the current study, the event rates for both kidney failure and all-cause mortality in individuals 8 

with type 2 diabetes were higher in Sweden compared to Scotland. The difference in kidney 9 

failure event rates is likely explained by the use of an incident cohort from SCI-Diabetes who 10 

were almost five years younger at cohort entry than the population of individuals with prevalent 11 

and incident diabetes identified from NDR, despite the potential for survival bias in the NDR 12 

cohort. More individuals in the NDR had severe albuminuria and a history of cardiovascular 13 

disease and the prevalence of treatment with insulin was higher. Moreover, the prevalence of 14 

RASi medication prescription was higher in NDR. This may be due to differences in 15 

antihypertensive treatment algorithms with a more prominent role for RASi treatment in 16 

Swedish guidelines as compared to Scottish guidelines(31, 32). Furthermore, since SCI-17 

Diabetes was a cohort with incident type 2 diabetes, prescription of RASi-medication is likely 18 

to have increased after diagnosis(33). Future validation and recalibration of the model will be 19 

valuable as data on individuals with type 2 diabetes with sufficient follow-up accrue, also to 20 

account for differences in baseline risk due to changing patterns of medication use. 21 

 22 

The current model is intended for use in clinical practice to assess kidney failure risk in 23 

individuals with type 2 diabetes as well as likely benefits from preventive treatment. The model 24 

is underpinned by two very large and contemporary type 2 diabetes population-based cohorts 25 
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with limited selection of participants. Large databases with extensive follow-up are important in 1 

order to ensure sufficient power with an adequate amount of kidney failure events, since the 2 

incidence of kidney failure is relatively low as compared with cardiovascular outcomes and 3 

mortality in these populations. In external validation of the current model, a slight 4 

overestimation of kidney failure risk for patients at highest risk of kidney failure was observed, 5 

which could indicate a modest degree of overfitting in the highest risk group. However, in 6 

clinical practice this is unlikely to lead to erroneous decisions regarding treatment, as the true 7 

observed risk in these patients is still high and justifies intensive medical therapy. The model 8 

was developed for the entire range of eGFR. Individuals with type 2 diabetes and CKD stage 3 9 

or 4 are likely already managed as a high-risk group where preventive treatment is indicated. 10 

However, also in these groups progression of kidney function decline may take several years 11 

and the model can still act as a suitable tool to aid adherence and shared decision making in the 12 

prevention of kidney failure. 13 

 14 

The current model emphasizes lifetime benefit from treatment, which may support initiation of 15 

preventive treatment if absolute benefit is deemed appropriate. Contrary, the model may support 16 

not starting or postponement of preventive drug treatment if the absolute benefit is too low and 17 

focus on lifestyle changes might be a more appropriate initial treatment choice. In this way 18 

lifetime risk prediction informs shared decision making while lowering the risk of side effects 19 

and polypharmacy. Furthermore, trials are often not powered to detect an effect on kidney 20 

failure risk, and albuminuria, eGFR slopes or a combined kidney event are often used as 21 

proxies for hard kidney outcomes(34). With lifetime predictions for kidney failure, a better 22 

alternative for translating absolute kidney failure risk reduction with initiation of preventive 23 

treatment is provided.  24 
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We chose to also incorporate effect on all-cause mortality of treatment initiation where there 1 

was substantial evidence for this, since this leads to longer life expectancy and thus also more 2 

years to develop kidney failure. However, it should be noted that kidney failure-free life years 3 

gained in individuals with a low risk of kidney failure is mostly derived from the effect on all-4 

cause mortality. Treatment should always be considered and initiated according to current 5 

guidelines(35, 36), and the kidney failure prediction tool can help support these decisions. It 6 

should further be emphasized that preventive treatment in individuals with type 2 diabetes 7 

might be initiated for other reasons than prevention or postponement of kidney failure (e.g. 8 

prevention of cardiovascular outcomes or heart failure) that were not incorporated into the 9 

current model. The model therefore underestimates the total benefit of treatment. Ideally, the 10 

model should be combined with models predicting risk of cardiovascular disease to fully 11 

capture treatment benefit(37). 12 

 13 

The model assumes that predictors follow a natural course over time that matches the course 14 

of predictors in the derivation cohort, and model predictions are based on the current predictor 15 

levels of a patient. However, follow-up in the derivation cohort was not sufficient to 16 

incorporate the natural course of predictors over the entire lifetime span, which might be 17 

particularly important for eGFR as a strong predictor for kidney failure that is known to 18 

decline with increasing age. The different methodological approaches that we used to account 19 

for this general eGFR decline with age (e.g. incorporating standardized annual eGFR decline 20 

and modelled decline) did not improve model performance. Furthermore, the model assumes 21 

that other baseline risk factor levels follow the natural course captured in the dataset, which 22 

might not always be appropriate. However, previous studies have validated methods of 23 

estimating lifetime predictions for up to 17 years(19). Since all risk factors are subject to change 24 
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after baseline and because of the general decline of eGFR with increasing age, lifetime 1 

estimations should be repeated when decisions about new treatment approaches are required. 2 

 3 

Potential limitations of the study merit consideration. Internal and external validation was 4 

performed for 10-year risk as it is not possible to perform validation over an individual’s 5 

lifetime. Also, diabetes duration is calculated as time since diabetes diagnosis, which is unlikely 6 

to be fully accurate as some people are likely to have developed diabetes some time before a 7 

clinical diagnosis is made. 8 

We did not have information on ethnicity, so were not able to include this as predictor in the 9 

model. It is possible that the use of ICD-10 codes to identify outcomes may have resulted in 10 

misclassification, particularly underestimation of sustained eGFR <15ml/min/1.73m2 in the 11 

absence of long-term dialysis or transplantation as reported in a previous study(38). It is not 12 

possible to validate the ICD-codes in the study populations used for this analysis or to 13 

estimate the likely effect of misclassification on the estimated discrimination and calibration 14 

of the risk models without knowing whether the degree of misclassification varies with 15 

different levels of risk factors. 16 

We performed single imputation due to computational feasibility, which might slightly 17 

underestimate the true variability of outcome measures as opposed to multiple imputation. 18 

However, no conclusions are drawn based on the significance of the model’s coefficients. Also, 19 

we chose for a split-sample approach for model development, while resampling methods would 20 

have been preferred. Model development was however still performed in >500,000 individuals 21 

with type 2 diabetes making the power of the study more than sufficient. Another assumption 22 

made is full adherence to preventive treatment for the remaining lifetime. However, since lack 23 

of adherence is a common problem, this current model might be used in aiding communication 24 

and addressing the importance of adherence to preventive treatment. Since kidney failure is a 25 
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rare outcome and studies are often underpowered, treatment effects for glucose-lowering and 1 

BP-lowering were estimated using the best available evidence and should be interpreted with 2 

this in mind. Further research is needed to investigate to what extent the model is used in 3 

clinical practice and whether its use improves outcomes. 4 

 5 

In conclusion, 10-year and lifetime risk of kidney failure as well as kidney failure-free life 6 

expectancy and life-years free of kidney failure gained with treatment initiation can be 7 

estimated for individuals with type 2 diabetes using readily available characteristics. 8 

Assessment of individual risk and gain from treatment facilitates personalized medicine and 9 

shared-decision in the management of long-term outcomes in clinical practice. 10 

 11 
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Table 1. Baseline characteristics of participants identified from the Swedish National 1 

Diabetes Register and Scottish Care Information - Diabetes cohort after imputation of 2 

missing data 3 

 Swedish National Diabetes 

Register (n = 707,077) 

Scottish Care information - 

Diabetes cohort (n = 256,265) 

Sex (male) 401,433 (57%) 145,753 (57%) 

Age (years) 65 (57-74) 61 (52-70) 

Current smoking 110,630 (16%) 57,702 (23%) 

Duration of diabetes mellitus 

(years) 

2 (0-7) 0 (0-0) 

Incident type 2 diabetes 229,635 (32%) 256,265 (100%) 

Insulin treatment 133,661 (19%) 25,227 (10%) 

History of cardiovascular 

disease 

155,806 (22%) 43,012 (17%) 

eGFR (mL/min/1.73m2) 85 (68-97) 83 (68-96) 

Moderate albuminuria 104,227 (15%) 49,536 (19%) 

Severe albuminuria 43,454 (6%) 5,353 (2%) 

Systolic blood pressure 

(mmHg) 

138 (126-150) 135 (124-144) 

Body mass index (kg/m2) 29 (26-33) 31 (28-36) 

HbA1c (%)  6.7 (6.2-7.6) 6.9 (6.3-7.9) 

HbA1c (mmol/mol) 50 (44-60) 52 (45-63) 

Non HDL cholesterol 

(mmol/L) 

3.6 (2.9-4.4) 3.3 (2.6-4.2) 

Prescribed RASi medication 299,559 (42%) 38,769 (15%) 

 4 

Variables are displayed as median (IQR) for continuous variables and counts (%) for 5 

categorical variables. Abbreviations: eGFR = estimated glomerular filtration rate, HbA1c = 6 

hemoglobin A1c, HDL = high-density-lipoprotein, RASi = Renin-angiotensin-system 7 

inhibition medication 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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Figure 1. Calibration plots for internal validation in a random sample of 25% from the 1 

Swedish National Diabetes Register (n = 170,114) 2 

 3 

Calibraiton slope for kidney failure as outcome 1.02, slope for all-cause mortality as outcome 4 

1.04. 5 

 6 

Figure 2. Calibration plots for external validation in SCI-Diabetes cohort (n = 256,265) 7 

 8 

Calibration slope for kidney failure as outcome 0.73, slope for all-cause mortality as outcome 9 

0.99 after recalibration. 10 
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 1 

Figure 3. Example of 10-year kidney failure risk, life-years free of kidney failure and 2 

benefit from preventive treatment in two patient scenarios 3 

 4 

 5 

 6 
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 1 

Effect of initiation of RAS-inhibitor and SGLT2i on kidney failure-free lifetime 2 

expectancy for two patient examples  3 

Patient A; a 50-year old male, non-smoker, 5 years diabetes duration, no history of 4 

cardiovascular disease, no insulin use, systolic blood pressure 140 mmHg, BMI 33 kg/m2, 5 

eGFR 60 ml/min/1.73m2, moderate albuminuria, non HDL cholesterol 3.0 mmol/L, HbA1c 6 

8.1% (65 mmol/mol).  7 

Patient B; a 65-year old female, non-smoker, 2 years diabetes duration, history of 8 

cardiovascular disease, no insulin use, systolic blood pressure 150 mmHg, BMI 25 kg/m2, 9 

eGFR 50 ml/min/1.73m2, severe albuminuria, non HDL cholesterol 4.0 mmol/L, HbA1c 10 

7.5% (58 mmol/mol).  11 

 12 

Take home figure 13 

 14 
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GLP-1 RA = glucagon-like peptide-1 receptor agonist, RASi = Renin-Angiotensin-System 1 

inhibitor, SGLT2i = sodium–glucose co-transporter-2 inhibitor, HRs = hazard ratios, eGFR 2 

= estimated glomerular filtration rate, BP = blood pressure. 3 
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