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Abstract

This paper presents Hetero-Genius, a middleware architecture that enables construction and mediation in
Internet of Things (IoT) systems. IoT systems are deployed across physical spaces such as urban parks,
residential areas, and highways. The services provided by such IoT deployments are constrained to specific
devices and deployment contexts. While existing interoperability solutions enable the “design time” devel-
opment and deployment of IoT systems, it is often essential to dynamically compose systems that consist
of other “small scale” IoT systems. To achieve this, post-deployment composition is needed, i.e., runtime
composition of diverse IoT devices and capabilities. Hetero-Genius supports system and service discov-
erability, as well as automatic composability. We demonstrate this using a real-world Internet of Vehicles
(IoV) scenario. Our experimental evaluation shows that developers can save up to 47% of their time when
using Hetero-Genius, as well as improve code correctness by 55% on average.

1 Introduction

Due to technological advances in system-on-chip de-
sign and manufacturing, sophisticated devices are
highly available, affordable, and of minimal size and
power requirements. Network connectivity also has
greatly improved, with a myriad of cellular technolo-

gies such as WiFi, 5G, Zigbee, LoRaWAN, etc. These
advancements have facilitated great progress in build-
ing applications to operate over various fabrics made
of in situ sensing and actuating devices, and support
back-ends in the cloud and edge.

In effect, the current state consists of a huge va-



riety of constituent systems that are independently
deployed but co-existing in shared physical spaces.
Each system was designed to satisfy certain user re-
quirements, given its physical properties. For exam-
ple, a parking system provides bookable spaces that
are associated with its location and spatial capac-
ity. Each system exposes its physical properties and
(usually, proprietary) APIs to enable integration with
other systems and applications. This breeds great
heterogeneity, which contributes to the complexity of
integrating systems, as system developers are over-
whelmed with the amount of knowledge they need to
acquire to develop such integrated systems.

The Service Oriented Architecture (SOA) comput-
ing paradigm has been used to integrate functionali-
ties of independent systems [14] by exposing them as
services that enable data exchange between providers
and consumers. A number of protocols could be used
with SOA (e.g., MQTT [2], CoAP [26], XMPP [25])
each of which has its own data representation format.
The adoption of different protocols by independent
systems introduces further complexity on the integra-
tion of systems. This challenge has been tackled in
the literature. For example, DeXMS [5] enables IoT
devices to interact by synthesizing software media-
tors that translate between different communication
protocols. However, issues such as runtime detection
of protocol incompatibility and the on-fly creation of
mediators are yet to be addressed.

The above challenges together highlight that com-
posing systems that make use of a variety of tech-
nologies is difficult to design, maintain and adapt.
Therefore, system engineering efforts to support post-
deployment composition is needed [30, 12]. This calls
for approaches that address these challenges and are
able to (i) identify independent systems with their
unique characteristics and contexts; (ii) recognize the
need to compose with other systems; (iii) detect the
need for mediation logistics; and (iv) set in action
any support roles needed to actuate mediation.

In this paper we introduce the Hetero-Genius ar-
chitecture to enable principled and automated con-
struction and mediation in IoT and systems of sys-
tems contexts. Hetero-Genius makes novel use of
an ontology for describing systems, facilitating com-
prehensive description of system properties, proto-

cols and APIs. In turn, this supports system and
service discoverability and automatic composability.
This contribution aims to boost the productivity of
composing [oT systems by shifting the responsibility
of composing devices and sub-systems from system
developers to the system itself. Based on an abstract
workflow provided by a client, Hetero-Genius uti-
lizes system descriptions and semantics to find the
required systems and APIs to realize the abstract
workflow as an executable workflow. Thereby, we
make two contributions:

e Hetero-Genius, an architecture for automated
system composition that favors description of in-
dependent systems, enabling systems to automati-
cally: (i) discover other systems and their services;
(ii) opportunistically integrate with them to satisfy
a user request; and (iii) detect the need for media-
tion and to create mediators at runtime for direct
interaction with other systems.

e A mixed-methods evaluation of Hetero-Genius
using a real-world Internet of Vehicles (IoV) sce-
nario. Specifically, we assess (i) effectiveness and
added value through a user study with a group of
developers, and (ii) scalability through extensive
simulation of representative contexts.

Overall, Hetero-Genius cuts the amount of effort
and, consequently, costs required from system devel-
opers to develop integrated systems almost by half
compared to current development practices. Further-
more, it reduces the room for error resulting in code
with 55% more correctness scores, on average.

2 Problem Statement

In this section, we outline the general problem space
using an IoV-based motivating scenario to extract
concrete technical challenges.

Motivating scenario: IoV. Highway systems are
sophisticated networks of road infrastructure and de-
vices. In France, the autoroute system has 11,882
km of highways, each of which is operated and main-
tained by a road company (e.g., VINCI Autoroutes,
the Bouygues Group). To improve the driving expe-
rience and public safety, these companies provide dig-
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Figure 1: Examples of different constituent systems
in the IoV context.

ital services for toll payment, real time traffic infor-
mation, etc. In addition, roadside digital services re-
lated to parking capacity, charging/gas stations, are
usually exposed as APIs. Many of the 30 million ve-
hicles in France deploy a variety of sensors providing
information related to vehicle characteristics (model,
wheelbase, unladen weight) and status (speed, loca-
tion, tire pressure) as well as trip and driver mon-
itoring information (average fuel consumption, hu-
man/automated driver, alertness level). This has led
to the emergence of the Internet of Vehicles (IoV)
concept [8] which enables data exchange between ve-
hicles and roadside services using diverse technolo-
gies. To develop IoV applications, it is essential to
enable the exchange of data between heterogeneous
vehicle sensors and highway /roadside digital services.
For instance, charging an electrical vehicle requires
1-2 hours using fast-charging technology and upto
20 hours otherwise. Thus, proactive and deliberate
planning is required especially on long trips. In par-
ticular, given the distance of a trip, the vehicle’s bat-
tery level, speed, location and the driver’s operating
behavior, an IoV application, such the one shown in
Figure 1, could anticipate and optimize the stop plan
(charging stations, restaurants, etc.).

Existing cloud-based platforms, e.g., AWS IoT
Greengrass, are adopted by vehicle manufacturers to
provide advanced car services such as parking assis-
tant, concierge, live traffic information, etc. While
such systems improve the driving experience, they
are vertical and siloed solutions that depend on the
technology stack leveraged by the vehicle manufac-
turer. Regardless of the platform used, such systems

are data-centric where vehicle data must be collected
on the cloud, processed and then provided to vehicle
users. In contrast, distributed edge-based approaches
favor several requirements of IoT systems such as pri-
vacy and security, timely message delivery, network
latency and system functionality.

Enabling IoT composition. Creating an IoT de-
ployment requires to consider numerous technical
(Edge vs. Cloud technologies, protocols, APIs, QoS,
etc.) and context (physical environment) related as-
pects. For instance, commercial street could host IoV
deployments to: monitor vehicle traffic; track bus and
tram locations; monitor harmful gases, smoke, and
dust; to detect waste level for optimizing collection
scheduling; and so on. Composing diverse IoT de-
ployments may enable the design and fulfillment of
higher-level operations that are not possible by any
one IoT deployment alone. However, enabling the
composition of an IoT deployment is a substantial
undertaking as it requires each deployment to go be-
yond what it was originally designed for. This pa-
per enables IoT composition via the self-awareness
of the deployment’s resources/capabilities and meta-
awareness of the surrounding context.

3 Hetero-Genius

3.1 Architecture

The main components of Hetero-Genius are now de-
scribed.

Constituent systems A constituent system repre-
sents a single system or device that provides one or
more functionalities and has certain properties. Ex-
amples include parking services, restaurants, traffic
control units, vehicles, etc. Each system exposes its
APIs that enable other systems to interact with it
and access its functionalities. In addition, each con-
stituent system has a set of properties that spec-
ify constraints of service availability and provision.
These include the messaging protocol, location, avail-
ability intervals, among others. Each constituent sys-
tem is assumed to provide an ontological specifica-
tion that describes its properties, functionalities, and
binding information so that other systems can au-



tonomically find means to opportunistically interact
with it.

Ontology manager In order to achieve automatic
discovery and interaction of systems, there is a need
for constituent system ontology; i.e., semantics to
capture the information of a given constituent sys-
tem, such as APIs, properties, data types. There
is also a need for a runtime to enable ontology cre-
ation and exploitation. In Hetero-Genius, the on-
tology manager provides the required semantics that
are based on the standard CoDAMOS ontology [22].
The ontology manager provides interfaces for creat-
ing and parsing constituent system descriptions.

Holon registry (HR) An ontology registry provides
storage of the constituent system specifications and
enable their discovery. The registry stores an iden-
tifier, type, and location for each constituent system
along with the detailed description. This enables var-
ious ways of looking up and aggregating systems and
their services based on their properties.

Mediation synthesizer is designed to resolve in-
teroperability issues that may arise from a mismatch
between the messaging protocols of different systems.
Upon the identification of such a mismatch, the Me-
diation Synthesizer creates a mediator that translates
between an constituent system service and a con-
sumer. Mismatch discovery takes place at runtime
and is attainable by having the messaging protocols
specified in the constituent system descriptions. Note
that the placement of a mediator is an optimization
problem in its own right, but it has been tackled by
others, e.g., [11].

Knowledge base is a data repository that stores
real time information about the different constituent
systems involved in the system such as vehicle fuel
level and available parking slots. Each constituent
system is identifiable by a unique identifier, and the
knowledge bases provides interfaces to put and get
data. The data are accessed by the constituent sys-
tem services that are defined and published in the
constituent system ontological description.

Workflow manager An abstract workflow repre-
sents the required application logic, using annota-
tions to specify the required services. It also includes
the types of systems that are required to execute the

workflow. The workflow manager consults the on-
tology manager and ontology registry to select the
required services using the constituent system types
and service annotations. The selection of services re-
sults in an executable workflow that is passed back
to the application broker for execution.

Application broker allows the user application to
interact with the composite system (through the mid-
dleware). The broker receives user requests from the
user application in the form of abstract workflows
that are passed for concretization, which returns an
executable workflow. The application broker then
executes the workflow and returns the results to the
user application.

3.2 System Composition

This subsection explains the ontology of constituent
systems, the processes of discovering and selecting
systems, and how we deal with interoperability issues.

3.2.1 Holon ontology.

Automatic IoT system composition requires devices
to discover each other along with the functionalities
they provide. This would in-turn require devices to
advertise themselves. However, the enabler for de-
vice advertising and discovery is a definition using a
uniform language. The definition needs to include all
the concepts and properties of a device in order to
provide its comprehensive description. For this, we
build on our previous work in which we provided an
ontological model in the literature that was designed
to describe systems [4, 21, 12]. This holonic ontology
is based on the CoDAMOS standard ontology [22],
which is flexible and extensible for describing context-
aware computing infrastructures. Concepts defined
in the CoDAMOS ontology are based on the concept
of Thing, which is an abstract concept to represent
anything. Derived from this, concepts are then cen-
tered around four main concepts of Service, Environ-
ment, Platform and User.

The Service concept has a service profile, a service
model, and a service grounding. The service profile
contains information about the input and outputs of
the service, the service provider and the quality of



the service. The service model contains information
about data- and control-flow that occur when the ser-
vice is executed. The service grounding contains in-
formation that are needed to interact with the service
such as messaging protocols (e.g., an IoT protocol)
and data formats. A system (e.g., a smart device) can
provide a certain service and another system can con-
sume that service. The Enwvironment concept de-
fines context related information including location,
time and environmental conditions. These informa-
tion enables context-informed decision making. For
example, a driver looking for a parking service would
utilize the location information to select a nearby
available parking spaces. The Platform concept
contains information about the software that is in-
stalled on the device including the operating system,
virtual machine and/or middleware. This also in-
forms decision making e.g., when systems need to in-
teract using various communication technologies. Fi-
nally, the User concept contains information about
the users of devices or systems.

The above concepts are considered upper classes of
the ontology and are interconnected using ontologi-
cal assertions that define relationships between the
defined concepts. An example of such relationships
is shown in Figure 2. In Hetero-Genius, we define
each constituent system as a holon, implying that it
is a stand-alone entity but can also be part of a whole
system. Hence, a holon is a programmatic first-class
entity that describes any unitary or composite sys-
tem. Our system model includes an ontology for each
device in the system. The holon description will then
be utilized to automate and reason about system con-
struction at runtime.
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Figure 2: Examples of concept relationships in Co-
DAMOS.

3.2.2 Holon discovery

The holon ontology described above is the enabler for
automatic discovery of systems and their functional-
ities. The different types of systems leverage the on-
tology semantics, which enables different system com-
ponents to understand each other. This in turn en-
ables all constituent systems to adopt the same mech-
anism to publish their services and properties, and to
discover services and properties of other systems. For
this purpose, the Holon Registry component provides
a database where each system publishes their holon
description in. This does not include real-time data of
systems (e.g., available spaces in a parking system),
which are stored in the knowledge base component.

The description is required to be updated as the
system properties and services evolve. For example,
the introduction of new services of a certain type
would require re-publishing the constituent system
description to the registry in order to enable discov-
ery of and access to those new services. Each con-
stituent system in the holon has a unique ID and a
tuple of <type, location, holon> in the registry.
This enables service discovery and aggregation by
ID, type and location. When a system/application
requires access to the services of other systems, it
queries the registry with the appropriate keys that
are used by the registry to find an appropriate holon,
which includes Holon ID, location, and type.

3.2.3 Workflow specification

A user application requires an abstract workflow that
represents the sequence of functionalities that are re-
quired to satisfy the user goals. The workflow spec-
ification includes the system types that provide the
required functionalities. The specified functionalities
are independent of the physical constituent systems
that exist in the composite system in the sense that
users/developers do not need to know the specific
APIs of the constituent systems. After providing an
abstract workflow, it will then be the responsibility of
the middleware (more specifically, the workflow man-
ager) to concertize the workflow using the informa-
tion contained in the system descriptions.

Figure 3 shows a simple example of an abstract
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Figure 3: A simple abstract workflow from the IoV
context.

workflow derived from the IoV scenario presented in
Figure 1. The workflow that starts by connecting
the Driver Application (DA) to the vehicle, which
requires obtaining the holon of the vehicle by query-
ing the HR using the car ID. Then the workflow in-
volves booking a parking slot for the vehicle, which
requires finding a parking service. This also requires
the DA to read the vehicle data in order to complete
the booking. It is worth emphasizing here that the
APIs required to connect to the vehicle and to per-
form the booking are not known to the application
developers. They are to be discovered at runtime us-
ing the ontological description of the vehicle and the
parking system along with their service annotations.

3.2.4 Workflow concertizing

Upon receiving an abstract workflow, the ontology

manager concretizes it, which includes selecting ser-

vices to execute each task of the workflow and creat-
ing mediators (if needed) to facilitate the communi-
cation between the user application and the services.

The service selection process utilizes system types
and annotations to concertize the abstract workflow.

It executes the following:

1. The process starts by finding physical systems that
provide the required services. For this purpose,
the application broker queries the HR for descrip-
tions of suitable systems, e.g., location-based ag-
gregation. The HR returns the holons of n systems
that exist within a radius R of application broker
and are of the required type.

2. The application broker parses the response to ver-
ify that the systems provide the required services
by matching the annotations of the required ser-
vices (specified in the workflow) and the annota-
tions of the provided services (specified in the sys-
tem’s holon). It will then return the binding infor-
mation of each service to the DA along with the

messaging protocol of the corresponding system.

Upon receiving the service binding information and
messaging protocols, the workflow manager detects
if mediators are required for the interaction between
the user application and the services. In cases where
mediation is required, the workflow manager con-
tacts the mediation synthesizer to synthesize medi-
ators between the application and the services. The
end result is a concrete (executable) workflow result-
ing from assigning the binding information to the ab-
stract services of the workflow.

3.2.5 Addressing interoperability

IoT devices employ middleware-layer protocols such
as MQTT, CoAP, ZeroMQ and more, to mes-
sage each other. These protocols support different
data-serialization formats (e.g., JSON, XML, proto-
buf, etc.); different payloads suitable for resource-
constrained or -abundant devices; and they follow
different interaction paradigms such as client/server,
publish/subscribe and data streaming.

IoT systems include heterogeneous IoT devices em-
ploying any combination of the above configurations.
Moreover, sometimes new heterogeneous devices may
be needed to be added to an IoT system in an on-
demand fashion. For instance, in the IoV scenario,
an end-user mobile application must interact with
the services of, say, Mercedes-Benz that provide diag-
nostic and other information related to specific cars.
Hence, automated solutions are required to enable
data exchange in such IoT systems.
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We represent each (e.g., a car, a mobile app, a
restaurant, etc.) as a holon that provides services
defined based on (possibly) heterogeneous profiles,
models, and grounding concept. In this work, we
rely on the Data eXchange Mediator Synthesizer
(DeXMS) [5] to enable heterogeneous IoT devices to
interact with each other. DeXMS addresses the het-
erogeneity of IoT devices and services by synthesiz-
ing software mediators. As depicted in Figure 4, the
grounding of services is given as input to DeXMS.
This includes information such as IoT protocol, data
model, data format and operation (or topic) seman-
tics. DeXMS accepts these descriptions, and provides
back a concrete mediator for bridging purposes.

3.2.6 Workflow execution

Finally, the application broker orchestrates the se-
lected services to execute the concrete workflow. The
application broker executes the services and main-
tains the state of execution. It makes calls to the re-
quired services from the beginning to the end includ-
ing the required mediation services based on control
and data dependencies.

The sequence diagram depicted in Figure 5 illus-
trates the interactions between the driver application
and the system components to execute the simple
workflow shown in Figure 3.

4 IoV System Composition: a
use case

This section exploits the motivating scenario intro-
duced in Section 2 to demonstrate Hetero-Genius.
We first demonstrate the ontological descriptions of
the main systems of the scenario, then report on a
case study to evaluate Hetero-Genius’s effect on de-
veloper productivity in constructing a relatively com-
plex IoV system.

4.1 System description using holons

The main systems involved in our motivation scenario
are: car, parking service, restaurant and traffic con-
trol unit (TCU).

A car is a holon. The fuelStatus and location are
two services that are defined in the ontology. The
Car concept is linked to the fuelStatus and location
services via the provideService axiom. Each of these
services exposes a URL, and takes input and returns
values. The URL is a class in the ontology that is
linked to the services using the exposes axiom. The
ID input and the return values are of class Parameter
and linked to the service via the hasParameter and
returns axioms. The Car concept is also attached
to the Environment concept via the hasEnvironment
axiom. The Environment concepts is attached to the
Location concept via the hasLocation axiom. The
Location concept defines the location property of the
car. Figure 6 illustrates a simplified version of the
described ontology.

Similar ontology structure applies to the other con-
stituent systems. A restaurant is a holon, which pro-
vides a details service and a menu service. The de-
tails service takes a restaurant ID and returns details
of the restaurant including location, contact details,
and average serving time, among others. These vari-
ables are needed to inform the decision making of
selecting a convenient restaurant for the car driver
to make orders from. The menu service returns the
menu details including the menu items and prices.
The TCU is a holon that provides information about
the traffic status. It exposes trafficStatus service
which takes a location and a direction and returns
traffic status. Finally, the Mobile App is a holon
that exposes an interface for a user to interact with
the system. The Mobile App holon is attached to a
Platform concept that defines the mobile operating
system. The Mobile App exposes a search service
which searches for a required service (e.g., food or
parking) and order service to submit orders to those
service.

As depicted in Figure 4, DeXMS uses the Data eX-
change (DeX) API, which implements post and get
primitives for sending and receiving messages using
existing IoT protocols such as CoAP, MQTT, XMPP,
etc. In Figure 4, the mediator converts temperature
data coming from a package (in JSON format through
the HTTP protocol) to be received from a system’s
dashboard (in XML format through the MQTT pro-
tocol). Considering a set of heterogeneous IoT de-
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Figure 6: A simplified ontology of the car holon in
the IoV scenario.

vices that have to interconnect with devices deployed
in an IoT systems, DeXMS accepts as input their in-
put/output data representation models and synthe-
sizes the required mediators. More details on DeXMS
can be found in [5].

4.2 Experimental design

Objectives. The experiment aims at evaluating de-
veloper productivity, in terms of the time required to
develop application logic, and correctness, in terms
of adherence to the usage of the correct APIs in the
implemented logic.

Strategy. The experiment compares our approach
against the manual construction of systems where
developers need to manually and repeatedly inspect
system APIs to find the appropriate definitions and
protocols to integrate an application logic. We adopt
a controlled experiment approach where participants
are given a simple workflow to implement. The work-
flow is designed to be simple so that participants can
implement it within a reasonable time frame.
Procedure. The experiment procedure lasts for up
to an hour per participant. Participants are assigned
the same workflow to implement but randomly as-
signed to implement it using holons or the provider
APIs. Each participant fills a questionnaire about



their level of education, experience in systems pro-
gramming, and API- and IoT-based application de-
velopment.

Task. Participants were given a workflow along with
the holon APIs and a list of provider APIs (e.g.,
restaurant APIs, vehicle APIs and fuel station APIs).
Those assigned the holon APIs were required to lever-
age holon annotations to develop an abstract work-
flow (shown in Figure 7) that is to be passed to the
application broker for concretization. They need to
find the holon annotations that correspond to the re-
quired functionality of the system type. On the other
hand, participants assigned the provider APIs were
required to find the specific URLs and methods of the
required functionality of the system type.

Start

Find a ‘ Connect to ‘

restaurant ‘ Vehicle ,_) Get range

Book a table

Range <

station Threshold?

¥
v False

End

’ Find a fuel

Figure 7: The IoV workflow used in the experiment.

Recruitment. Participants were recruited from
computer science researchers and students at Lan-
caster University, University of Glasgow and Télécom
SudParis / IP Paris as well as from developers at lo-
cal startups and incubators. Each participant was
given an incentive in the form of an Amazon shop-
ping voucher. Overall, 26 participants were recruited
with varying expertise levels as shown in Figure 8.

4.3 Productivity results

The productivity of participants is evaluated by mea-
suring the time spent to implement the given task
once implementation commences (i.e., after read-
ing the experiment consent information and guide-
lines). The productivity results obtained from apply-
ing both the classical and Hetero-Genius approaches
are shown in Figure 9. We observe that participants

0 2 4 12 3 4 5 12 3 4 5
Programming Expertise API Expertise 10T Expertise

Figure 8: Self-reported expertise levels of the partic-
ipants (5 is the highest).

spent an average of 43.82 minutes and a median of
45.3 minutes for completing the task using the clas-
sical approach and an average of 23.25 minutes and
a median of 20.13 minutes for completing the task
using the Hetero-Genius approach. The improve-
ment in productivity varies, probably depending on
the level of programming expertise of each partici-
pant. Overall, Hetero-Genius improves the produc-
tivity of system developers by 46.94%.
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Figure 9: The time taken to accomplish the experi-
ment task (1) and the correctness scores (r) following
each approach.

4.4 Correctness results

We asses the correctness of the code developed by the
participants by manually inspecting and testing the
developed code in terms of (i) correct usage of the re-
quired APIs and (ii) adherence of the developed logic
to realizing the given workflow. A correctness score
has been given to each participant code. This has



been calculated by assigning one point to each correct
API and one point to the milestone code statement
then the total was divided by the maximum number
of points resulting is a score out of 100%. The cor-
rectness results obtained from applying both the clas-
sical approach and the Hetero-Genius approach are
shown in Figure 9. The correctness score of partici-
pants using native APIs has a mean of 54.25% and a
median of 49.5%. In contrast, using Hetero-Genius
results in correctness scores with a mean of 84.35%
and a median of 83%. This outcome indicates that
the Hetero-Genius approach improves the correct-
ness of developing applications by 55% on average.

5 Related Work

This section presents existing solutions for system
composition and the interoperability of IoT devices.
In addition, a comparison of the Hetero-Genius ap-
proach against existing solutions is provided, and
summarized in Table 1.
System composition. Composing Systems of Sys-
tems (SoS) was initially proposed by Maier [19]. SOA
composition technologies can be applied to form a
SoS [29, 3, 1]. We argue that such automation is
not suitable for three reasons. First, SOA does not
readily provide concepts that capture physical sys-
tem properties such as the context they are oper-
ating in, which is required for reasoning about SoS
composition. Second, services in SOA are assumed
to be published in a registry; this is not valid in a
fully distributed context with no prior knowledge of
other systems. Third, SOA-based SoS developers are
expected to know a lot about individual systems as
demonstrated by our qualitative experiments.
Non-SOA efforts facilitate SoS discovery and com-
position, e.g., using cellular infrastructure [15]. How-
ever, such approaches make reasoning assumptions
about discovered systems. Some works have chosen
to do this at design time through analyzing quali-
tative mission objectives of systems (e.g., [20]), but
these are hard to express in a programmatic way
that enables automated reasoning at runtime. Other
works have also defined the notion of a holonic sys-
tem [16, 18, 24], but are focused on goal-driven ser-

Table 1: A comparison of related works.
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SOA-based SoS [29, | V| x | x | SOAP X
3, 1]
Fodor et al. [15] V| X | X | Network level
Mokhtarpour et | x X | N/A
al. [20]
Holonic system [16, | V| x | ¥ | HTTP x
18, 24]
HTTP-CoAP X | Xx | X | CoAP, REST (4
Proxy [7, 6]
Derhamy et al. [10] X | x | x | CoAP, HTTP, | X
MQTT
XWARE [23] X | x| x|N/A v
SemlIoTic [31] X | X | V| CoAP, MQTT | V
Hetero-Genius [this] V| V| V| CoaP, HTTP, | V
MQTT

vice composition without means of allowing holons to
reason and self-compose.
IoT interoperability. To compose IoT systems
at runtime, it is essential to address the hetero-
geneity between involved IoT systems that employ
diverse protocols, APIs, and data representations
for exchanging data. Several approaches to bridge
middleware-based protocols have been proposed, e.g.,
the QEST broker for CoAP and RESTful APIs [7],
HTTP-CoAP proxy [6], etc. These approaches im-
plement one-to-one mappings between existing proto-
cols, however, this is highly inefficient due to the vast
development of IoT protocols. Derhamy et al. [10]
and XWARE [23] use intermediate formats; the for-
mer by introduceing a protocol translator while the
latter by implementing IoT mediators. Finally, [5]
deals with IoT heterogeneity using software abstrac-
tions and code generation.

While the above approaches reduce the develop-
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ment effort, they do not consider semantic layer
incompatibilities prevalent in the IoT, e.g., opera-
tion/resource names, data semantics, etc. Ontolo-
gies [17] provide a common model for annotating
content and thus help systems to interoperate. De-
pending on the application domain, developers can
use the appropriate ontology; e.g., SAREF [9] mod-
els appliance information in smart homes. IoT plat-
forms such as SemlIoTic [31] provide end-to-end IoT
interoperability in smart buildings by leveraging the
SSN/SOSA ontologies and mediating adapters. IoT-
Stream [13] presents a lightweight model and asso-
ciated system architecture to semantically annotate
IoT data streams.

6 Discussion and Concluding
Remarks

Reflecting on the research direction

The difficulty in building integrated systems lies
largely in the heterogeneity of modern IoT ecosys-
tems. In this work, we initially set out trying to
answer the question: Could building integrated sys-
tems be achieved using ezisting software engineering
practices? The answer to this is naturally ‘yes, but
at a relatively high cost’ as evidenced by our own
experience along with that of our experiment partic-
ipants, in addition to related findings reported in the
literature [27, 28]. Developing using a myriad of di-
vergent APIs and protocols is time-consuming and
prone to errors. This is particularly true in IoT and
CPS contexts where heterogeneity and fast pace of
deployment are common.

Subsequently, we explored the question: How can
we improve software engineering practices in order to
make development of integrated systems easier and
more reliable? In order to achieve this, we sought
means of reasoning about building integrated sys-
tems and putting in place mechanisms in order to
facilitate such automatic composition. As a result,
we designed and implemented the Hetero-Genius ar-
chitecture to leverage ontological descriptions of in-
dependent IoT systems to discover their APIs and
protocols; as well as to automatically integrate in-
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dependent systems into an integrated one using an
abstract workflow. Interoperability between indepen-
dent systems is achieved using mediators that trans-
late different data exchange protocols.

Experimental outcomes

We implemented the Hetero-Genius architecture in
Java and evaluated it using subjective user experi-
ments that involved 26 developers of varying levels
of experience. The evaluation results show that our
approach reduces development overhead by 47%, on
average. Along with improved productivity, correct-
ness of the developed code improved by 55% on av-
erage. In addition, we also assessed the feasibility of
Hetero-Genius at scale using controlled simulations.
We found the real-time overheads to be realistically
feasible with performance exhibiting a linear trend.
However, these results are not included for space lim-
itations.

Limitations

Defining an ontology to describe any IoT system is
quite a challenge, with a tradeoff between generality
and usefulness. Our intention is not to define “one
ontology to rule them all”. Moreover, we are aware
that any ontology will have shortcomings.

Furthermore, we do not expect that all IoT de-
velopers and operators to unite on using our holonic
ontology. There is an overhead in adopting such a
semantic tool, which adds to the resistance to wide
adoption. Nevertheless, the overhead is not insur-
mountable as evidenced by our experiments where
developers with no experience in holons were able to
use it with relative ease and effectiveness.

In addition, we do not assume that constituent sys-
tems would readily provide ontological specifications;
nor do we envision this. Instead, we see that deriv-
ing such specification using programmatic means is
an achievable objective and are currently working on
doing so to relax such fundamental constraint that
underlies our work.



Future work

We are currently working on using NLP and ML tools
to automatically generate the holon description of
any given IoT device. We will next target the pro-
viding of tools for defining domain-specific semantics,
high-level description of systems and abstract appli-
cation logic that will integrated in a complete solution
for automatic construction of integrated systems.
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