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Abstract: Deep learning-based segmentation of very high-resolution (VHR) satellite images is a
significant task providing valuable information for various geospatial applications, specifically for
land use/land cover (LULC) mapping. The segmentation task becomes more challenging with the
increasing number and complexity of LULC classes. In this research, we generated a new benchmark
dataset from VHR Worldview-3 images for twelve distinct LULC classes of two different geographical
locations. We evaluated the performance of different segmentation architectures and encoders to
find the best design to create highly accurate LULC maps. Our results showed that the DeepLabv3+
architecture with an ResNeXt50 encoder achieved the best performance for different metric values
with an IoU of 89.46%, an F-1 score of 94.35%, a precision of 94.25%, and a recall of 94.49%. This design
could be used by other researchers for LULC mapping of similar classes from different satellite images
or for different geographical regions. Moreover, our benchmark dataset can be used as a reference for
implementing new segmentation models via supervised, semi- or weakly-supervised deep learning
models. In addition, our model results can be used for transfer learning and generalizability of
different methodologies.

Keywords: remote sensing; image segmentation; image classification; land use/land cover; Worldview-3

1. Introduction

Semantic segmentation from satellite images is a crucial task for remote sensing ap-
plications such as land use/land cover (LULC) map generation, urban change detection,
geographic information production for spatial databases, and geographic object extraction
like roads and buildings [1–3]. Each input image pixel is assigned to a pre-determined
object category or LULC class in the semantic segmentation process, which is not limited
to only one object category such as roads or buildings but considers various classes si-
multaneously [2,4]. The increase in the number and complexity of LULC categories to be
determined makes this problem more challenging [5]. The semantic segmentation output
includes the boundaries of objects and their related classes that provide both spatial and
thematic information on the region of interest.

With the launch of several very high resolution (VHR) satellites (Pleaides Neo, Pleiades,
Worldviews, Skysat, Jilin-1, and Gaofen-2, etc.), multi-spectral VHR satellite images have
become widely available. These images provide the opportunity to study at large scales
with high spatial details for a variety of applications such as LULC mapping, urbanization,
location-based services, and navigation. One of the challenges while handling VHR data is
the strong spatial correlation and high complexity that VHR image pixels contain [6–9].
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The object-based image classification method has been widely used in remote sensing
for LULC applications to identify various LULC classes, specifically from VHR satellite
images [10]. VHR images provide a high level of spatial detail and are important geo-
information sources to produce large-scale LULC maps that could be used for various
applications such as city and regional planning, smart city applications, transportation
planning, ur-ban feature extractions, urban expansion monitoring, and urban population
projections [10,11]. However, extensive spatial details in VHR images result in intra-class
variability and inter-class similarities that make segmentation of these data more chal-
lenging [11]. Sertel et al. [1] applied geographic object-based image analysis (GEOBIA)
techniques for the segmentation of VHR SPOT7 images and compared the accuracy values
for different levels of LULC maps, including different numbers of LULC classes. They
obtained the highest overall accuracy of 93.50% for the Level 1 map with five classes
and 85.50% for the Level 3 map with twenty-seven classes. An increase in the num-
ber of LULC classes with various characteristics makes the GEOBIA more challenging.
Topaloglu et al. [12] accurately mapped thematically extensive LULC classes using VHR
SPOT 6–7 images and GEOBIA techniques. Zhang et al. [13] classified UAV images into
five categories and increased the overall accuracy by approximately 6% with object-based
image classification compared to the support vector machine (SVM) algorithms in the
case of insufficient training samples. Although the number of classes is limited in this
research, the authors successfully employed the GEOBIA for challenging VHR images.
De Pinho et al. [14] conducted a case study in Brazil to address the intra-urban land-cover
mapping problem using an IKONOS II image. They achieved a 71.91% overall accuracy for
eleven different land cover classes using an object-based image analysis framework.

Although the GEOBIA technique has been widely used to generate thematically exten-
sive LULC maps from HR and VHR satellite images, the main challenge in this approach is
the requirement for the rearrangement of parameters, functions, and/or algorithms for the
classification of different images and regions, which strongly limits the generalizability and
transferability of this method [12,15,16]. Appropriate scale selection is also important in
GEOBIA, which might be challenging for large areas that have various landscape types
of different sizes and characteristics [17]. Moreover, the generalization of the GEOBIA
approach, specifically those methods based on decision-tree classifiers, is limited; therefore,
new rule sets should be developed for different regions and datasets [12]. It is important to
develop more automatic methods to accurately map the diversity of LULC classes from
VHR images, in which deep learning-based image segmentation approaches have come
forward [11,16]. However, GEOBIA-based accurate classified maps would be an excellent
source of labeled data sets for DL tasks, which minimize the labor of manual labelling and
fill the gap in the lack of quality training data [11].

Semantic segmentation is a task in which the classifier algorithm predicts the output
class of each pixel corresponding to the input image [11,18]. Recently, deep learning-based
approaches have been widely available for multi-class segmentation of VHR multi-spectral
images. However, the number of classes to be created and the availability of reference-
labelled data should be attentively examined for the application of deep learning-based
approaches. Yuan et al. [3] comprehensively reviewed the research conducted with deep
learning methods for semantic segmentation of remote sensing images. Their analysis
showed that for the segmentation of VHR images, mostly open-source datasets such as
ISPRS Potsdam (five classes) [19,20], ISPRS Vaihingen (five classes) [19,21], Pavia University
and Pavia Center, Italy (nine classes) [22], and Massachusetts (two classes) [23] were
used, and they achieved overall accuracy values ranging from 85% to 99%. The highest
accuracy values were obtained from the Pavia University and Pavia Center dataset with the
contribution of hyperspectral bands. However, it is challenging to achieve high accuracy
values for deep learning-based LULC segmentation tasks, specifically for a high number of
LULC classes with the limited number of spectral bands, considering the fact that most
of the VHR satellites have four spectral bands from visible and near-infrared regions.
This requires high-quality labelled datasets, which are not widely and publicly available.



Remote Sens. 2022, 14, 4558 3 of 20

Recently, a novel large-scale dataset, the MiniFrance dataset, has been released to be used
for semi-supervised semantic segmentation within the scope of the IEEE Data Fusion
Contest 2022 (DFC2022). It includes 2000 VHR aerial images and ground truth data of
twelve LULC classes based on the Urban Atlas project on the diversity of landscapes. The
training partition of the MiniFrance dataset includes both labeled and unlabeled images to
support semi-supervised learning. Their results showed that the usage of unlabeled data
during the learning process has improved the accuracy of semantic segmentation maps
and resulted in finer and more homogeneous predictions [9].

Papadomanolaki et al. [24] compared the patch-based, pixel-based, and object-based
learning approaches, and they found the object-based analysis to be more beneficial for the
task of LULC classification. Patch-based models receive fixed-size input patches centered
on each image pixel, and each patch is annotated with a single label. Whereas the object-
based analysis utilizes the classification procedure based on image objects. They proposed
an object-based deep-learning framework exploiting object-based priors integrated into a
fully convolutional neural network for the semantic segmentation of VHR images from the
ISPRS public dataset. Kemker et al. [25] used a deep fully convolutional network (FCN)
for the semantic segmentation of multispectral remotely sensed images. They generated a
new dataset, RIT-18, collected by an unmanned aircraft system having six spectral bands
and eighteen classes. They showed that synthetic imagery is useful to assist in the training
of end-to-end semantic segmentation pipelines and demonstrated good results with FCN
architectures. They achieved 59.8% mean-class accuracy with their proposed approach,
which might not be sufficient if the resulting maps will be used as an input for different
environmental models, change detection studies, or decision-making processes.

Audebert et al. [26] implemented an efficient multi-scale deep fully convolutional neu-
ral network using SegNet and ResNet with multi-modal, high-resolution remote sensing
data. They showed early fusion of multi-modal data significantly improved the results of
semantic segmentation with its capability to jointly learn multi-modal features. They vali-
dated their results on the ISPRS 2D Semantic Labeling datasets of Potsdam and Vaihingen.
Längkvist et al. [27] proposed a CNN-based approach for the per-pixel classification of VHR
satellite images for five generic land cover classes and achieved 94.49% overall accuracy
with the implementation of a post-processing classification averaging technique. They
achieved the highest-class accuracy for the vegetation class, whereas the lowest per-class
accuracy was obtained for the ground class, which was mostly mixed with the road class.
They proved that CNNs are effective for the segmentation task, but this research includes a
limited number of categories.

Fu et al. [28] improved the FCN model by introducing Atrous convolution and design-
ing a multi-scale network architecture. They also integrated Conditional Random Fields to
refine the output class map. They used very high resolution GF-2 natural color images for
training and generated a test set of GF-2 and IKONOS natural color images, and achieved
average precision, recall, and Kappa coefficient values of 0.81, 0.78, and 0.83, respectively.

In this research, we generated a new LULC dataset including a variety of second-level
CORINE classes, one of the accepted standard nomenclatures, which helps to eliminate
inconsistency in training samples by providing clear class definitions. We used VHR
Worldview-3 (WV-3) images for dataset curation, which were collected over two different
geographical locations, Kestel and Aksu, having different landscape characteristics. While
Kestel is an industrialized and intensely urbanized region, Aksu includes mainly forest and
agricultural areas and limited urban areas. This data set is unique in terms of class richness,
VHR image source and landscape diversity. We implemented different segmentation
models and designed different experiments to find the most appropriate experimental
configuration for the accurate mapping of the diversity of LULC classes. Our dataset
could be used for benchmark analysis or expansion of the available dataset with more class
varieties. Our proposed configuration could be employed for the LULC segmentation of
different VHR images.
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2. Study Area and Dataset
2.1. Study Area and Image Dataset Descriptions

The multi-location dataset contains the sites Aksu and Kestel near to the city of Bursa,
which is located in the northwest of Turkey in the Marmara Region, 40.18◦N, 29.07◦E, 150 m
altitude (Figure 1). The WV-3 images covering Kestel and Aksu sites for the year 2020 were
used for this study. The acquisition date of the image covering Aksu is 6 September 2020,
whereas the image covering Kestel was acquired on 28 November 2020. Study areas including
Aksu and Kestel cover an area of 19 km2 and 8.20 km2, respectively.

Figure 1. (a) General view of the study area and its surroundings. (b) The administrative boundary
of Bursa province. (c) The administrative boundaries of Aksu and Kestel sites used in the research.

2.2. Dataset Generation

We generated a new LULC dataset for two different geographical locations with rich
class varieties using VHR satellite images acquired by the WV-3 satellite. We used original
WV-3 images and classified LULC maps as the reference data prepared in our recent
study [6]. Initially, the preprocessing of satellite images was performed to generate datasets
that were used for conducting the Deep Learning (DL) experiment, namely the Aksu and
Kestel Dataset. The panchromatic (PAN) image of 30 cm resolution and four multi-spectral
bands (R, G, B, and NIR) at 2 m resolution were merged with the pansharp2 algorithm
and the pan-sharpened (PSP) images at 30 cm resolution with four spectral bands were
generated [29,30]. Then, the pan-sharpened (PSP) WV-3 images of the Aksu and Kestel
sites were segmented and classified using the object-based approach performed in the
E-cognition software. Qin and Liu [11] pointed out the inconsistency of training samples
as one of the challenges for the VHR image classification task, since most of the studies
provide different class definitions and detail levels. To overcome this problem, we utilized
the second-level land cover classes of the Corine Land Cover (CLC) as the classification
scheme in this research.

• The Aksu dataset consists of nine categories:
• Discontinuous urban fabric,
• Road and rail networks and associated land,
• Mine, dump, and construction sites,
• Artificial, non-agricultural vegetated areas,
• Arable land,
• Permanent crops,
• Heterogeneous agricultural areas,
• Forest, and
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• Inland waters.

The Kestel dataset contains images for the twelve categories including the same nine
categories as Aksu and three additional categories which are:

• Industrial or commercial units,
• Shrub and/or herbaceous vegetation associations, and
• Continuous urban fabric.

Sample patches of LULC categories from our study sites are shown in Figure 2. We also
have a no-data class in both datasets. These LULC classes are based on CORINE second-
level nomenclature and could be used in several different applications since CORINE is
one of the accepted standards for LULC. Class definitions are not at object level but more
complex, including contextual information.

Figure 2. Sample patches from the WV-3 images of the study areas, representing different LULC
classes adapted from CORINE second-level nomenclature. (a) Heterogeneous agricultural areas,
(b) Arable land, (c) Industrial units, (d) Forest, (e) Permanent crops, (f) Inland waters, (g) Continuous
urban fabric, (h) Discontinuous urban fabric, (i) Road and rail networks and associated land, (j) Shrub
and/or herbaceous vegetation associations, (k) Artificial, non-agricultural vegetated areas, (l) Mine,
dump, and construction sites.

The Aksu region is mostly dominated by the land cover classes, whereas the Kestel
region mostly contains land use-related classes. The motivation for selecting two different
geographical regions is to represent different landscapes with various LULC spatial distri-
butions with the intent of investigating the capability of the deep neural network (DNN)
models within the context of generalization and transferability.

It is necessary to match the coordinate systems of all images and masks for the precise
alignment of images and masks at sub-pixel level. Thus, all images and masks are repro-
jected into the EPSG:32635–WGS 84/UTM zone 35N coordinate system. Projection system
information is also important to mosaic several image patches and their corresponding
newly produced LULC masks to generate a complete LULC map of the related regions that
could be directly used for different purposes or in a geospatial database. Then, rasterization
of manually labeled ground truth data is performed by converting the vector files into raster
images. The class statistics and classes used are given in Figure 3, from which it is evident
that both datasets suffer from the class imbalance phenomenon. We performed a sampling
technique that takes the number of classes in each sample used, in an attempt to address
class imbalance and we oversampled the underrepresented classes. To this end, the com-
pute_sample_weight function from sklearn is used to calculate the weights of each sample
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by considering the number of different classes in each sample (i.e., class diversity) [31,32].
Calculated sample weights are then given as a sample to Pytorch DataLoader.

Figure 3. LULC classes and their class-wise distributions (a) Class legend, (b) Aksu dataset,
(c) Kestel dataset.

We constructed three datasets in this study, namely Aksu, Kestel, and Aksu + Kestel,
to conduct our deep learning experiments. As its names imply, the Aksu + Kestel dataset
consists of a combination of two datasets. The process of dataset preparation is further
carried out as follows: cropping images and masking into patches, discarding empty
and non-square patches, and splitting into training, validation, and test sets. We further
analyzed the LULC maps and created image and Ground Truth (GT)/mask patches from
these data sets to form our LULC dataset by applying a tiling approach with a size of
512 × 512 px and 128 px overlaps. The overlap is applied to the images not only to increase
the number of patches but also to assist the classifier in better learning the spatial continuity
of the image (i.e., contextual information) [32,33]. After the tiling process, the non-square
and empty ground truth masks were eliminated in an attempt to both catalyze the training
process and to serve more explanatory samples to the classifier. We automatically excluded
the patches that had a huge amount of no-data px, which generally lies over the irregular
borders of the study areas. We performed a final visual quality control on the image patches
and masks, and we eliminated a few noisy samples and produced high-quality training



Remote Sens. 2022, 14, 4558 7 of 20

data. Afterwards, we used satellite image patches and their corresponding LULC masks
for the LULC segmentation with deep learning approaches.

As a next step, all patches in each dataset are split into training, validation, and test sets
following the 70, 20, and 10% partition ratios, respectively. Details regarding the process
of dataset preparation are given in Table 1. We generated 599 image patches of ten LULC
classes for the Aksu district and 265 patches of thirteen LULC classes for the Kestel district.

Table 1. Details of Worldview-3 image patches of the two study sites.

Dataset Number of Classes Number of Patches Number of Patches in Train/
Validation/Test Sets

Aksu 10 599 419/120/60
Kestel 13 265 185/53/27

Aksu + Kestel 13 784 549/157/78

Sample patches consisting of images and corresponding ground truth maps from our
datasets are given in Figure 4. The first columns represent the optical images, while the
second columns are ground truth masks. Image patches of different classes are presented.

Figure 4. Sample image patches and their corresponding ground truth masks. (a) sample patches
from the Aksu region, (b) sample patches from the Kestel region.

3. Methodological Approach and Experimental Setup
3.1. Implementation Details

All the codes are implemented in the Pytorch (1.14.0) library, using the Python (3.8)
programming language. The DNN models were trained and tested on a GeForce RTX 2080
Ti GPU. The DNN models constructed in this study are inherited from the FCN where
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the encoder part is followed by the decoder part, consecutively [32]. The encoder part is
responsible for feature extraction from the input image, while the decoder part up-samples
the feature maps in the latent space back to the original input size. In this study, after
conducting a benchmark study that pointed out the best performing architecture couple,
the DeepLab v3+ architecture was used to produce densely predicted segmentation maps
and the ResNeXt50_32x4d [18,32–36] was used for the feature extraction from input images
(i.e., mapping the input data into latent space). During the down-sampling that takes place
in the encoder part, the low-level information extracted from the image in the embedded
space is transferred to the decoder part with the use of Atrous convolutions. The training
processes were limited to 150 epochs. The Adam optimization algorithm with a β value of
0.9 and a learning rate of 10−4 wereused to minimize the joint loss function, which consists
of two distinct loss functions; Dice loss and Focal loss [37,38]. Equation (1) denotes the
constructed loss function, where the first term represents the Dice loss and the second one
is the Focal loss weighted with a coefficient of 0.5. Both functions adopted in this joint loss
function are useful to cope with the aforementioned class imbalance problem (see Figure 4)
in the dataset, as they assisted the model in focusing more on the samples that had not
been sufficiently trained yet. In the Dice loss function, pi and gi represent the matched pixel
values of prediction and ground truth, respectively. The at term in the Focal loss function is
a weighted-hyperparameter offset that scales the main term to address the class imbalance
problem. The operator γ functions as a relaxation parameter that adjusts the importance
given to correctly or wrongly classified samples.

L =
2 ∑N

i pigi

∑N
i p2

i + ∑N
i g2

i
+

(
−at(1 − pt)

γ log log(pt)
)
× 0.5 (1)

Augmentation techniques are adopted by applying basic image processing techniques
such as flip, rotation, shift, and scale with the intent of increasing the volume of the dataset.
Besides, a sampling technique, where the under-represented samples are over-sampled,
is used to help the model to focus more on under-represented classes. This technique is
realized by feeding the weights calculated by sklearn’s compute_sample_weigh to the
PyTorch’s DataLoader as an input [31]. Thus, the samples consisting of more class types
are given more importance during the training phase. The workflow of this study is given
in Figure 5.

Figure 5. Flowchart of the used deep neural network architecture which follows an encoder–decoder
structure with Atrous convolutions that bypasses the low-level features to the decoder.

3.2. Evaluation Metrics

Apart from qualitative analysis, widely-used evaluation metrics are adopted to assess
the capability of the constructed classifiers. The quantitative analysis metrics used in this
study are Intersection over Union (IoU), precision, recall, F1 score, and accuracy values
calculated from the confusion matrix.



Remote Sens. 2022, 14, 4558 9 of 20

The F-1 score represents the harmonic mean of precision and recall scores, which
measures the exactness and sensitivity abilities of the classifier. Unbalanced precision and
recall scores result in a poor F-1 score, whereas having balanced precision and recall scores
ensures a higher F-1 score. The formulation of precision, recall, and F-1 scores is described
in Equations (2)–(4). TP represents true positive samples which belong to the same classes
but in reference and classified data. FP represents false positive samples, which wrongly
indicate that the related class is present, and FN represents false negative values, which
wrongly indicate that the related class is not present.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F − 1 score = 2 × Precision × Recall
Precision + Recall

(4)

The IoU score assesses the classifier’s ability in terms of overlapping. The IoU score
takes values between 0 and 1, the latter being the highest. The formulation of the IoU score
is calculated as follows (Equation (5)),

IoU =
Area o f Overlap
Area o f Union

(5)

A confusion matrix, also known as an error matrix, is a table-wise representation of the
number of classified/predicted and reference/actual/ground truth pixels, which are further
used to calculate the overall, producer’s, and user’s accuracy values to quantitatively
analyze the performance of a classification algorithm. The overall accuracy is an indication
of the proportion of correctly mapped pixels considering all classes. The producer’s
accuracy is used to evaluate how accurate real features on the ground are predicted in the
classified map. The producer’s accuracy indicates the probability of a reference area being
classified as accurate with the used classification model. This is mainly about the ability of
the classification. The user’s accuracy indicates the probability of a classified pixel/segment
actually representing that class on the ground. The user’s accuracy reflects the accuracy
from the perspective of the map user, and it is more about the reliability [12,39].

3.3. Results and Discussion

A preliminary experimental analysis was conducted to find out the most appropriate
segmentation model by comparing six well-known deep neural network architectures,
which are:

• DeepLabv3+ [40],
• Pyramid Attention Network (PAN) [41,42],
• U-Net++ [43],
• Feature Pyramid Networks (FPNs) [44],
• Linknet [45], and
• Pyramid Scene Parsing Network (PSPNet) [41].

Quantitative results obtained from these architectures are shown in Table 2. We
obtained the best performance with the DeepLabv3+ architecture; in which we achieved an
IoU of 89.46%, an F-1 score of 94.35%, a precision of 94.25%, and a recall of 94.49%. The
lowest metric values are obtained for PSPNet; in which the IoU is 71.20 %, the F-1 score
is 82.44%, the precision is 82.44%, and the recall is 82.45%. PAN architecture is ranked as
second and U-Net++ as third based on our experiment results.

We used the ResNeXt50_32x4d version of the ResNeXt50 encoder for the architecture
search conducted in Table 2. Xie et al. [36] developed the ResNeXt models in which a
building block aggregating a set of transformations is repeated for the construction of
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the network. They produced a homogenous, multi-branch architecture that required the
setting of very few hyperparameters. ResNeXt includes a stack of residual blocks having
the same topology and is subjected to two rules regarding spatial map down-sampling and
computational complexity. The Resnext50_32x4d encoder utilizes a 7 × 7 convolutional
layer with a stride of 2 for the creation of the first feature map. Then, each encoder step
uses residual blocks, including a 1 × 1 convolutional layer, a 3 × 3 convolutional layer, a
1 × 1 convolutional layer, and the grouped convolutions of 32 [36,46].

Table 2. Comparison of segmentation results of different architectures (bold font indicates the best
performing setup).

Architecture IoU F-1 Score Precision Recall

DeepLabv3+ 89.46 94.35 94.25 94.49
PAN 82.78 90.37 90.34 90.47

U-Net++ 81.54 89.54 89.63 89.45
FPN 76.45 86.39 86.39 86.38

Linknet 74.75 84.99 84.95 85.04
PSPNet 71.20 82.44 82.44 82.45

We pursued our experiments with the first-ranked DeepLabv3+ architecture and
evaluated the impact of different encoders on the segmentation task (Table 3) using the
Aksu dataset. The encoder search experiment is aimed at finding the encoder-segmentation
architecture pair that performs the best on the task we are addressing in this study. We
implemented the below encoders with the DeepLabv3+ architecture:

• Next generation ResNet (ResNeXt), resnext50_32x4d version with 22 M parameters
and ImageNet weights,

• Detail-Preserving Network (DPN), DPN68 version with 11 M parameters and Ima-
geNet weights

• EfficientNet, efficientnet-b0, efficientnet-b1, and efficientnet-b2 versions with 4M, 6M,
and 7M parameters, respectively and having ImageNet weights.

• MobileNet, mobilenet_v2 version with 2M parameters and ImageNet weights.

Table 3. Comparison of the Encoders using the DeepLabv3+ segmentation architecture (bold font
indicates the bests performing setup).

Architecture Parameters IoU F1 Score Precision Recall

ResNeXt50 22M 89.46 94.34 94.25 94.49
ResNet50 23M 87.32 93.08 92.99 93.16
DPN68 11M 80.83 88.61 88.61 88.61

MobileNet v2 2M 79.07 88.09 88.15 88.02
Efficientnet-b0 4M 79.94 88.48 88.42 88.55
Efficientnet-b1 6M 82.64 90.24 90.16 90.32
Efficientnet-b2 7M 83.36 90.58 90.52 90.64

In Figure 6, we illustrate the input image patches, the related ground truth data,
and visual results of Resnext50_32x4d, Resnet50, DPN-68, Mobilenetv2, and Efficientnet
encoders. For Efficientnet, we included results from Efficientnet-b2, which provided the
highest accuracy. In general, the Resnext50_32x4d and Resnet50 encoders provided better
predictions than other encoders.

The selected encoders shown in Table 3 vary in parameter size and adopted architec-
ture strategy, making the comparison far-reaching. After determining the best-performing
architecture pair as DeepLabv3+ and ResNext50_32x4d, where the former architecture
constructs the encoder–decoder structure and the latter creates latent space representation
of the input data within the context of feature extraction, we continued with applying the
DNN model to three different datasets explained in the previous section and provided accu-
racy metrics in Table 4. We obtained the best performance for the Aksu dataset with an IoU
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of 89.46% and an F-1 score of 94.35%, which includes ten LULC classes shown in Figure 3a.
Whereas, we obtained an IoU value of 81.64% for the Kestel dataset, which is quite lower
than the Aksu dataset. This is due to the presence of more LULC classes (thirteen classes,
as can be seen in Figure 3b) in this region. When we combine both datasets (Aksu and
Kestel) and form an integrated dataset (herewith Aksu + Kestel), we have thirteen classes
in total, with more patches from two different regions. This integration improved the IoU
value up to 86.92%, emphasizing the importance of having more geographically diverse
patches in a higher volume (Table 4). However, this value is lower than the IoU value of
the Aksu dataset, supporting our interpretation of the decrease in the overall accuracy with
the increase in the number and diversity of LULC classes. The behavior (the Aksu + Kestel
dataset performance lagging behind the Aksu dataset) could be explained by the degree of
the class imbalance the datasets are suffering from. Another explanation could be the effect
of a geographical domain shift that dampens the performance.
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Figure 6. Comparison of visual results of predictions from different encoders. (a) Input images,
(b) Ground truth data, (c) Resnext50_32x4d results, (d) Resnet50 results, (e) DPN-68 results, (f) Mo-
bilenetv2 results, and (g) Efficientnet-B2 results.

Table 4. Comparison of segmentation results on different datasets.

Dataset IoU F1 Score Precision Recall

Aksu 89.46 94.35 94.25 94.49
Kestel 81.64 89.65 89.76 89.54

Aksu + Kestel 86.92 92.85 92.84 92.86

When we evaluated the class-wise accuracy values of the classifier trained on the Aksu
dataset (Table 5), we obtained 0.886 and higher accuracy values for all of the classes except
for the road and rail class. This class is mostly mixed with heterogonous agricultural areas
and then the forest class based on the analysis of the confusion matrix. Moreover, the mine,
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dump, and construction sites class is also mixed with the forest class to some extent for the
Aksu dataset.

Table 5. Class-wise accuracy values obtained from different dataset experiments.

Aksu Kestel Aksu + Kestel

Forest 0.952 0.918 0.968
Mine, dump, and construction sites 0.866 0.960 0.903

Road and rail 0.612 0.683 0.779
Discontinuous urban fabric 0.894 0.794 0.847

Arable land 0.932 0.844 0.867
Heterogeneous agricultural areas 0.943 0.931 0.919

Permanent crops 0.908 0.917 0.850
Inland waters 0.983 0.809 0.965

Artificial, non-agricultural vegetated areas 0.989 0.715 0.671
Industrial or commercial units - 0.967 0.954

Shrub and/or herbaceous vegetation - 0.250 0.775
Continuous urban fabric - 0.986 0.983

We further evaluated our results qualitatively and provided some visual analysis by
generating figures (Figures 7–9). As an example, in Figure 7, the first two image patches
Figure 7a1,a2 covering forest, arable land, and permanent crops are successfully classified
with our DNN setup. We included more samples from the road and rail class since we
detected confusion in this class in the error matrix. Our analysis showed that there are
some simplifications for roads in the ground truth data, specifically Figure 7a3,a5, which
cannot be fully captured by the DL-based classifier. Yet, this might be acceptable when we
analyze the input image characteristics. On the other hand, the road and rail class in the
case of highways can be identified as shown in Figure 7a4–c4,a6–c6.

The analysis of the confusion matrix of the classifier trained on the Kestel dataset
shows that the DNN model struggles to classify road and rail networks (0.683) and shrub
and/or herbaceous vegetation associations (0.250) classes, as can be seen in Table 5. The
road and rail class is mixed with several different classes but mostly with industrial or
commercial units and continuous urban fabric classes, and with the forest class to some
extent. The class-wise accuracy of the shrub and/or herbaceous vegetation is very low.
This class is mostly mixed with industrial and commercial units. The overall class accuracy
of inland water is 0.809 in the Kestel dataset, and this is lower than the overall inland
class accuracy of the Aksu dataset, which is 0.983. The inland water class is confused with
artificial, non-agricultural vegetated areas in the Kestel dataset. This region is dominated
by urban-related classes and the overall accuracy of continuous urban fabric is quite good
with a value of 0.986. The qualitative results of the classifier trained on the Kestel dataset
are presented in Figure 8.

In most cases, the DNN model predicted the LULC classes accurately in the Kestel
region, specifically over continuous urban fabric areas such as Figure 8c1,c2,c5. The DNN
model has problems with the road and rail class, specifically for the roads occluded by
building shadows (Figure 8a6,c6). In addition, similar to the Aksu dataset, highways as a
part of the road and rail class could be successfully identified in the Kestel dataset, as seen
in Figure 8a3–c3.
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Figure 7. Qualitative results of the classifier trained on the Aksu dataset. (a1–a6) show original image
patches; (b1–b6) illustrate the corresponding Ground Truth masks, and (c1–c6) show the prediction
results with the proposed model.
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Figure 8. Qualitative results of the classifier trained on the Kestel dataset. (a1–a6) show original
image patches; (b1–b6) illustrate the corresponding Ground Truth masks, and (c1–c6) show the
prediction results with the proposed model.
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Figure 9. Qualitative results of the classifier trained on the Aksu + Kestel dataset. (a1–a6) show
original image patches; (b1–b6) illustrate the corresponding Ground Truth masks, and (c1–c6) show
the prediction results with the proposed model.

There is an improvement in class-wise accuracy values of the combined dataset at
least better than one of the individual datasets and, in some cases, even better than both
individual datasets (Table 5). As an example, if we analyze the discontinuous urban
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fabric class, the class-wise accuracies are 0.894 and 0.794 for the Aksu and Kestel datasets,
respectively. The accuracy value obtained with the combined dataset in this class is 0.847,
which is better than the Kestel dataset but worse than the Aksu dataset. In most of the
classes, except for the artificial and non-agricultural associations, the Aksu + Kestel dataset
performs better compared to individual datasets (the Aksu and Kestel datasets). The
artificial and non-agricultural associations class is mostly mixed with the continuous urban
fabric class in the combined dataset.

The class-wise accuracy of the forest class is the best in the combined dataset. The
road and associated networks and the shrub and herbaceous vegetation associations classes
are among the classes that significantly benefited from utilizing the classifier trained on
the combination of Aksu and Kestel datasets. Although the total number of shrub and
herbaceous vegetation association class patches did not increase in the combined dataset,
the overall accuracy of this class improved dramatically, pointing out that having more
patches from other classes, specifically those mixed with the shrub class, also contributes to
the improvement of the classification results.

We assessed the visual results of the combined Aksu + Kestel dataset for different
classes (Figure 9). Figure 9a1 covers a patch of permanent crops, forest, and an inland water
region. The DNN model could successfully segment these different class combinations
within the same patch, which can be easily seen with the match of the ground truth
Figure 9b1 and prediction Figure 9c1. The road and rail class pixels could be successfully
distinguished in this dataset, as can be seen in Figure 9a2,a3,b2,b3,c2,c3.

We cannot directly compare our outcomes with the results in the literature since our
dataset is different in terms of satellite images that we use and the number and definition
of LULC classes that we implemented. Unlike common practice, in which GT is digitized
manually during the labeling task; in this research, the GT data in the dataset have been
curated first by running GEOBIA classification and then manually revising the resulting
classified segments, resulting in high-quality annotated LULC classes that describe the
surface accurately. This strategy for curating the GT data is of novel value and takes our
study into a different venue compared to the most DL-based LULC studies. Having weakly-
labelled GT data gives rise to the deployment and development of weakly-supervised
methods on our dataset.

However, when we concentrate on other research used VHR images specifically WV-
3 and had common LULC with ours, we observe superiority of the DNN configured
for this study given the fact that our dataset is annotated with higher number of LULC
classesApart from the rich intra-diversity of the classes it contains, our dataset is also a
test-bed to develop methods that are aimed at addressing the domain shift phenomenon,
which is driven by a geographical shift in this case. As the GT annotations are labelled
in a coarse and weak manner, in addition to the main full-supervision frame, we further
propose our dataset as a benchmark for weak supervision methods. This performance,
we argue, is strongly related to the diverse and versatile nature of the dataset we curated.
Zhang et al. [47] employed the Atrous spatial pyramid pooling (ASPP)-UNet model for the
identification of five different LULC classes and one other class. They trained and tested
their proposed model using WorldView-2 (WV-2) and WV-3 images in Beijing city. They
achieved an 84.0% overall accuracy for WV-3 test images for six classes. Considering that
they used similar VHR images to our study, we further looked into class-wise accuracy in
the common classes. They obtained F-1 values of 0.906 and 0.755 for the water and road
classes, respectively, which are lower than our combined Aksu + Kestel dataset test results
(Table 5). Bengana et al. [48] used Sentinel-2, WV-2, and Pleiades-1B satellite images and
used a generalized CORINE Land Cover nomenclature as ground truth. They used six
LULC classes, which were a combination of different LULC classes that we used in our
research. For example, they combined different urban density classes, industrial, and mine-
related classes under a common class called urban. They also combined all agricultural
classes, such as arable land, permanent crops, and heterogenous areas, under a common
class of agriculture. The mean IoU value that they obtained for six classes for WV-2 images
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was 55.59, whereas we obtained an average IoU value of 86.91 for twelve LULC classes.
Kemker et al. [25] used VHR UAV images to identify eighteen different classes, which are
mostly at the object level. The overall accuracy that they achieved was 59.8%, which is lower
than the overall accuracy that we obtained in this research. This is an important finding to
support, even with the availability of highly detailed UAV images, the segmentation task is
becoming demanding with the increasing complexity and number of land classes.

4. Conclusions

In this paper, we first introduce a dataset for the task of land use land cover classifica-
tion, andpresent comparisons of different deep learning-based segmentation architectures
and encoders for land use and land cover mapping of VHR satellite images. We imple-
mented an off-the-shelf model l (the DeepLabv3+ architecture withResNeXt50 encoder)
to two different geographical locations having different topographical and landscape
structures to analyze the generalization capabilities of the models. We focused on twelve
distinct LULC classes, corresponding to the second level of the semantic hierarchy defined
by CORINE nomenclature. Unlike common practice, the GT data was produced using
GEOBIA approach and comprised LULC classes that weakly describe the surface in a
less fine-detailed manner. Thus, we propose our dataset as a test-bed to further develop
weakly-supervised methods, which is a pressing need in computer science research.

The novelty of our dataset lies not only in the annotation strategy adopted but also in
the inclusive selection of the classes present in the dataset. Further, the dataset we introduce
in this paper consists of twelve complex classes which are capable of adequately covering
the complexity of the Earth’s surface, which further promotes the real-life applicability of
the methods developed in our dataset. The curated dataset could also be used as a test-bed
to assess the generalizability of the developed DNN models, given the multi-location asset
of the images.

The DNN model used in this study achieves high accuracy for complex LULC classes,
and this design could be implemented on different VHR satellite images or different
geographical regions to generate accurate LULC maps. These maps can be used in various
applications, from regional planning to future land change projections.

Data availability has a significant role in deep learning applications. Although there
are several datasets freely accessible for different DL tasks, specifically in terms of input
images, having reliable reference or ground truth data is still problematic. We generated a
new benchmark dataset to be used for segmentation tasks, which can be used as a reference
for implementing new segmentation models via supervised, semi- or weakly-supervised
deep learning models. In addition, our model results can be used for transfer learning and
the generalization of different methodologies.
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