
38

Competencies for Code Review

PAVLÍNA WURZEL GONÇALVES, University of Zurich, Switzerland
GÜL ÇALIKLI, University of Glasgow, United Kingdom
ALEXANDER SEREBRENIK, Eindhoven University of Technology, The Netherlands
ALBERTO BACCHELLI, University of Zurich, Switzerland

Peer code review is a widely practiced software engineering process in which software developers collabora-
tively evaluate and improve source code quality. Whether developers can perform good reviews depends on
whether they have sufficient competence and experience. However, the knowledge of what competencies
developers need to execute code review is currently limited, thus hindering, for example, the creation of effec-
tive support tools and training strategies. To address this gap, we firstly identified 27 competencies relevant to
performing code review through expert validation. Later, we conducted an online survey with 105 reviewers
to rank these competencies along four dimensions: frequency of usage, importance, proficiency, and desire
of reviewers to improve in that competency. The survey shows that technical competencies are considered
essential to performing reviews and that respondents feel generally confident in their technical proficiency.
Moreover, reviewers feel less confident in how to communicate clearly and give constructive feedback -
competencies they consider like-wise an essential part of reviewing. Therefore, research and education should
focus in more detail on how to support and develop reviewers’ potential to communicate effectively during
reviews. In the paper, we also discuss further implications for training, code review performance assessment,
and reviewers of different experience level.
Data and materials: https://doi.org/10.5281/zenodo.7401313

CCS Concepts: • Software and its engineering→ Collaboration in software development; • Social and
professional topics→ Computing education.

Additional Key Words and Phrases: Code Review, Competency, Skills, Training, Human Factors

ACM Reference Format:
Pavlína Wurzel Gonçalves, Gül Çalıklı, Alexander Serebrenik, and Alberto Bacchelli. 2023. Competencies
for Code Review. Proc. ACM Hum.-Comput. Interact. 7, CSCW1, Article 38 (April 2023), 33 pages. https:
//doi.org/10.1145/3579471

1 INTRODUCTION
Code review is a collaborative activity in which software developers evaluate source code. In its
most widespread form [56], code review is used to evaluate and discuss newly submitted code
changes to improve their quality, catch potential functional or maintainability issues, and decide
on whether to integrate them into the production code [2, 5, 19, 44].

Code reviews can act as a sort of training process where knowledge transfer takes place [5, 66]:
Educators use code reviews to improve students’ coding skills, program comprehension abilities,
knowledge of coding standards, and peer communication [66]. In addition, a similar process of

Authors’ addresses: Pavlína Wurzel Gonçalves, p.goncalves@ifi.uzh.ch, University of Zurich, Binzmühlestrasse 14, Zurich,
ZH, Switzerland, 8050; Gül Çalıklı, HandanGul.Calikli@glasgow.ac.uk, University of Glasgow, Glasgow, Scotland, United
Kingdom; Alexander Serebrenik, a.serebrenik@tue.nl, Eindhoven University of Technology, Eindhoven, North Brabant, The
Netherlands; Alberto Bacchelli, bacchelli@ifi.uzh.ch, University of Zurich, Binzmühlestrasse 14, Zurich, ZH, Switzerland,
8050.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
2573-0142/2023/4-ART38
https://doi.org/10.1145/3579471

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.

HTTPS://ORCID.ORG/0000-0002-2231-054X
HTTPS://ORCID.ORG/0000-0003-4578-1747
HTTPS://ORCID.ORG/0000-0002-1418-0095
HTTPS://ORCID.ORG/0000-0003-0193-6823
https://doi.org/10.5281/zenodo.7401313
https://doi.org/10.1145/3579471
https://doi.org/10.1145/3579471
https://orcid.org/0000-0002-2231-054X
https://orcid.org/0000-0003-4578-1747
https://orcid.org/0000-0002-1418-0095
https://orcid.org/0000-0003-0193-6823
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3579471
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579471&domain=pdf&date_stamp=2023-04-16


38:2 Pavlína Wurzel Gonçalves et al.

improving skills through code reviews takes place during professional life [5] where companies and
Open Source projects use code reviews as a means to integrate and mentor new team members [59].

Reviewing experience is essential for an effective code review [35]. For instance, between the 20th
and 50th month of developers’ experience on a project, acceptance of their code changes becomes
more likely [53]; whereas developers’ first contributions are more likely to be rejected [64]. Further-
more, the usefulness of comments in code review rapidly increases in the first year of tenure [11],
suggesting that developers gaining code review experience also improve their competence.

It is crucial to identify competencies needed for code review to design code review training [9]
and support and assess code review performance. Yet, various competencies needed to conduct
code review are not available in the literature [4]. Several frameworks in the literature describe the
competencies needed for software development [42, 57, 71]. However, such generic competency
models are often insufficient for specific software engineering roles or tasks [15, 60, 60, 72] such as
code reviews.

Developing competency models is costly for research resources [72]. Therefore, in this study we
use a systematic mapping study by Assyne et al. [4] to identify existing frameworks for software
engineering competencies [42, 57, 71] that we adjust for the code review context using the method
of expert validation [30]. We further prioritize the identified competencies with developers’ self-
reported perspectives and experience to understand which competencies developers consider more
essential and which they need to improve in to become better reviewers.
Through interviewing experts, we have defined a set of 27 competencies that are relevant to

performing code reviews well. The final list consisted of 12 technical, 11 social, and four personal
competencies in six clusters: (1) understanding the change, (2) systematically navigating the code
base, (3) assessing the software quality, (4) discussing informatics topics, (5) relating to colleagues,
and (6) demonstrating personal competencies such as review time-management and managing
priorities.

Subsequently, we conducted an online survey with 105 reviewers. Their answers allow us to rank
the final list of competencies based on how frequently they need a competency, how important they
consider the competency to perform code reviews well, how proficient they are in that competency,
and which competencies they would like to improve. We also analyzed how these rankings differ
between novice and expert code reviewers.
Through our analysis, we identified that technical competencies are the most used and impor-

tant. Reviewers also feel the most confident in their technical competence. Communicating in an
understandable way and giving constructive feedback are on top of the list of frequently used and
important competencies as well. Yet, reviewers feel less confident in these social competencies and
they would like to improve accordingly. Interestingly, current research and tooling focus mainly on
supporting developers’ technical competence for code reviews, even though developers have more
issues with social competencies.
Furthermore, we have identified that novice and expert reviewers would like to improve on

different competencies. On the one hand, novice reviewers prefer to improve competencies useful
to understand and better contextualize the code change; on the other hand, expert reviewers are
more interested in improving competencies for communication, collaboration, and mentoring.

While these results can help prioritize which competencies can be used to design focused training
activities for novice or expert reviewers, the list of competencies itself can be used to facilitate
discussion in teams about the code review process and their specific training needs, or to hint in
which areas developers need tool support. Furthermore, competencies can be used as an alternative
way to assess code review performance.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:3

2 RELATEDWORK
In this section, we describe the current code review practice and present the theoretical concepts
related to competencies, the context in which competencies are going to be used throughout the
paper, how competencies can be used in practice, and how skills and competencies are represented
in the Software Engineering literature.

2.1 Modern Code Review
Code review is a widely used software engineering practice [5, 29, 56, 59], which is recognized as a
valuable tool for reducing software defects and improving software projects’ quality [2, 5]. In a
typical code review, software developers collaborate to evaluate changes before they are integrated
into a project’s code base. Examples of such code changes can be (1) including new features, (2)
making behavioral changes, improvements, and optimizations to an existing code, (3) bug fixes and
rollbacks, or (4) refactoring and large-scale changes[31]. In practice, a developer (author) submits
a code change to be inspected by one or more developers (reviewers), who can decide to include
the change in production or not. Before including the change, reviewers can also ask the author
for clarifications and code improvements. As a response to reviewers’ comments, the author can
upload new versions of the code change, thus creating an iterative process that finishes when the
reviewers are either satisfied with the change (and include it in production) or reject it [19, 49].
Throughout this paper, we use ‘author’ for the developer who submitted the change, ‘reviewer’
for the developer who is reviewing changes, and ‘developer’ for any developer that could at some
point participate in reviews.

Code review can become expensive and time-consuming [16]. Therefore, it is useful to identify
the challenges developers face in this task. Identifying defects and understanding the submitted
change is mentally challenging for developers [5, 8, 49]. To understand the change well, developers
need to process a vast amount of information and evaluate the change and its rationale within
the context of an entire software system [49]. Not only do developers need to understand the
change itself, but they also need to understand each other [5]. Code reviews are commonplace for
confusion [22] or interpersonal conflicts [24, 74] that can stand in the way of an efficient review.

Lack of skills is another challenge that can hinder code review performance [3, 41]. Competency-
based Education and Training (CBET) can provide a basis to aid developers in improving their
competencies and, consequentially, their code review performance and practice [9]. Designing
CBET tailored for code reviews can only be done once the competencies that developers specifically
need to conduct code reviews are known.

2.2 Competencies
Understanding what attributes people need to perform well at work has been of great interest in
work psychology. Commonly these attributes were understood as Knowledge, Skills, and Abilities
(KSAs) [46, 61]. Using KSAs to describe the worker requirements enables a more fine-grained
depiction of what is required and expected from a worker to perform well in a specific position.
However, successful performance at work is related to many more concepts that determine workers’
behavior, such as personality traits, attitudes, and values. Therefore, a more applied concept of
competency has emerged to overcome these shortcomings [46]. Competencies—as described by
Bartram [7]—can be understood as behavioral repertoires that workers can apply to achieve the
desired work goal. With this definition, the focus shifts from workers’ characteristics to workers’
desired behavior. The concept of ‘behavior’ does not carry assumptions about workers as people or
personalities. Furthermore, behavior can be more easily described, observed, and trained.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:4 Pavlína Wurzel Gonçalves et al.

The use of competencies is done in many fields and contexts. Competencies can be position-
specific or general – applying to a broad range of jobs and positions. General competencies such as
cooperating [7] might be an essential aspect of code reviews. However, providing a useful depiction
of competencies needed for code review might need a more specialized or fine-grained scope, for
example, to describe specific social interactions like mentoring new team members or technical
skills like code comprehension.

2.3 Competency Modelling
Defining the skills and competencies of knowledge workers is especially difficult because their
behavior and process cannot be directly observed and, instead, can be described as a set of cog-
nitive processes. There are specific methods such as the Cognitive Task Analysis [72] that derive
competencies through various methods – observation, interviews, or questionnaires – that enable
to understand the individual cognitive process when performing the task.
In the last years, recruitment and performance assessment in organizations shifted to using

competency modeling to describe behaviors essential to performing a job [38]. The main advantage is
the success of competency modeling in creating organization-wide or even market-wide integration
of strategies for recruitment, training, and assessing workers’ potential and performance. Once
the competencies that a developer needs are defined, they can be used to define job advertising,
recruit developers with the needed competencies, define software developers’ improvement needs,
design training focused on such needs, and assess code review performance. If code review requires
code comprehension, this competency can be tested when recruiting, measured when assessing
code review performance, and re-assessed before and after training focused on improving code
comprehension.

An example of a training approach that utilizes competency models is Competence-based Educa-
tion and Training (CBET) [9]. It requires integrating a specified set of competencies into authentic
learning activities that address core problems and dilemmas of the professional practice. Designing
appropriate training activities requires identifying these core problems, for instance, by interview-
ing experts and educators. Therefore, describing the competencies needed for code reviews is the
first step and a prerequisite to designing focused training programs. Our study aims to identify
such a comprehensive set of competencies – behaviors and cognitive processes – to distinguish
better and worse code review performance that can have wide use for developers and organizations.

2.4 Skills and Competencies for Software Development
In Software Engineering, developers’ competence is approached from various angles – as knowledge,
expertise, or skill. The knowledge and technical expertise required for software engineers are
collected in the Software Engineering Body of Knowledge (SWEBOK) [1]. SWEBOK describes
ten knowledge areas, which also serve as a basis to investigate the competencies that software
engineers need to perform well at work [57]. However, SWEBOK does not cover soft skills in depth.
The EVELIN (Experimental improVEment of Learning software engINeering) project [63] aims
to analyze the needed skills and propose a Software Engineering Body of Skills (SWEBOS) [63].
SWEBOK and SWEBOS serve as a basis to better design and inform higher education for software
engineers. Skills in Open Source Software (OSS) development have also been viewed through the
lens of expertise and experience with specific projects, programming languages, or APIs [20].
Apart from these essential resources in Software Engineering, other studies have investigated

more specific sets of skills and competencies that can be used to understand the needed competencies
not only for Software Engineers in general but also for more specific software development roles [4].
However, none of these works can be directly applied to the context of code review.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:5

Describing skills and competence does not serve only to demonstrate what knowledge and
expertise are useful to perform tasks and roles but also to distinguish different levels of competence
or better and worse performance. The SECAT (Software Engineering Competency Assessment
Tool) proposes three such levels [62]. At the first level, software engineering students are expected
to achieve functional competence - to know that specific goals, functionalities, and operability need
to be achieved and to be able to process the technical information. In the second level, students
are expected to achieve process competence - to understand and evaluate the appropriateness of
solutions, cost-benefit ratios, the usability of solutions, or to demonstrate problem awareness and
the ability to abstract. In the last level, students should achieve the holistic shaping competence and
demonstrate sensitivity to context, find creative solutions and develop personal competencies for
communicating with others and organizing their work efficiently.

Indeed, IT professionals improve their skill set throughout their careers, with the technical com-
petencies being highest in the Senior Software Engineer roles and the non-technical competencies
being the most developed on the management level [17]. Furthermore, the non-technical compe-
tencies gain their importance throughout IT professionals’ careers over the technical ones [39].
Therefore, understanding which competencies require more development for students and young
professionals and which are needed more by senior roles can give valuable insights into what
training each group requires to improve their work, performance and productivity. This study also
aims at understanding the different competencies between more novice and expert reviewers.

3 METHODOLOGY
This section presents our research questions and describes the employed study design, data analysis,
and sample of respondents. This study has been approved by the ethical committees of the authors’
institutions. Additional files are available in the supplementary material at https://doi.org/10.5281/
zenodo.7401313.

3.1 ResearchQuestions
We aim to identify what competencies are necessary for code review. Knowing these competencies
is a fundamental step to inform tool design, education, training, and performance assessment
to support developers’ potential during code reviews. Furthermore, we aim to investigate which
competencies play a more critical role, as a way to focus on future research and education efforts.
When describing competencies, we are aligned to the following dimensions commonly used

for competency assessment: [27, 43]: (1) usage frequency (i.e., how often competencies are used
in a specific role or activity), (2) importance (i.e., how important the competencies are for good
performance), and (3) proficiency level (i.e., what level of proficiency in these competencies is needed
to perform the task(s)). We also aim to assess which competencies need further improvement
(i.e., preference to improve competencies). In this study, we achieve this by gathering developers’
experiences, perceptions, and opinions.

Competencies for Code Review. To explore and prioritize the competencies that are essential
to perform reviews well, we consider two perspectives from the literature, competencies’ usage
frequency and importance for good performance [27, 43].

• RQ1.1: What competencies do reviewers report using more frequently?
• RQ1.2: What competencies do reviewers consider more important?

Proficiency Level and Improvement of Competencies. We aim to identify which competen-
cies to focus on while training and supporting reviewers by identifying which competencies
reviewers lack (RQ2.1) and which competencies they would like to improve (RQ2.1).

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.

https://doi.org/10.5281/zenodo.7401313
https://doi.org/10.5281/zenodo.7401313


38:6 Pavlína Wurzel Gonçalves et al.

Creating	the
item	pool

114	competencies

Expert	Validation

56	competencies

Clustering

27	competencies
6	clusters

Member-Checking Pilot	Survey Survey

1 2 3 4 5 6

6	developers

Competency	
Identification

Competency	
Assessment

Fig. 1. The Study Design Steps.

• RQ2.1: What level of competencies for code review do developers report to have?
• RQ2.2: Which competencies would developers like to improve?

Competencies and Experience. Distinguishing which competencies are the core ones through-
out a person’s career, and which ones become more salient or fade out can give important insights
into the different development needs of novice vs. experienced reviewers [73]. Experience with
code reviews is important for performing effective reviews [35]. Therefore, we expect that novice
and experienced reviewers might consider different competencies as essential and want to improve
different ones. We collect evidence on these differences in the aforementioned dimensions (i.e.,
usage frequency, importance, proficiency level, and preference to improve).

• RQ3.1: Do novice and experienced reviewers use different competencies during code review?
• RQ3.2: Are the competencies that novice and experienced developers consider important different?
• RQ3.3: Do novice and experienced reviewers report a different proficiency level of the competencies
needed for code review?

• RQ3.4: Would novice and experienced reviewers like to develop a different set of competencies?
To address these RQs, we designed and carried out a two-phase study (as depicted in Figure 1):

(Phase 1) - Competency identification and (Phase 2) - Competency assessment.

3.2 Competency Identification
To identify the competencies needed for code reviews, we derived an initial item pool from compe-
tency models and frameworks relevant to software development and engineering roles (see Step
1 in Figure 1). The initial item pool was validated by experts in a round of interviews (Step 2 in
Figure 1). The expert validation led to further refinement of the proposed competencies. These
competencies were rephrased and adjusted according to the feedback of experts (Step 3). Fur-
thermore, we clustered the resulting competencies by their meaning to create a survey-length
list of competencies as described later in this section. After the adjustments, we presented the
final, refined set of competencies for code review to the experts for validation (e.g., in terms of
relevance and adjustments made to the initial item pool) (Step 4). The changes in the number of
items/competencies in each Step of the study is described in Table 1. Examples of adjustments to
the items throughout the refinement of the list of competencies are presented in Table 2.

3.2.1 Creating the initial item pool. Competency frameworks or competencies needed for code
reviews are not defined in the literature [4]. However, competency frameworks for software

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:7

Table 1. Number of Competencies in the Item Pool After the End of Each Study Step

Study Step Number of Competencies Technical Social Personal
Creating the Item Pool 114 58 25 31
Content Expert Validation 58 31 16 9
Refinement and Clustering 27 12 11 4
Member-Checking 27 12 11 4

Table 2. Examples of Adjustments to the Items

Study Step Original item Modification Reason Adjusted item
Content Expert
Validation

Know and use
tools (IDEs)

Rephrasing Each team uses differ-
ent tools for viewing
code reviews, editing
the code, etc.

Proficient use of
the tools used in
the team

Develop mental
models

Rephrasing The mental model
relevant for code
review is specifically
the mental model
of the given code
change

Develop mental
model of the
change

Clustering Able to evaluate
and ensure consis-
tency throughout
code base and re-
quirements

Splitting Consistency of the
code base is one of
the important aspects
of evolvability of the
system

Evaluate the code
change quality
with respect to
its effects on
the evolvability
of the software
system

Another item already
covered evaluating
requirements with
regards to the code
change

Evaluate if imple-
mentation fits re-
quirements

Member-
Checking

Resolve conflicts Adding definition
and rephrasing

Competency unclear
to the expert. Def-
inition supported
by literature on
conflict resolution
competence.

To handle con-
flicts - Enhancing
productive
outcomes of a
conflict while
minimizing its
escalation or
harm done.

development in general and for specific roles (e.g., requirement analysts and tester [34, 60]) are
available. We cannot directly apply general software development skill sets such as the one by
Moreno et al. [45] to code review because they cover a broader range of activities and provide a
level of abstraction that is too high to create focused training or discuss detailed development needs
for the context of code review. Similarly, the competency frameworks for specific roles formulate
finer skills, but they are tuned to a different set of activities than code reviews.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:8 Pavlína Wurzel Gonçalves et al.

Hence, to develop a set of competencies for code reviews that can be presented in a survey,
we selected several competency frameworks for general software development to refine them
into a more specific competency list. We have used the systematic mapping study by Assyne
et al. [4] to identify appropriate models based on the following selection criteria: (1) the study
or framework defines a specific list of competencies or skills for software development, (2) these
competencies create a comprehensive set needed for a task or role (including those related to the
technical competence but also the social or personal one) on a matching level of abstraction, (3) these
competencies were derived from a thorough analysis of interviews with practitioners in software
development, as would be done by the traditional methods of job analysis [72]. Furthermore,
competencies should describe behavior patterns that can be trained or developed to perform
better [73]. Therefore, studies describing competencies and skills by knowledge or tools (e.g.,
technology stacks) were excluded from the study. Through this filtering, we selected the following
frameworks:

• Essential competencies of software engineers by Turley and Bieman [71]. This study identi-
fied four groups of competencies essential for software engineers: (1) task accomplishment
competencies, such as methodical problem solving, good scheduling and estimation, or the
active seeking of necessary training and knowledge; (2) personal attribute competencies like
pride in quality and productivity, perseverance or desire to improve things; (3) situational
skills such as emphasis on elegant and simple solutions and focus on user/customer needs;
(4) interpersonal skills like seeking help or willingness to confront others.

• Competency Framework for Software Engineers by Rivera-Ibarra et al. [57]. This framework
represents a set of technical, social, and personal competencies for software engineers: (1) the
technical competencies cover the analytical and learning ability in knowledge areas of software
engineering inspired by SWEBOK [1] as well as the need to evaluate, select, adapt and use
appropriate technological tools; (2) social skills refer to the aptitude to connect with others,
cooperate in teams, and handle and resolve conflicts. (3) personal skills include skills to act,
work, and develop as a professional as well as to keep and protect one’s limits.

• Competence model for informatics modeling and system comprehension by Linck et al. [42].
It is a model for computer science education, specifically informatics modeling and sys-
tem comprehension. Unlike the previous models, this model details primarily technical and
cognitive competencies needed for software development. There are five main dimensions
of competencies: (1) selection and application of appropriate informatics systems in diverse
contexts, including abilities like structuring problems or transferring application fields. (2) sys-
tem comprehension through analyzing and evaluating system requirements, systematically
exploring and testing the systems, or knowing and evaluating algorithms and data structures.
(3) system development, which is a dimension detailing knowledge and skills required for
developing and re-engineering informatics systems such as knowing and applying design
patterns, software development process models, or documenting source code. (4) dealing with
system complexity, which is a competence dimension referring to measuring and evaluating
system complexity and dealing with processing and working with complex information.
(5) non-cognitive skills that address the competencies related to cooperation, communication,
and motivational skills, but also the ability to perceive and anticipate the effects of systems.

All the competencies from the selected models have been split into technical, social, and personal
competencies. The competencies duplicated among the models were included only once in the
initial item pool. The final amount of items included at this step was 114 (see Table 1).

3.2.2 Expert Content Validation. The initial item pool was discussed with four experts in an
interview for content validation. Using experts for validating item pools is commonly done with

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:9

Table 3. Code Review Related Experience of Experts Included in Expert Validation

Expert Field of Years of
Experience Experience

E1 Consulting 9
Research 9

E2 Research 8
Closed-source software development 13

E3 Closed-source software development 8
Open-source sofware development 13

E4 Closed-source software development 7
Open-source sofware development 1

two to ten experts [30]. In software engineering, experts should be selected based on qualitative
criteria [40]. Therefore, for the expert content validation step, we selected experts from a varied
range of code review-related expertise through personal contacts, i.e., we performed convenience
sampling. The description of the experts interviewed in this study can be found in Table 3. Expert 1
has nearly a decade long experience in research and consulting. They conducted and published
several large-scale studies at a major software company to understand and improve code reviews for
various software teams. They worked for several companies to advance their code review products
and also conducted workshops, coaching, and consulting for companies and teams performing code
reviews. Expert 2 runs a software development company that performs code reviews. They also
published research focused on improving code review tools to support how developers perform
code reviews and on the adoption of code reviews in companies. Expert 3 has several years long
experience with code reviews in software development in major software companies around the
globe and fromwell-known open-source projects. Expert 4 has performed code reviews as a software
developer in several mid-sized companies across Europe, mostly in the closed-source environment.
Furthermore, we used quantitative criteria that could be used in the survey as well. While the mere
length of experience is not very strongly related to performance, exceptional experts in various
fields need typically around ten years of preparation to reach their peak performance [25]. Given
that software development and code review commonly require a degree from higher education
or further qualifications and training before performing code reviews, we consider a software
developer with more than five years of experience performing code reviews (or five years in other
relevant areas connected to code review for the content validation) to be an expert.

When involving experts for content validation, the items are usually rated on their relevance, style
(simplicity, clarity, or ambiguity), and comprehensiveness in covering the domain of interest [52, 75].
In our interviews, the experts were first asked to list competencies and skills that they find important
for code review. Secondly, the experts rated each item in the item pool as (not) relevant for
code review, suggested revision of the proposed items and their definitions, and pointed out the
lack of clarity. Thirdly, the experts were asked about the comprehensiveness of the entire set of
competencies [75].
At the end of this step, we shortened the initial item pool to a list consisting of competencies

marked as relevant by at least three out of the four experts. In this way, the list was shortened to
58 competencies (see Table 1). Furthermore, the experts provided feedback for the items that were
used in the next Study Step - Refinement and Clustering (Section 3.2.3). While the list was covering
all important areas according to the experts, the items needed several higher-level adjustments. In
particular, the experts proposed to (1) formulate the competencies more in relation to the goals of

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:10 Pavlína Wurzel Gonçalves et al.

the code review, (2) formulate the skills and competencies as applied to the software system and
the change that is being implemented, (3) merge and cluster some of the competencies, (4) avoid
competencies related to activities that should be done before the review, such as architectural and
design decisions, and (5) avoid competencies that are highly team-specific, such as the tools used
for code review or software development.

3.2.3 Refinement and Clustering. With the feedback received from the experts, we have first
rephrased the individual items according to the experts’ general and item-specific feedback. Then,
we merged items that experts deemed to be too similar or referring to the same area of competence.
Furthermore, we excluded some items due to their poor fit to the definition of competence, such
as cognitive resources or personality traits that are sometimes included in the literature due to a
broader definition of ‘skill’ or ‘competency’. Next, one of the authors clustered the competencies
according to their similarity and relations as mentioned in the interviews. Another author reviewed
the clustering and discussed and proposed changes to the phrasing of the competencies.

After this process, the rest of the authors reviewed the list of clustered competencies and proposed
improvements to the clustering and formulation of individual competencies. At the end of this
Study Step, the list of competencies has been finalized on 27 competencies, see Table 1.

3.2.4 Member Checking. The last step of the Competency Identification consisted of member
checking [10]. We performed member-checking with the same experts who took part in the Expert
Content Validation (Step 2 in Figure 1) to verify that we handled their feedback correctly and to
mitigate researcher bias [10]. We later asked the experts to review the resulting list of competencies.
The finalized list of competencies and the questionnaire sent to the experts is provided in the
supplementary material. The experts rated the set of competencies as relevant, comprehensive,
and understandable on a 5-point Likert scale (‘Strongly Agree’ to ‘Strongly Disagree’). All answers
were rated as ‘Strongly Agree’. To obtain further feedback besides a quantitative one, we also asked
the experts to provide detailed comments about the finalized list. Each expert provided detailed
comments that led to rephrasing and refining competencies’ definitions. In this step, we did not
add/delete any competencies (see Table 2).

3.3 Using Self-report Methods to Investigate Competencies
Reviewing code is a cognitive activity taking place in the minds of reviewers who have to understand
and evaluate the code. Even though this process leads to the creation of some observable artifacts
(e.g., code review comments and emails, which are used by developers to engage in a discussion), the
cognitive process of reviewers is not observable directly. Currently, the cognitive processes taking
place during code review are neither described nor understood in detail. Given these circumstances,
self-report methods are the most valid ones to understand the competencies reviewers need to
perform code review [72].

Nevertheless, we have used an existing dataset of review comments from three OSS projects [50]
to investigate whether objective data could be used to corroborate and triangulate the results
obtained by self-report methods. Code review comments are a data source frequently used by
researchers [22, 50]. In our analysis, the first and second authors of this paper classified these
comments independently with respect to the use of a certain competency. From each of the three
projects, the raters (i.e., the first and second authors) classified the first 50 comments excluding
the comments by the code change’s author. If the 50𝑡ℎ comment was part of a thread, the raters
finished classifying the thread resulting in 102 classified reviewer comments. Each of the comments
could be categorized as demonstrating multiple competencies. We used Krippendorff’s alpha for
multi-label annotation using MASI to calculate the inter-rater agreement resulting in 𝛼 = 0.22. This
value means a very low agreement: the acceptable level is ≥ 0.8 [37].

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:11

During the classification of the code review comments, the following reasons led to the low
inter-rater agreement: (1) the cognitive competencies cannot be observed directly, therefore, their
classification is heavily dependent on the assumptions of the individual raters and such classification
cannot be verifiedwith the comments’ authors, (2) cognitive processes that do not require interaction
between the author and reviewer are unlikely to surface in the comments, (3) social competencies
are often impossible to classify because the interpretation of these competencies depends on the
motivation of the comment’s author as well as on the interpretation of the receiver (e.g., when
a conflict is happening), (4) social competencies often need to be interpreted in the context of a
whole thread rather than an individual comment, (5) some competencies are manifested by not
writing comments (understanding the needed level of detail for the review might be a needed
thought process which in the end leads to omitting to comment on certain issues and mentioning
others), (6) the comments are descriptive (e.g., the reviewer commented on evolvability) while the
competencies are prescriptive (e.g., reviewers should know how to evaluate the evolvability issues).
These observations indicate that the classification of code review comments does not have

sufficient concept validity to correctly depict the usage of competencies in code review. Therefore,
this study further investigates competencies for code review solely through gathering reviewers’
self-reported perspectives through a survey.

3.4 Survey
3.4.1 Structure and Measurement. To design the survey itself, we adhered to the best practices
in software engineering survey research [32]. Figure 2 shows the survey structure (i.e., order of
the sections in the survey). At the beginning of the survey (i.e., Welcome phase in Figure 2), we
presented the developers with general information about the study and its purpose together with
information on the survey’s expected approximate completion time and data handling policy. The
respondents needed to explicitly give consent so that their answers could be used in the study. After
theWelcome phase, the developers were asked to respond to three of the questions proposed by
Danilova et al. [18] to identify whether they are truly software developers (Qualification questions
in Figure 2).

In the next sections of the survey, developers were presented with the full list of the competencies.
They were asked to rate each competency in terms of usage frequency and proficiency level.
Furthermore, we asked respondents to select (without ranking) up to five competencies they
deemed to be most important and up to five competencies they would like to improve. Finally, we
collected the participants’ demographic data such as code review experience or highest achieved
education level. We collected the demographic data at the end of the survey to reduce the stereotype
threat [67].
In the survey itself, we used the term ‘skill’ instead of ‘competency’, as the former is a more

common term used in the public space and potentially more understandable by practitioners,
which is a good practice for performing research including a diverse audience [55]. On top of the
aforementioned consent to process their data, at the end of the survey (i.e., once they knew the
survey’s entire content and their answers) we asked participants whether we could include their
responses in an anonymous public data set. We release this data set publicly together with the
supplementary material.

To address the RQ1.1 and to identify the essential competencies for code review, we measured a
competency’s usage frequency with a five-point Likert scale: ‘Never’, ‘Less than Half of Reviews’,
‘About Half of Reviews’, ‘More than Half of Reviews’ and ‘Always’. Furthermore, the reviewers
could select up to five most important competencies to answer RQ1.2.
To address RQ2.1, which asks what competencies reviewers need to develop, we measured the

developers’ proficiency level for each competency on a five-point Likert scale: ‘Poor’, ‘Fair’, ‘Good’,

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:12 Pavlína Wurzel Gonçalves et al.

Fig. 2. The Survey Structure.

‘Very Good’, and ‘Excellent’. Reviewers also selected up to five skills they would personally like to
improve providing the data to answer RQ2.2.

3.4.2 Pilot. In Step 5 of the study design (see Figure 1), we conducted a pilot study with six devel-
opers experienced in performing code reviews. The pilot version of the survey had an additional
section in which the pilot participants could rate the comprehensiveness, relevancy, and under-
standability of the set of competencies and survey questions. They could also indicate whether
some survey questions were not clear and provide further comments on their experience. We made
several changes after the pilot. For example, the option ‘Not applicable’ was added to the response
anchors and one of the competencies was rephrased according to the participant’s feedback. The
pilot survey is available in the supplementary material.

3.5 Analysis
In RQ1.1, we assess the usage frequency of a competency on a Likert-type scale from ‘Never’ to
‘Always’. For the analysis, we employ the non-parametric variant of Scott-Knott’s ESD test [69].
This variant of Scott-Knott’s ESD test produced ranked groups of competencies in descending
order with respect to competencies’ usage frequencies. The Scott-Knott ESD has been successfully
used in the past to analyze software engineering data [12, 13, 22, 68]. In the survey, developers
were asked to choose up to five most important competencies. To answer RQ1.2, we ranked each
competency based on the total number of times the developers selected that competency to be
in the five most important competencies. If multiple competencies received the same amount of
responses, they were assigned the same rank and the following competencies were assigned a rank
by skipping the rank that immediately follows this rank (Ranks 1, 2, 3, 3, 5, etc.).

We followed a similar procedure to answer RQ2.1 and RQ2.2 to indicate the developers’ proficiency
level of competencies for code review (measured on a 5-point Likert-type scale using anchors
‘Poor’ to ‘Excellent’). We use the non-parametric version of the Scott-Knott’s ESD algorithm [69]
to provide ranked groups of competencies developers are more proficient with. Frequencies are
used to report which competencies developers would like to improve the most/least.
RQ3.1 to RQ3.4 address the differences between novice and experienced programmers on the

frequency, importance, proficiency, and desire for improvement concerning the investigated compe-
tencies. We assign the status of novice reviewer to a reviewer with less than five years of experience
in performing code review and the status of expert reviewer to reviewers with more than five
years of reviewing experience to be consistent with the definition of an expert from the step of
expert validation. We produce rankings of competencies for novice and expert reviewers using the
same methods as described in RQ1.1, RQ1.2, RQ2.1 and RQ2.2. We calculate Spearman’s 𝜌 to assess the
relationship between the ranked groups of the competencies in the subset of novice and experienced
reviewers. Furthermore, we perform the Mann-Whitney-U-test on the ordinal variables (frequency
of usage and level of proficiency). The power analysis was performed to estimate the needed sample
size for the Mann-Whitney-U-test, using an estimated effect size of 0.6 taken from a similar study
on competencies [28]. The estimated sample size was calculated to be 98 participants. We decided
against using p-value corrections, even though we perform multiple analyses of the same type. The

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:13

reason is that the analysis answers independent questions by using independent variables that do
not contribute to an overarching hypothesis [33, 51].

3.5.1 Respondents. For the study, we have collected 105 complete and valid responses. The sample
was recruited using several channels to ensure covering a diverse representation of performing code
reviews in different contexts - by contacting companies, open source software projects, software
development and code review related communities and platforms, and practitioners.
We contacted 50 companies from different countries and continents that currently advertised

jobs requiring code reviews with the offer to create for them skills report of their employees
using the anonymized data, two of which agreed to collaborate with us. Both were Europe-based.
The first company employs 2,000 persons and the other one is a European branch of a 70,000-
employee company. These companies have provided us with 15 respondents in total in exchange
for a simplified report of the study results.

To reach open source developers, we asked core contributors and code owners of 20+ open source
projects to share the study invitation within their project. Furthermore, we reached out to 20+
websites, Facebook pages, Twitter accounts, and Reddits related to software engineering, software
development, and code reviews, some of which shared the invitation to the study. We also reached
out to several practitioners developing code review tools or consulting in the code review area
asking them to share our invitation within their network. Furthermore, we contacted individual
software developers through advertising on the study authors’ accounts on social networks: Twitter,
Facebook, and LinkedIn.
The descriptive statistics of the sample are shown in Figure 3 and Figure 4. From the original

number of 110 full responses, five were excluded due to the wrong answers to qualification questions
(see Section 3.4.1). The final sample of 105 full responses consisted of reviewers performing reviews
mostly at least once a week (N=86) and having more than 3 years of experience doing code reviews
(N=89). Furthermore, most of the reviewers had experience performing reviews in the industry
(N=92) but also in the open-source software development (N=57) and research (N=23). 44 reviewers
were classified as novices (five years of code review experience or less) and 61 as expert reviewers
(more than five years of code review experience). Therefore, our sample represents rather senior
reviewers doing code reviews regularly and working in different settings of software development.

4 RESULTS
In the Competencies Identification phase of this study, we identified a list of competencies relevant
to code review according to experts.
This list consists of 27 competencies in six clusters as presented in Table 4 and extended with

the definitions we used in Appendix A. The technical competencies are organized in three clusters:
Change Understanding, System and Codebase Navigation, and Software Quality and Its Assessment.
The social competencies are represented by two clusters: Discussing Informatics Topics and Relating
to Colleagues. The personal competencies form the last cluster.

4.1 Competencies for Code Review
In the RQ1.1 and RQ1.2, we investigated how often reviewers report using each of the identified
competencies as well as which competencies they perceive as the most important. Using the survey
answers, we ranked the competencies according to both dimensions. Table 4 summarizes the
answers to RQ1.1 and RQ1.2. When discussing usage (RQ1.1) for each competency, we report the most
frequently indicated answer (mode), the number of respondents that have provided this answer,
and the rank of the competency according to the Scott-Knott ESD algorithm. For importance (RQ1.2),
we report the percentage of respondents who have selected the competency as one of the five most

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:14 Pavlína Wurzel Gonçalves et al.

Fig. 3. Participants’ demographics: (a) Years of Code Review (CR) experience ; (b) Context of performing CR
; (c) Frequency of performing CR ; (d) Gender.

Fig. 4. Participants’ demographics: (a) Highest achieved education; (b) Professional role.

important ones, as well as the rank determined by the percentage (the highest percentage ranked
1). Table 5 presents the summary of rankings of competencies in all the measured dimensions. For
increased readability, Appendix B presents the lists of competencies sorted by their rankings.
The Scott-Knott ESD test identified ten ranked groups of competencies according to their

usage frequency. In code review, reviewers report needing most frequently ‘to communicate in an
understandable way’ (Group of Rank 1) followed by ‘to give constructive feedback’ (Group of Rank

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:15

2). These are both social competencies. Group 3 is formed by five, mostly technical, competencies.
Developers report to often need the competency ‘to develop a mental model of the change’, ‘to
evaluate how the change fulfills requirements’, ‘to understand the purpose of the code review and
the needed level of detail needed for it’, ‘to evaluate the effect of the change on the correctness of
the software system’, and ‘to correctly use programming languages’. Even though the two most
frequently used competencies are social ones, they are followed by the majority of the technical
competencies, as depicted in Figure 5(a). The competencies that are reported as the least used are:
‘to convince others about own ideas’ and ‘to effectively manage own emotions’ (Group of Rank 8),
‘to find relevant information beyond the code base’ (Group of Rank 9), and ‘to handle interpersonal
conflicts’ (Group of Rank 10).
Competencies that are more frequently used also tend to be considered more important by

reviewers. There is a strong correlation between the two (𝜌(25) = 0.74, p = 0.02). Similarly to
the frequency of usage, the list is dominated by the technical competencies together with ‘to
communicate in an understandable way’ and ‘to give constructive feedback’ (see Figure 5(b)). The
five most important competencies for efficient code reviews are, according to reviewers, ‘to develop
a mental model of the code change’ (selected among the most important by 59.0% of reviewers),
‘to evaluate whether the implementation fulfills requirements’ (53.33%) and ‘to evaluate the code
change quality with respect to its effects on the correctness of the software system’ (45.71%). The
last mentioned was evaluated by reviewers as the same level of importance as ‘to give constructive
feedback’ (45.71%), followed by the need ‘to communicate in an understandable way’ (40.95%).
Other competencies were considered among the most important by a lower portion of reviewers,
as reported in Table 4. As the least important were considered ‘to have an effective review time
management’ and ‘to handle interpersonal conflicts’ (both 1.90%).

4.2 Proficiency Level and Improvement of Competencies
RQ2.1 and RQ2.2 investigate how proficient reviewers rate themselves in the competencies and which
competencies they would like to improve. Table 4 presents the mode of the individual competencies
for the level of proficiency reported by respondents as well as the percentage of reviewers who
would like to improve the competency. Table 5 summarizes the rankings of the competencies
according to these dimensions.

Reviewers are quite confident about their competence. All modes for the level of proficiency are
either ‘Good’ or ‘Very Good’. Reviewers report the highest proficiency in being ‘willing to learn
and improve’ and in their ‘knowledge of programming languages’. Same as for frequency of usage
and importance of competencies, there is a clear distinction between the technical and social com-
petencies (Figure 5(c)). Reviewers report higher confidence in their technical competencies than in
the social ones. Specifically, respondents report confidence in being able ‘to systematically navigate
codebase’, ‘to find relevant information beyond the codebase’, ‘to evaluate if implementation fulfills
the requirements’, and ‘to understand the purpose of the code review and the level of detail needed
for it’. Reviewers are the least confident ‘to have effective review time-management’, ‘to handle
interpersonal conflicts’, and ‘to adjust communication style to different individuals’. Reviewers
are also not so confident in their ability ‘to convince others about their ideas’ and ‘to effectively
manage their own emotions’.
There is a moderate negative relationship between the perceived proficiency and what the

respondents would like to improve to become more competent reviewers (𝜌(25) = -0.46, p =
0.01). Unlike the previous dimensions, there is no clear pattern in which competencies developers
would like to improve. They would like to work on all types of competencies (see Figure 5(d)).
Respondents would like to mostly improve their ability ‘to evaluate architectural implications of the
change’ (29.52%). Second, they would like ‘to communicate in more understandable way’ (27.62%).

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:16 Pavlína Wurzel Gonçalves et al.

Table 4. Comparison of Competencies on their Usage, Importance, Level of Proficiency, and Preference for
Improvement

RQ1 RQ2
ID Competency Usage1 Importance2 Proficiency3 Preference to improve4

RQ1.1 RQ1.2 RQ2.1 RQ2.2
Technical Mode N Rank % Rank Mode N Rank % Rank

Cluster 1 Change understanding
1 To develop a mental model of the change Most 44 3 59.05 1 Very Good 42 3 18.10 10
Cluster 2 System and codebase navigation
2 To systematically navigate codebase Most 34 7 10.48 14 Very Good 44 2 9.52 22
3 To find relevant information beyond the

codebase
Less than half 62 9 13.33 12 Very Good 45 2 12.38 17

4 To identify patterns in the code Most 39 6 16.19 9 Very Good 46 3 15.24 15
5 To proficiently use the tools used in the

team
Always 49 4 10.48 14 Very Good 44 2 6.67 25

Cluster 3 Software quality and its assessment
6 To evaluate if the implementation fulfills

the requirements
Always 59 3 53.33 2 Very Good 47 2 4.76 26

7 To evaluate architectural implications of
the change

Most 39 6 31.43 6 Very Good 35 3 29.52 1

8 To evaluate the code change quality with
respect to its effects on the correctness of
the software system

Always 50 3 45.71 3 Very Good 51 3 20.95 6

9 To evaluate the code change quality with
respect to its effects on the user-affecting
properties of the software system

Most 39 5 16.19 9 Very Good 42 4 19.05 9

10 To evaluate the code change quality with
respect to its effects on the evolvability of
the software system

Most 45 4 30.48 7 Good 41 3 20.00 7

11 To estimate complexity of the problem and
solution

Most 39 6 10.48 14 Very Good 45 3 21.90 5

12 To know and correctly use programming
languages

Always 49 3 22.68 8 Very Good 42 1 10.48 21

Social
Cluster 4 Discussing Informatics Topics
13 To communicate in an understandable way Always 69 1 40.95 5 Very Good 38 3 27.62 2
14 To give constructive feedback Always 52 2 45.71 3 Very Good 46 3 23.81 4
15 To understand the dynamics of the discus-

sion and its conclusions
About half 31 6 2.86 23 Good 40 4 11.43 19

Cluster 5 Relating to Colleagues
16 To adjust communication style to different

individuals
Less than half 31 7 2.86 23 Good 31 6 16.19 14

17 To pick up and act on ideas of others About half 32 7 3.81 22 Very Good 46 3 9.52 22
18 To be willing to compromise About half 36 6 9.52 18 Very Good 33 4 12.38 17
19 To convince others about your ideas About

half/Less
than half

37 8 4.76 20 Good 50 5 17.14 13

20 To mentor other developers Most 31 7 10.48 14 Good 38 4 18.10 10
21 To effectively manage own emotions Less than half 45 8 4.76 20 Good 34 5 14.29 16
22 To handle interpersonal conflicts Less than half 54 10 1.90 26 Good 35 6 20.00 7
23 To be aware of the capacity of co-workers

in terms of time, experience and knowledge
Most 30 6 5.71 19 Very Good 44 4 11.43 19

Cluster 6 Personal
24 To have effective review time-management Most 34 6 1.90 26 Good 36 7 25.71 3
25 To set, express, and manage priorities Most 30 7 2.86 23 Good 49 6 18.10 10
26 To understand the purpose of the code re-

view and the level of detail needed for it
Always 52 3 13.33 12 Very Good 48 2 8.57 25

27 To be willing to learn and improve Always 50 4 15.24 11 Very Good 49 1 2.86 27
1 Usage frequency is measured on a Likert-type scale: ‘Always’, ‘Most reviews’, ‘About half reviews’, ‘Less than half reviews’, ‘Never’, and obtained values
are ranked into 10 distinct groups by Scott-Knott ESD algorithm [69].

2 Importance rankings are based on the % of respondents who selected given competency. Participants selected up to 5 most important competencies in
the survey.

3 Proficiency level is measured on a Likert-type scale: ‘Excellent’, ‘Very Good’, ‘Good, Fair’, ‘Poor’, and obtained values are ranked into 7 distinct groups
by Scott-Knott ESD algorithm [69].

4 Preference to Improve rankings are based on the % of respondents who selected given competency. Participants selected up to 5 competencies they
would like to improve in the survey.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:17

(a) Usage of competencies (b) Importance of competencies

(c) Proficiency levels for competencies (d) Competencies preferred for improvement

Fig. 5. Bubble plots showing how experts and novices differ with respect to competencies’ usage and impor-
tance as well as their proficiency levels and preferences to improve at these competencies. The closer the
circles are to the diagonal line, the closer is also the rating of novice and expert reviewers for that competency.

Furthermore, reviewers would like ‘to have effective review time-management’ (25.71%), ‘to give
constructive feedback’ (23.81%), and ‘to estimate the complexity of the problem and solution’
(21.90%). More than 20% of reviewers would also like to improve when it comes ‘to handling
interpersonal conflicts’ and ‘evaluating the code change quality with respect to its effect on the
correctness and evolvability of the software system’.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:18 Pavlína Wurzel Gonçalves et al.

4.3 Competencies and Experience
In RQ3.1 to RQ3.4, the competencies of interest are analyzed on the 4 dimensions (frequency of usage,
importance, level of proficiency and which ones the reviewers would like to improve) comparing
novice against expert reviewers. We used the same approach to process the data as in previous
RQs but for separate data sets of novice and expert reviewers. This resulted in separate rankings of
competencies for novices and experts as presented in Table 5 and directly compared in Figure 5. The
sorted lists of competencies to directly compare novices and experts are presented in Appendix C.

4.3.1 Frequency of Usage. Novice and expert reviewers’ rankings of competencies present many
similarities. The ranks of competencies on how frequently reviewers need them are very strongly
correlated for novice and expert reviewers (𝜌(25) = 0.93, p<.001), as also seen in Figure 5(a). The
top ten most frequently used competencies are identical for novice and expert reviewers, with
minor differences in the rank. Using the Mann-Whitney U test we have found that expert reviewers
need to understand the purpose of the review and the needed level of detail more frequently than
novice reviewers (Novice rank = 3, Expert rank = 1). There is a statistical difference in how often
these two groups need ‘to identify patterns in the code’ (Novice rank = 6, Expert rank = 5). While
expert reviewers use this competency most frequently in most reviews, novice reviewers need this
competency most frequently in less than half reviews.

4.3.2 Importance. Respondents had to select what they consider the most important competencies
(up to five) for code review. The importance rank is strongly related between novice end expert
reviewers (𝜌(25) = 0.86, p<.001). Figure 5(b) depicts this relationship. In the ten most important
competencies, novice and expert reviewers differed the most in how they perceived the competence
‘to evaluate the code change quality with respect to the user-affecting properties of the software
system’. Expert reviewers find it more important than novices (Novice rank = 12 (selected by 11.36%
of novice reviewers), Expert rank = 8 (19.67%)). On the contrary, novice reviewers find it more
important than expert reviewers ‘to identify patterns in the code’ (Novice rank = 9 (20.45%), Expert
rank = 12 (13.11%)).
Novice and expert reviewers differ considerably in how important they perceive several other

competencies. On the one hand, experts see as more important ‘to be willing to compromise’
(Novice rank = 21 (4.55%), Expert rank = 12 (13.11%)) and ‘to understand the dynamics of the
discussion and its conclusions’ (Novice rank = 26 (0%), Expert rank = 19 (4.92%)). On the other hand,
novice reviewers see it as more important to be able ‘to estimate the complexity of the problem
and solution’ (Novice rank = 10 (15.91%), Expert rank = 18 (6.56%)).

4.3.3 Proficiency level. Novice and expert reviewers also consider themselves proficient in similar
competencies. There is a strong correlation of 𝜌(25) = 0.76, p<.001) as visualized in Figure 5(c). Using
Mann-Whitney U test, we identified five technical competencies and one personal competency in
which expert reviewers report a higher level of proficiency than novice reviewers. These are ‘to
develop amental model of the change’, ‘to identify patterns in the code’, ‘to evaluate the architectural
implications of the change, its effect on user-affecting properties and evolvability of the software
system’, and ‘to understand the purpose of the review and the needed level of detail’.

4.3.4 Preference to improve. Novice and expert reviewers want to improve on relatively different
sets of competencies: There is a moderate relationship of 𝜌(25) = 0.42, p<.001 between their rankings.
As seen in Figure 5(d), there is a considerable variety in the rankings of competencies the two groups
would like to improve. Table 6 describes the list of competencies up to rank 10 (13 competencies).
While novice reviewers would like to improve the most in technical competencies (7 out of the
first 13), expert reviewers’ preferences are more oriented to improve their social skills (6 out of

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:19

the 13). The competencies that both novice and expert reviewers would like to improve are ‘to
evaluate the architectural implications of the change’, ‘to communicate in an understandable way’,
‘to evaluate the code change quality with its respect to correctness and evolvabilty of the software
system’, ‘to have effective review time management’, ‘to estimate the complexity of the problem
and solution’ and ‘to handle interpersonal conflicts’. Novice reviewers put preference on improving
their ability ‘to evaluate the code change quality with respect to the user-affecting properties of
the software system’, ‘to set, express and manage priorities’, ‘to develop a mental model of the
change’, ‘to identify patterns in the code’ and ‘to effectively manage own emotions’. In comparison,
the expert reviewers would like ‘to give more constructive feedback’, ‘to mentor other developers’,
‘to convince others about their ideas’, ‘to adjust communication style to different individuals’, and
‘to be more aware of the capacity of their co-workers in terms of time, experience and knowledge’.

5 DISCUSSION
A number of conclusions can be drawn from the observations about developers’ code review com-
petencies from the data we collected to answer the research questions. We describe the implications
of these results in Section 5.2. Section 5.3 presents the future work and Section 5.4 present the
threats to validity.

5.1 Findings
As many as 27 competencies are needed for code review. While there is a body of knowledge

describing the skills and competencies needed for IT professionals, software engineers, and specific
software development roles [4], the perspective of providing needed competencies for a specific
task, such as code review, was not yet explored in the software engineering literature. Code review
plays a crucial role in software quality assurance [2, 5, 44]. It is also used as a training process
within software development teams [5] and as a tool in developers’ education [3]. This study is the
first that identified a list of 27 competencies relevant for code reviews.

Technical competencies are a baseline for efficient code reviews. Among all competencies, technical
ones are reported to be the most frequently used and the ones perceived as the most important. They
constitute an important baseline to perform efficient and effective code reviews. Developers are also
the most confident in their proficiency with respect to these competencies. Even though software
tools [21, 48, 70] and reading techniques [8, 58] have been devised to support reviewers, especially
in the technical part of the review, we know less about what competence developers need to conduct
better reviews beyond identifying more defects or maintainability issues. Our study underlined
that, apart from assessing the correctness of the code change or its effect on the evolvability of
the software system, it is also important for reviewers to develop a good mental model of the code
change, evaluate it against the requirements, and correctly apply programming languages and
paradigms. Reviewers also specifically wish to improve in evaluating the architectural implications
of the change.

Clear communication and constructive feedback need more attention. Our data provide initial
evidence that reviewers are less equipped for the social competencies of the review, even though our
respondents report that understandable communication and constructive feedback are frequently
needed and very important for the quality of code review. This discrepancy is also reflected in the
literature. Many studies, methods, and tools are concerned with supporting developers’ ability to
understand the code change and identify defects [8, 21, 48, 58, 70]. However, the literature that
investigates and supports communication during code review is scarce [22, 50, 74]. Therefore, this
mismatch provides an indication of what could be an impactful, yet unexplored part of the code

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:20 Pavlína Wurzel Gonçalves et al.

Table 5. Ranking of Competencies for All, Novice and Expert Reviewers

Competency Usage1 Importance2 Proficiency3 Preference to Improve4

Technical All Novice Expert All Novice Expert All Novice Expert All Novice Expert
Cluster 1: Change understanding
To develop a mental model of the change 3 2 2 1 2 1 3 4 2 10 8 13
Cluster 2: System and codebase navigation
To systematically navigate codebase 7 6 6 14 16 12 2 2 3 22 22 19
To find relevant information beyond the code-
base

9 8 9 12 11 12 2 2 3 17 22 13

To identify patterns in the code 6 6 5 9 9 12 3 4 3 15 10 16
To proficiently use the tools used in the team 4 4 3 14 14 16 2 2 3 25 26 23
Cluster 3: Software quality and its assessment
To evaluate if the implementation fulfills the
requirements

3 2 2 2 1 2 2 2 2 26 22 26

To evaluate architectural implications of the
change

6 6 4 6 6 7 3 5 3 1 1 7

To evaluate the code change quality with re-
spect to its effects on the correctness of the
software system

3 3 2 3 3 3 3 3 4 6 3 7

To evaluate the code change quality with re-
spect to its effects on the user-affecting prop-
erties of the software system

5 5 4 9 12 8 4 5 4 9 2 19

To evaluate the code change quality with re-
spect to its effects on the evolvability of the
software system

4 3 3 7 8 6 3 4 3 7 3 11

To estimate complexity of the problem and
solution

6 5 6 14 10 18 3 3 3 5 10 4

To know and correctly use programming lan-
guages

3 2 2 8 7 8 1 1 2 21 14 22

Social
Cluster 4: Discussing informatics topics
To communicate in an understandable way 1 1 1 5 5 3 3 2 4 2 3 1
To give constructive feedback 2 2 1 3 3 5 3 3 4 4 13 2
To understand the dynamics of the discussion
and its conclusions

6 6 5 23 26 19 4 4 5 19 21 16

Cluster 5: Relating to colleagues
To adjust communication style to different in-
dividuals

7 7 6 23 24 21 6 5 6 14 16 7

To pick up and act on ideas of others 7 6 7 22 21 21 3 3 4 22 16 22
To be willing to compromise 6 6 6 18 21 12 4 3 6 17 16 16
To convince others about your ideas 8 7 8 20 16 21 5 5 6 13 16 6
To mentor other developers 7 6 6 14 14 16 4 4 5 10 20 4
To effectively manage own emotions 8 7 8 20 16 21 5 5 6 16 10 19
To handle interpersonal conflicts 10 9 10 26 24 26 6 6 7 7 8 7
To be aware of the capacity of co-workers in
terms of time, experience and knowledge

6 5 5 19 16 19 4 4 5 19 27 11

Cluster 6: Personal
To have effective review time-management 6 5 5 26 26 21 7 7 8 3 3 3
To set, express, and manage priorities 7 5 7 23 21 26 6 6 6 10 3 15
To understand the purpose of the code review
and the level of detail needed for it

3 3 1 12 16 10 2 3 2 25 14 25

To be willing to learn and improve 4 3 3 11 12 10 1 1 1 27 22 27
1 Usage frequency rankings are produced by using the Scott-Knott ESD algorithm [69].
2 Importance rankings are produced by using % of developers who selected the competency as the most important.
3 Proficiency level rankings are produced by using the Scott-Knott ESD algorithm [69] .
4 Preference to Improve rankings are produced by using % of developers who selected the competency as preferred for improving in themselves.

review process for future research. Furthermore, code review training and tooling might benefit
from explicitly focusing on improving the quality of communication during code reviews.

Novice reviewers would like to improve in understanding and contextualizing the change. The
biggest difference between novice and expert reviewers concerns what competencies they would
like to improve. Unlike experts, novices would like to improve in developing a mental model of
the change (the most important competency) and identifying patterns in the code. In the terms of
the SECAT model [62], these competencies relate to the first level of functional competence, where
students need to clearly process the technical information. This might also reflect that code reviews

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:21

Table 6. Comparison of Competencies Novice and Expert Reviewers would Prefer to Improve

Novice Type1 Rank Expert Type Rank

To evaluate architectural implications
of the change

T 1 To communicate in an understandable
way

S 1

To evaluate the code change quality
with respect to its effects on the user-
affecting properties of the software sys-
tem

T 2 To give constructive feedback S 2

To communicate in an understandable
way

S 3 To have effective review time-
management

P 3

To evaluate the code change quality
with respect to its effects on the cor-
rectness of the software system

T 3 To mentor other developers S 4

To evaluate the code change quality
with respect to its effects on the evolv-
ability of the software system

T 3 To estimate complexity of the problem
and solution

T 4

To set, express, and manage priorities P 3 To convince others about your ideas S 6
To have effective review time-
management

P 3 To evaluate the code change quality
with respect to its effects on the cor-
rectness of the software system

T 7

To develop a mental model of the
change

T 8 To evaluate architectural implications
of the change

T 7

To handle interpersonal conflicts S 8 To adjust communication style to dif-
ferent individuals

S 7

To estimate complexity of the problem
and solution

T 10 To handle interpersonal conflicts S 7

To identify patterns in the code T 10 To evaluate the code chang quality with
respect to its effects on the evolvability
of the software system

T 11

To effectively manage own emotions S 10 To be aware of the capacity of co-
workers in terms of time, experience
and knowledge

P 11

1 The type of competency is read as: T - technical, S - social, P - personal. The table compares the first 13
competencies (up to rank 10 for novices and 11 for experts.

are often used as part of on-boarding and mentoring to get acquainted with the code base [6, 36].
Next, novices would like to better evaluate the user-affecting properties and effect of the code change.
In the SECAT model [62], this competency reflects the process competence and the need of novices
to contextualize the change with respect to the usability of the software system. Novice reviewers
would also like ‘to better set, express, and manage priorities’ - a competency related to the third level
of the SECAT model [62] where the sensitivity to context and efficient organization of own work
should be achieved. Finally, code reviews are an activity where interpersonal conflicts are likely
to happen [74]. Novices and experts both would like to improve in handling conflicts effectively.
However, novices specifically wish to also learn to effectively manage their own emotions–a
competency that expert reviewers may have already achieved with experience. In conclusion, even
though novice reviewers prefer to improve mostly their technical competencies, the competencies
they would like to develop represent the full spectrum of SE competence levels.

Experts want to improve collaboration, mentoring, and convincing others about their ideas. Accord-
ing to literature, the technical competence peaks at the Senior Software Engineer positions, while
the more general competencies gain importance at the managerial level [17]. This is also reflected

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:22 Pavlína Wurzel Gonçalves et al.

in our study. Expert reviewers want to improve mostly their social competencies. Unlike novice
reviewers, experts would like to improve competencies related to communication and collaboration
with others, but also take over responsibilities for mentoring other developers (the third level of
the SECAT model [62]). These preferences might also reflect taking over responsibilities for more
complex reviews. Code reviews serve as an onboarding process for newcomers [36]. It is common
that new team members firstly have their code reviewed, then they also become reviewers and,
with time, mentors. Furthermore, code reviews are becoming more lightweight and most of the
changes are not very extensive [59]. Therefore, the need to develop more social competencies can
be related to the growing complexity of reviews that the developer is performing. The complexity
of the reviews is one of the factors affecting the presence of interpersonal conflicts and differences
in opinions [74]. More complex reviews might require also deeper and more extensive discussion,
thus better social competence to communicate effectively.

No competencies can be disregarded. Among the competencies that respondents report using
the least frequently and that they consider the least important, we find convincing others about
own ideas, effectively managing own emotions, and handling interpersonal conflicts. However, the
survey respondents indicate that these are the competencies in which they lack proficiency or the
competencies where they would like to improve. In this light, handling interpersonal conflicts is an
interesting case. Most often, reviewers need it in less than half of the reviews (N=54). However,
they also report that 27.62% of reviewers need this competency in half or more reviews. Conflicts
can indeed be an obstacle in performing efficient code reviews [23, 74]. Therefore, less frequently
used competencies may not be a priority when designing a training or tool support, but one should
not draw the conclusion that they are irrelevant to performing efficient reviews. Furthermore,
having effective review time management was not rated as frequently used or important. However,
reviewers mention it as one of the competencies with the lowest level of proficiency and the third
most preferred competency to be improved.

5.2 Implications
Competencies and competency modeling have a wide range of applications and usage, the most
common ones being recruitment, training, and performance assessment (see also Section 2.3) [38].
Developers, teams, and companies can benefit in all these areas to improve their code review practice.
When conducting recruitment and training activities or assessing code review performance, the
competency-based perspective can offer fine-grained developer-oriented criteria to design such
activities and evaluate developers’ performance. For example, developing a mental model of the
code change is one of the crucial competencies reviewers identify as needed to perform code reviews
well. Developers can be tested on how well, quickly, or accurately they develop mental models of
the reviewed change and whether their competence to do so improves over time. Furthermore, this
study provided insights into what cognitive processes happen during code review. These insights
can be used to improve the tools used for code reviews and hint at what support reviewers need to
perform better reviews.

5.2.1 Assessing Code Review Performance. Code review performance is traditionally evaluated by
review effectiveness and efficiency [8]; this is a perspective focused on finding defects as the main
goal of code review [5]. Even though finding defects is the main goal of performing code reviews,
a review that does not identify defects is not necessarily a review that was poorly done given
that not all review changes do not contain correctness defects. Alternatively, code reviews can be
assessed by how well they fulfill other review goals, such as knowledge sharing [26]. Competency
modeling offers yet another perspective, that assesses how well the reviewers performed the
review, rather than assessing a specific review outcome. In other words, thanks to identifying and

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:23

ranking the needed competencies by importance, a good reviewer is not only a reviewer that can
find correctness defects, but also a reviewer that can develop an accurate mental model of the
change, who is able to evaluate whether the implementation fits requirements, gives constructive
feedback, and communicates understandably. Depending on the context and review, other criteria
and competencies might be more important to assess, such as their ability to evaluate how the
change affects the software architecture, the user, or the interpersonal conflicts in the team.

5.2.2 Designing Recruitment, Performance Assessment, Training and Education Activities. Code
review is an essential practice to improve code review quality that can suffer from lack of skills [3,
41]. This study shows that not only the technical competencies but also the social ones need
attention to help students and practitioners perform reviews well. Competency-Based Education
and Training [9] stands on the selection of a smaller set of competencies for which a focused
training or activity is designed to allow deliberate practice, repetition, and gradual improvement
based on individual feedback [25]. This might be achieved by designing curricula activities that
enable learners to demonstrate and discuss with peers and educators the strategies they use to
understand and contextualize the change, solve technical problems, and give feedback to others.

A similar principle is used in designing Competence-based Assessment Centers in which a group
of developers would participate in several such activities [47]. Their performance can be assessed
using the defined competencies either for the purpose of hiring or team-based training. Then, the
level of their competencies would be assessed before and after the training sessions. For designing
these activities, first, a selection of the crucial competencies would be made (e.g., the five most
frequently used in code reviews). Then, activities and code reviews for assessment and training
would be selected that enable the participants to manifest their competence in a subset of those
(Commonly, a set of 3-4 competencies is observed within one activity.). Then, a set of criteria and
behavioral anchors would be defined to assess better and worse manifestations of the competence
in the particular scenario. Therefore, this study provides a way to select the relevant competencies
but leaves a space for the specific training design.

5.2.3 Identifying Training Needs. Training can be designed with different priorities. This study
identified 27 competencies relevant for code review performance. If more general training is being
designed, the designers can focus on the most frequently used competencies or the more important
ones. However, novice and expert reviewers report different needs for developing their reviewing
competence. During onboarding or training of novice reviewers, it can be beneficial to focus on
their technical competencies, improving their knowledge of the company’s software system to
support their better understanding of the change and their ability to contextualize it within the
code base and its architecture. The experienced reviewers can benefit from training focused more
on mentoring, giving feedback, and adjusting communication with different types of colleagues.

What reviewers would like to improve is the area with the least agreement among respondents.
It seems reasonable to interpret that the need for developing competencies is highly individual.
Similarly to RQ2, the list can be used as a tool to facilitate the identification of training needs of
specific reviewers or whole teams by identifying which competencies they struggle with and which
they would like to improve. This input can serve to design custom training activities.

5.2.4 Supporting Code Review Performance. The set of competencies and their ranking can also be
used to better understand what cognitive processes reviewers follow and what behaviors they need
to manifest. Therefore, it is also a list of activities and processes that might benefit from further
support from tooling or management to improve the individual technical part of code review, the
communication between the author and reviewers, and personal and team coordination of the
review process.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:24 Pavlína Wurzel Gonçalves et al.

Providing better support for the technical competence has been substantially covered by research,
e.g., by approaches to help reviewers to understand the code change and identify defects [8, 21, 48,
58, 70]. Visualizations of the code changes or untangling and scaling down changes are useful to help
develop an appropriate mental model of the code change. However, reviewers could benefit from
support in further areas, such as (1) clearly communicating and expressing requirements related
to the change, and providing explicit ways to check their fulfillment, (2) mastering the use of the
teams’ tools, (3) identifying evolvability and maintainability issues in the code with suggestions or
automatic checks, (4) improving proficient application of the language and programming paradigm
in use, (5) understanding how the overall software architecture is affected by the code change, (6)
having fast access to needed information across the code base (but also in other resources, like
language documentation), and (7) improving communication between the author and reviewer
about the complexity of the review and code change (because misalignment in the perception and
expectation of problem and solution complexity can be a source of conflicts and misunderstanding
in reviews [74]). All of these tasks could benefit from direct handling within the code review tools
and minimizing the need for context switching when doing reviews.

The social competencies have received much less support in terms of research and tooling than
the technical ones [50, 54, 74]. Especially, supporting reviewers in providing constructive feedback
is an important area to cover with research and tooling improvements. Constructive feedback in
code reviews has been described as feedback explaining reasons for decisions, providing suggestions
with supporting examples, being specific on what to do, how to do it, and what is wrong while
prioritizing vital issues. Furthermore, it should also include positive points [74]. Reviewers might
also benefit from ways (1) to support clear communication about conclusions from the debate,
for example by having a direct way to define a follow-up issue or task directly from the review
interface, (2) to have a way to express priorities and importance of comments and requests made
during the review or (3) to track mentoring and learning goals and progress. Code review tools and
also managers might benefit from support in detecting interpersonal conflicts and communication
issues during the reviews and having propositions on how to manage the situation [24, 74].
The personal competencies described in this study provide information on the importance of

managing the overall review process and helping reviewers and authors have an overview of the
(1) purpose of the review, (2) current development and code change priorities, and (3) availability
and review effort of their colleagues for reviews, for example by documenting the load of reviews
per team member, signaling availability or time-frame for providing feedback.

5.3 Future Work
One of the commonly evaluated performance criteria of reviewers is code review effectiveness and
efficiency [8] which relates to the competency of evaluating the effect of the code change on the
correctness of the software system. Other studies also investigated reviewers’ ability to identify
evolvability issues [65]. However, how reviewers perform reviews seems to be related to many more
abilities. This study has described a list of competencies that describe such abilities. Competencies
are used in practice as a performance assessment criteria [14] and underline the importance of
assessing reviewers also on other abilities, such as developing an accurate mental model of the
change or whether they are understandable and constructive with their colleagues. We hope this
research can serve as a starting point for other researchers to continue competency-based research
in this area and to start evaluating the role, manifestation, and effect of different competencies in
code reviews and how these performance criteria relate to and support each other in performing
reviews well.
This study also supported the importance of social competence for performing reviews. Re-

searchers have invested substantial effort in supporting developers in the technical review (e.g.,

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:25

understanding the code change and identifying defects [8, 21, 48, 58, 70]). However, the social
competencies have received much less support in terms of research and tooling [50, 54, 74]. Future
studies can be designed and carried out to investigate these important areas of code review with
the goal of supporting them.
While the provided list can be used to select competencies to design training activities, re-

cruitment interviews, and assessment centers, the implementation of such activities still requires
operationalizing these competencies into measurable criteria and assessing the validity and reliabil-
ity of their measurement.

5.4 Threats to validity
Concept Validity. The concept of competency is used in many fields and (applied) contexts.

Therefore, competencies are defined in several ways. Studies often do not define what is meant by
competency or use the term vaguely [73]. This results in a wide range of workers’ characteristics,
behaviors, and abilities that are intertwined within one competency model or study. This is also
noticeable in the competency models we used to create the initial item pool to define competencies
for code reviews. We have addressed this issue during the Refinement and Clustering phase of
the Competencies Identification part of this study, described in Section 3.2.3. However, some
competencies in our list still carry marks of that (e.g., willingness to improve is a personality trait),
but the experts underlined the special importance of this aspect for code reviews, therefore we kept
it in the list.

External Validity. We aimed to include as experts in our study professionals with proven success in
code reviews, which we translated into the criterion of at least five years of experience with a review.
However, the length of experience is not very strongly related to performance for experts [25]. The
code review performance might peak after a shorter period of time. However, there is no available
data to specify this. Furthermore, qualitative criteria are commonly used to identify experts [40].
These qualitative criteria are not readily available to identify code review experts, even more so
criteria that could be applied to identify experts in a survey. Changing this criterion could affect
results and preferences in the analysis of the difference between novice and expert reviewers.
The respondents of the survey have been recruited through a multitude of channels to ensure

the diversity of reviewer profiles and code review practices. However, we have tracked the origin
of the respondents only when collaborating with companies. Therefore, 14% of our sample consists
of reviewers from 2 European-based companies. The rest of the reviewers have been recruited
from the other resources mentioned in Section 3.5.1 with a non-negligible chance of being biased
by recruiting through personal networks of the authors. Furthermore, the survey participants
were rather senior: more than half had more than five years of experience with code reviews and
only 16 respondents had less than three years of experience. Therefore, also our results are more
representative of more senior reviewers and less so of very novice reviewers or students who might
need more support performing reviews well.

Conclusion Validity. This study aimed to identify competencies essential for code reviews. For
clarity, we have focused on the competencies needed by reviewers. However, in code review also the
change author plays a role. The authors might have a different perspective on what competencies
are important or should be improved for better reviews. Furthermore, the code authors might also
need specific competencies that would make the reviews more efficient, such as ‘to write a clear
description of the change’ and ‘limiting the size of the patch’. However, most of the reviewers also
submit code changes to be reviewed by other developers; hence act in the role of the code authors
in code reviews.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:26 Pavlína Wurzel Gonçalves et al.

We have been asking reviewers about potentially personal issues, such as their ability to handle
conflicts, manage their emotions, or convince others about their ideas. These competencies came
in the results at the end of the most used competencies and also the least important. There might
be a bias caused by reviewers being uncomfortable with sharing personal information or putting
more emphasis on technical competence in general. We aimed to minimize the potential bias by
making the survey anonymous, collecting no personal identifiers, and providing no personal gains
or losses for the participants. Therefore, we expect that the survey itself did not affect strongly
participants’ responses and we expect that related personality traits like the comfort to discuss
more emotional or personal issues are randomly distributed among the respondents.

The self-reported frequency of using a competency can be distorted by memory biases. Therefore,
we aimed not to use a strictly quantifying scale, like ‘once in 2 reviews’ but rather a generalized
statement like ‘in most reviews’ which is less prone to this group of biases and compares the
experience to the overall portion of reviews the reviewer performs.
We have also relied on a self-report of the reviewers’ competence. While this might provide

bias in the responses, our goal was not to assess the reviewers’ actual level of competence but
to prioritize which competencies developers perceive as more or less developed. This lowers the
bias present in the data. However, it would still be beneficial to actually measure the developers’
competence to triangulate the data if the methods to do so are available.

6 CONCLUSION
This study describes 27 competencies relevant to performing code reviews. The results reveal that
technical competence is the base requirement for code reviews and reviewers feel confident about
them. However, reviewers are less confident in their social competence and would also like to
improve it.
Importantly, current research focuses mainly on supporting developers’ technical competence

for code reviews, even though developers have more issues with social competencies.
The list of competencies and their ranking can be used as an alternative way to assess code

review performance, design and execute recruitment or training activities, and identify what
support reviewers need to perform code reviews well.

ACKNOWLEDGMENTS
P. Wurzel Gonçalves and A. Bacchelli gratefully acknowledge the support of the Swiss National
Science Foundation through the SNF Project No. PP00P2_170529.

REFERENCES
[1] Alain Abran, James W Moore, Pierre Bourque, Robert Dupuis, and L Tripp. 2004. Software engineering body of

knowledge. IEEE Computer Society, Angela Burgess (2004).
[2] A.F. Ackerman, L.S. Buchwald, and F.H. Lewski. 1989. Software inspections: an effective verification process. IEEE

Software 6, 3 (1989), 31–36. https://doi.org/10.1109/52.28121
[3] Hiyam Al-Kilidar, Tor Stalhane, Cat Kutay, and Ross Jeffery. 2003. Teaching the Process of Code Review. (2003).
[4] Nana Assyne, Hadi Ghanbari, and Mirja Pulkkinen. 2021. The state of research on software engineering competencies:

A systematic mapping study. Journal of Systems and Software (2021), 111183.
[5] Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes, and challenges of modern code review. In 2013

35th International Conference on Software Engineering (ICSE). IEEE, 712–721.
[6] Sogol Balali, Igor Steinmacher, Umayal Annamalai, Anita Sarma, and Marco Aurelio Gerosa. 2018. Newcomers’

barriers... is that all? an analysis of mentors’ and newcomers’ barriers in OSS projects. Computer Supported Cooperative
Work (CSCW) 27, 3 (2018), 679–714.

[7] Dave Bartram. 2006. The SHL universal competency framework. SHL White paper (2006), 1–8.
[8] Tobias Baum. 2019. Cognitive-support code review tools: improved efficiency of change-based code review by guiding

and assisting reviewers. Ph. D. Dissertation. Hannover: Institutionelles Repositorium der Universität Hannover. https:

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.

https://doi.org/10.1109/52.28121
https://doi.org/10.15488/9164
https://doi.org/10.15488/9164


Competencies for Code Review 38:27

//doi.org/10.15488/9164
[9] Harm Biemans, Renate Wesselink, Judith Gulikers, Sanne Schaafsma, Jos Verstegen, and Martin Mulder. 2009. Towards

competence-based VET: dealing with the pitfalls. Journal of Vocational Education and training 61, 3 (2009), 267–286.
[10] Linda Birt, Suzanne Scott, Debbie Cavers, Christine Campbell, and Fiona Walter. 2016. Member checking: a tool to

enhance trustworthiness or merely a nod to validation? Qualitative health research 26, 13 (2016), 1802–1811.
[11] Amiangshu Bosu, Michaela Greiler, and Christian Bird. 2015. Characteristics of useful code reviews: An empirical

study at microsoft. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories. IEEE, 146–156.
[12] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. 2019. An empirical assessment of best-answer prediction models

in technical Q&A sites. Empirical Software Engineering 24, 2 (2019), 854–901.
[13] Gemma Catolino and Filomena Ferrucci. 2019. An extensive evaluation of ensemble techniques for software change

prediction. Journal of Software: Evolution and Process 31, 9 (2019), e2156.
[14] Hsin-Chih Chen and Sharon S Naquin. 2006. An integrative model of competency development, training design,

assessment center, and multi-rater assessment. Advances in Developing Human Resources 8, 2 (2006), 265–282.
[15] Richard E Clark and Fred Estes. 1996. Cognitive task analysis for training. International Journal of Educational Research

25, 5 (1996), 403–417.
[16] Jason Cohen. 2010. Modern Code Review. InMaking Software, Andy Oram and GregWilson (Eds.). O’Reilly, Chapter 18,

329–338.
[17] Ricardo Colomo-Palacios, Cristina Casado-Lumbreras, Pedro Soto-Acosta, Francisco J García-Peñalvo, and Edmundo

Tovar-Caro. 2013. Competence gaps in software personnel: A multi-organizational study. Computers in Human
Behavior 29, 2 (2013), 456–461.

[18] Anastasia Danilova, Alena Naiakshina, Stefan Horstmann, and Matthew Smith. 2021. Do you really code? Designing
and Evaluating Screening Questions for Online Surveys with Programmers. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 537–548.

[19] Nicole Davila and Ingrid Nunes. 2021. A systematic literature review and taxonomy of modern code review. Journal of
Systems and Software (2021), 110951.

[20] Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2021. Representation of developer expertise in open source
software. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE, 995–1007.

[21] Martín Dias, Alberto Bacchelli, Georgios Gousios, Damien Cassou, and Stéphane Ducasse. 2015. Untangling fine-
grained code changes. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering
(SANER). IEEE, 341–350.

[22] Felipe Ebert, Fernando Castor, Nicole Novielli, and Alexander Serebrenik. 2021. An exploratory study on confusion in
code reviews. Empirical Software Engineering 26, 1 (2021), 1–48.

[23] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Margaret Morrow Hodges, Collin Green, Ciera Jaspan,
and James Lin. 2020. Predicting developers’ negative feelings about code review. In 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE). IEEE, 174–185.

[24] Carolyn D Egelman, Emerson Murphy-Hill, Elizabeth Kammer, Maggie Morrow Hodges, Collin Green, Ciera Jaspan,
and James Lin. 2020. Pushbacacterizing and Detecting Negative Interpersonal Interactions in Code Review. (2020).

[25] K Anders Ericsson and Andreas C Lehmann. 1996. Expert and exceptional performance: Evidence of maximal adaptation
to task constraints. Annual review of psychology 47, 1 (1996), 273–305.

[26] Nargis Fatima, Sumaira Nazir, and Suriayati Chuprat. 2019. Understanding the impact of feedback on knowledge
sharing in modern code review. In 2019 IEEE 6th International Conference on Engineering Technologies and Applied
Sciences (ICETAS). IEEE, 1–5.

[27] National Center for O*NET Development. 2020. O*Net Resource Center. Retrieved October, 2020 from https://www.
onetcenter.org/

[28] Mina Ghomi and Christine Redecker. 2019. Digital Competence of Educators (DigCompEdu): Development and
Evaluation of a Self-assessment Instrument for Teachers’ Digital Competence.. In CSEDU (1). 541–548.

[29] Georgios Gousios, Martin Pinzger, and Arie van Deursen. 2014. An exploratory study of the pull-based software
development model. In Proceedings of the 36th International Conference on Software Engineering. 345–355.

[30] Joan S Grant and Linda L Davis. 1997. Selection and use of content experts for instrument development. Research in
nursing & health 20, 3 (1997), 269–274.

[31] Fergus Henderson. 2017. Software engineering at Google. arXiv preprint arXiv:1702.01715 (2017).
[32] Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal opinion surveys. In Guide to advanced empirical software

engineering. Springer, 63–92.
[33] Barbara A Kitchenham, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones, David C. Hoaglin, Khaled El Emam,

and Jarrett Rosenberg. 2002. Preliminary guidelines for empirical research in software engineering. IEEE Transactions
on software engineering 28, 8 (2002), 721–734.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.

https://doi.org/10.15488/9164
https://doi.org/10.15488/9164
https://doi.org/10.15488/9164
https://www.onetcenter.org/
https://www.onetcenter.org/


38:28 Pavlína Wurzel Gonçalves et al.

[34] Ruth Klendauer, Marina Berkovich, Richard Gelvin, Jan Marco Leimeister, and Helmut Krcmar. 2012. Towards a
competency model for requirements analysts. Information Systems Journal 22, 6 (2012), 475–503.

[35] Oleksii Kononenko, Olga Baysal, Latifa Guerrouj, Yaxin Cao, and Michael W Godfrey. 2015. Investigating code review
quality: Do people and participation matter?. In 2015 IEEE international conference on software maintenance and evolution
(ICSME). IEEE, 111–120.

[36] Vladimir Kovalenko and Alberto Bacchelli. 2018. Code review for newcomers: is it different?. In Proceedings of the 11th
International Workshop on Cooperative and Human Aspects of Software Engineering. 29–32.

[37] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology. Sage publications.
[38] Rainer Kurz and Dave Bartram. 2002. Competency and individual performance: Modelling the world of work.

Organizational effectiveness: The role of psychology 227 (2002), 255.
[39] Choong Kwon Lee and Stephen C Wingreen. 2010. Transferability of knowledge, skills, and abilities along IT career

paths: An agency theory perspective. Journal of Organizational Computing and Electronic Commerce 20, 1 (2010),
23–44.

[40] Ming Li and Carol S Smidts. 2003. A ranking of software engineering measures based on expert opinion. IEEE
Transactions on Software engineering 29, 9 (2003), 811–824.

[41] Xiaosong Li. 2007. Incorporating a code review process into the assessment. (2007).
[42] Barbara Linck, Laura Ohrndorf, Sigrid Schubert, Peer Stechert, Johannes Magenheim, Wofgang Nelles, Jonas Neuge-

bauer, and Niclas Schaper. 2013. Competence model for informatics modelling and system comprehension. In 2013
IEEE Global Engineering Education Conference (EDUCON). IEEE, 85–93.

[43] Ernest J McCormick, PR Jeanneret, and S Gael. 1988. Position analysis questionnaire (PAQ). In SYMPOSIUM PROCEED-
INGS OCCUPATIONAL RESEARCH AND THE NAVY-PROSPECTUS 1980. ERIC, 78.

[44] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. 2016. An empirical study of the impact of
modern code review practices on software quality. Empirical Software Engineering 21, 5 (2016), 2146–2189.

[45] Ana M Moreno, Maria-Isabel Sanchez-Segura, Fuensanta Medina-Dominguez, and Laura Carvajal. 2012. Balancing
software engineering education and industrial needs. Journal of systems and software 85, 7 (2012), 1607–1620.

[46] Frederick P Morgeson, Adela S Garza, and Michael A Campion. 2013. Work design. (2013).
[47] International Task Force on Assessment Center Guidelines. 2009. Guidelines and Ethical Considerations for Assessment

Center Operations 1. International Journal of Selection and Assessment 17, 3 (2009), 243–253.
[48] Sebastiaan Oosterwaal, Arie van Deursen, Roberta Coelho, Anand Ashok Sawant, and Alberto Bacchelli. 2016. Visualiz-

ing code and coverage changes for code review. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. 1038–1041.

[49] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli. 2018. Information Needs
in Contemporary Code Review. Proc. ACM Hum.-Comput. Interact. 2, CSCW, Article 135 (nov 2018), 27 pages.
https://doi.org/10.1145/3274404

[50] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto Bacchelli. 2018. Information needs in
contemporary code review. Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–27.

[51] Thomas V Perneger. 1998. What’s wrong with Bonferroni adjustments. Bmj 316, 7139 (1998), 1236–1238.
[52] Denise F Polit and Cheryl Tatano Beck. 2006. The content validity index: are you sure you know what’s being reported?

Critique and recommendations. Research in nursing & health 29, 5 (2006), 489–497.
[53] Mohammad Masudur Rahman and Chanchal K Roy. 2014. An insight into the pull requests of github. In Proceedings of

the 11th Working Conference on Mining Software Repositories. 364–367.
[54] MohammadMasudur Rahman, Chanchal K Roy, and Raula G Kula. 2017. Predicting usefulness of code review comments

using textual features and developer experience. In 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE, 215–226.

[55] Louis M Rea and Richard A Parker. 2014. Designing and conducting survey research: A comprehensive guide. John Wiley
& Sons.

[56] Peter C Rigby and Christian Bird. 2013. Convergent contemporary software peer review practices. In Proceedings of
the 2013 9th Joint Meeting on Foundations of Software Engineering. 202–212.

[57] José Gamaliel Rivera-Ibarra, Josefina Rodríguez-Jacobo, José Alberto Fernández-Zepeda, and Miguel Angel Serrano-
Vargas. 2010. Competency framework for software engineers. In 2010 23rd IEEE Conference on Software Engineering
Education and Training. IEEE, 33–40.

[58] Guoping Rong, Jingyi Li, Mingjuan Xie, and Tao Zheng. 2012. The effect of checklist in code review for inexperienced
students: An empirical study. In 2012 IEEE 25th Conference on Software Engineering Education and Training. IEEE,
120–124.

[59] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. 2018. Modern code review: a
case study at google. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering
in Practice. 181–190.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.

https://doi.org/10.1145/3274404


Competencies for Code Review 38:29

[60] J Saldaña-Ramos, Ana Sanz-Esteban, J García-Guzmán, and A Amescua. 2012. Design of a competence model for
testing teams. IET Software 6, 5 (2012), 405–415.

[61] Neal W Schmitt, Scott Ed Highhouse, and Irving B Weiner. 2013. Handbook of psychology: Industrial and organizational
psychology, Vol. 12. John Wiley & Sons Inc.

[62] Yvonne Sedelmaier and Dieter Landes. 2014. A multi-perspective framework for evaluating software engineering
education by assessing students’ competencies: SECAT—A software engineering competency assessment tool. In 2014
IEEE Frontiers in Education Conference (FIE) Proceedings. IEEE, 1–8.

[63] Yvonne Sedelmaier and Dieter Landes. 2014. Software engineering body of skills (SWEBOS). In 2014 IEEE Global
Engineering Education Conference (EDUCON). IEEE, 395–401.

[64] Daricélio Moreira Soares, Manoel Limeira de Lima Júnior, Leonardo Murta, and Alexandre Plastino. 2015. Acceptance
factors of pull requests in open-source projects. In Proceedings of the 30th Annual ACM Symposium on Applied Computing.
1541–1546.

[65] Davide Spadini, Fabio Palomba, Tobias Baum, Stefan Hanenberg, Magiel Bruntink, and Alberto Bacchelli. 2019. Test-
driven code review: an empirical study. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 1061–1072.

[66] Saikrishna Sripada, Y Raghu Reddy, and Ashish Sureka. 2015. In support of peer code review and inspection in an
undergraduate software engineering course. In 2015 IEEE 28th Conference on Software Engineering Education and
Training. IEEE, 3–6.

[67] Claude M. Steele and Jay Aronson. 1995. Stereotype threat and the intellectual test performance of African Americans.
Journal of personality and social psychology 69 5 (1995), 797–811.

[68] Chakkrit Tantithamthavorn, ShaneMcIntosh, Ahmed EHassan, and KenichiMatsumoto. 2016. An empirical comparison
of model validation techniques for defect prediction models. IEEE Transactions on Software Engineering 43, 1 (2016),
1–18.

[69] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E. Hassan, and Kenichi Matsumoto. 2019. The Impact of
Automated Parameter Optimization for Defect Prediction Models. IEEE Trans. Software Eng. 45, 7 (2019), 683–711.

[70] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012. How do software engineers understand
code changes? An exploratory study in industry. In Proceedings of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering. 1–11.

[71] Richard T Turley and James M Bieman. 1994. Identifying Essential Competencies of Software Engineers.. In ACM
Conference on computer science, Vol. 10.

[72] June Wei and Gavriel Salvendy. 2004. The cognitive task analysis methods for job and task design: Review and
reappraisal. Behaviour & Information Technology 23, 4 (2004), 273–299.

[73] Charles Woodruffe. 1993. What is meant by a competency? Leadership & organization development journal (1993).
[74] Pavlína Wurzel Gonçalves, Gul Çalikli, and Alberto Bacchelli. 2022. Interpersonal Conflicts During Code Review:

Developers’ Experience and Practices. Proceedings of the ACM on Human-Computer Interaction CSCW (2022). https:
//doi.org/10.5281/zenodo.5851633

[75] FARIDEH YAGHMAEI. 2003. Content validity and its estimation. (2003).

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.

https://doi.org/10.5281/zenodo.5851633
https://doi.org/10.5281/zenodo.5851633


38:30 Pavlína Wurzel Gonçalves et al.

A LIST AND DEFINITIONS OF ALL COMPETENCIES FOR CODE REVIEW
Technical Competencies

Cluster 1 - Change Understanding
(1) To develop a mental model of the change

Developing a mental model of the change and how it relates to the requirements and application domain.

Cluster 2 - System and Codebase Navigation
(2) To systematically navigate the codebase

Systematically exploring the codebase, applying correctly in the change the functions and libraries used in the
system.

(3) To find relevant information beyond the codebase
in the documentation, requirements, online resources, literature, etc.

(4) To identify patterns in the code
Identifying patterns in the code and its structural properties, evaluating design patterns implementation, identifying
what parts of the code are or can be reused.

(5) To proficiently use the tools used in the team
Code review tools, IDEs, versioning software, issue management systems, etc.

Cluster 3 - Software Quality and Its Assessment
(6) To evaluate if the implementation fulfills the requirements
(7) To evaluate architectural implications of the change
(8) To evaluate the code change quality with respect to its effects on the correctness of the

software system
(9) To evaluate the code change quality with respect to its effects on the user-affecting properties

of the software system
such as usability, performance, and security.

(10) To evaluate the code change quality with respect to its effects on the evolvability of the
software system
Such as structuredness, maintainability, and compatibility.

(11) To estimate complexity of the problem and solution
Distinguishing complex and simple problems, estimating relevant complexity measures.

(12) To know and correctly use programming languages
Effectively using programming languages applied in the system with respect to the related programming paradigms
(object-oriented programming, functional, procedural programming, etc.)

Social Competencies
Cluster 4 - Discussing Informatics Topics
(13) To communicate in an understandable way
(14) To give constructive feedback

Able and willing to criticize constructively, ask important and relevant questions, suggest adjustments and alternative
solutions, helping others realize new ideas.

(15) To understand the dynamics of the discussion and its conclusions
Being able to follow how a discussion is developing over time, how the participants react to each other, and what
conclusions can be taken out of the discussion.

Cluster 5 - Relating to Colleagues
(16) To adjust communication style to different individuals
(17) To pick up and act on ideas of others
(18) To be willing to compromise
(19) To convince others about your ideas

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:31

(20) To mentor other developers
Guiding less experienced developers to develop their code reviewing and programming skills and their understanding
of the team/project/company processes.

(21) To effectively manage own emotions
Dealing with negative emotions and distressing circumstances, accepting negative feedback, dealing with external
stress.

(22) To handle interpersonal conflicts
Enhancing productive outcomes of a conflict while minimizing its escalation or harm done.

(23) To be aware of the capacity of co-workers in terms of time, experience, and knowledge
Personal Competencies
(24) To have effective review time-management

Assigning appropriate time resources for the reviews, balance review response time with other responsibilities.
(25) To set, express, and manage priorities

related to software requirements, release planning, bug severity, product backlog in agile development, etc.
(26) To understand the purpose of the code review and the level of detail needed for it
(27) To be willing to learn and improve

Being open to new ideas, able to learn from past mistakes for future reviews.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



38:32 Pavlína Wurzel Gonçalves et al.

B LIST OF ALL COMPETENCIES FOR ALL DEVELOPERS SORTED BY RANKS

Frequency of Usage Importance Level of Proficiency Wanting to Improve
ID* Type Rank ID Type Rank ID Type Rank ID Type Rank
13 S 1 1 T 1 12 T 1 7 T 1
14 S 2 6 T 2 27 P 1 13 S 2
8 T 3 8 T 3 26 P 2 24 P 3
1 T 3 14 S 3 6 T 2 14 S 4
12 T 3 13 S 5 5 T 2 11 T 5
26 P 3 7 T 6 2 T 2 8 T 6
6 T 3 10 T 7 3 T 2 10 T 7
10 T 4 12 T 8 13 S 3 22 S 7
5 T 4 4 T 9 14 S 3 9 T 9
27 P 4 9 T 9 8 T 3 1 T 10
9 T 5 27 P 11 1 T 3 20 S 10
7 T 6 3 T 12 10 T 3 25 P 10
24 P 6 26 P 12 7 T 3 19 S 13
11 T 6 2 T 14 11 T 3 16 S 14
4 T 6 5 T 14 4 T 3 4 T 15
18 S 6 11 T 14 17 S 3 21 S 16
15 S 6 20 S 14 9 T 4 3 T 17
23 S 6 18 S 18 18 S 4 18 S 17
20 S 7 23 S 19 15 S 4 23 S 19
25 P 7 19 S 20 23 S 4 15 S 19
16 S 7 21 S 20 20 S 4 12 T 21
2 T 7 17 S 22 19 S 5 2 T 22
17 S 7 15 S 23 21 S 5 17 S 22
19 S 8 16 S 23 25 P 6 5 T 25
21 S 8 25 P 23 16 S 6 26 P 25
3 T 9 22 S 26 22 S 6 6 T 26
22 S 10 24 P 26 24 P 7 27 P 27

(*) ID of the competency, as specified in Table 4 and Appendix A.

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.



Competencies for Code Review 38:33

C LISTS OF COMPETENCIES AS RANKED BY NOVICE AND EXPERT REVIEWERS

Frequency of Usage Importance Level of Proficiency Wanting to improve
Expert Novice Expert Novice Expert Novice Expert Novice

ID* Rank ID Rank ID Rank ID Rank ID Rank ID Rank ID Rank ID Rank
1 13 1 13 1 1 1 6 1 27 1 12 1 13 1 7
1 14 2 12 2 6 2 1 2 26 1 27 2 14 2 9
1 26 2 6 3 13 3 14 2 1 2 6 3 24 3 13
2 8 2 14 3 8 3 8 2 12 2 13 4 20 3 8
2 1 2 1 5 14 5 13 2 6 2 3 4 11 3 10
2 12 3 27 6 10 6 7 3 10 2 5 6 19 3 25
2 6 3 26 7 7 7 12 3 5 2 2 7 8 3 24
3 10 3 8 8 12 8 10 3 7 3 14 7 7 8 1
3 5 3 10 8 9 9 4 3 4 3 8 7 16 8 22
3 27 4 5 10 27 10 11 3 11 3 11 7 22 10 11
4 7 5 11 10 26 11 3 3 2 3 26 11 10 10 4
4 9 5 9 12 2 12 27 3 3 3 17 11 23 10 21
5 24 5 23 12 3 12 9 4 13 3 18 13 1 13 14
5 23 5 25 12 4 14 5 4 14 4 1 13 3 14 12
5 4 5 24 12 18 14 20 4 8 4 10 15 25 14 26
5 15 6 2 16 5 16 26 4 9 4 4 16 4 16 17
6 20 6 7 16 20 16 23 4 17 4 20 16 18 16 18
6 11 6 4 18 11 16 2 5 23 4 23 16 15 16 19
6 16 6 17 19 15 16 19 5 15 4 15 19 9 16 16
6 18 6 18 19 23 16 21 5 20 5 7 19 2 20 20
6 2 6 15 21 17 21 25 6 16 5 9 19 21 21 15
7 25 6 20 21 19 21 17 6 18 5 19 22 12 22 27
7 17 7 19 21 21 21 18 6 25 5 21 22 17 22 6
8 19 7 21 21 16 24 16 6 19 5 16 23 5 22 3
8 21 7 16 21 24 24 22 6 21 6 25 25 26 22 2
9 3 8 3 26 25 26 24 7 22 6 22 26 6 26 5
10 22 9 22 26 22 26 15 8 24 7 24 27 27 27 23

(*) ID of the competency, as specified in Table 4 and Appendix A.

Received January 2022; revised July 2022; accepted November 2022

Proc. ACM Hum.-Comput. Interact., Vol. 7, No. CSCW1, Article 38. Publication date: April 2023.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Modern Code Review
	2.2 Competencies
	2.3 Competency Modelling
	2.4 Skills and Competencies for Software Development

	3 Methodology
	3.1 Research Questions
	3.2 Competency Identification
	3.3 Using Self-report Methods to Investigate Competencies
	3.4 Survey
	3.5 Analysis

	4 Results
	4.1 Competencies for Code Review
	4.2 Proficiency Level and Improvement of Competencies
	4.3 Competencies and Experience

	5 Discussion
	5.1 Findings
	5.2 Implications
	5.3 Future Work
	5.4 Threats to validity

	6 Conclusion
	Acknowledgments
	References
	A List and Definitions of All Competencies for Code Review
	B List of all competencies for all developers sorted by ranks
	C Lists of competencies as ranked by novice and expert reviewers

