
GigaScience, 2022, 11, 1–23

DOI: 10.1093/gigascience/giac103

RESEARCH

Defining the characteristics of
interferon-alpha–stimulated human genes:
insight from expression data and machine learning

Haiting Chai, Quan Gu, David L. Robertson* and Joseph Hughes *

MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK
∗Correspondence address. David L. Robertson, MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden
Road, Glasgow, G61 1QH, Scotland, UK, E-mail: david.l.robertson@glasgow.ac.uk; Joseph Hughes, E-mail: joseph.hughes@glasgow.ac.uk

Abstract

Background: A virus-infected cell triggers a signalling cascade, resulting in the secretion of interferons (IFNs), which in turn induces
the upregulation of the IFN-stimulated genes (ISGs) that play a role in antipathogen host defence. Here, we conducted analyses on
large-scale data relating to evolutionary gene expression, sequence composition, and network properties to elucidate factors associ-
ated with the stimulation of human genes in response to IFN-α.

Results: We find that ISGs are less evolutionary conserved than genes that are not significantly stimulated in IFN experiments (non-
ISGs). ISGs show obvious depletion of GC content in the coding region. This influences the representation of some compositions
following the translation process. IFN-repressed human genes (IRGs), downregulated genes in IFN experiments, can have similar
properties to the ISGs. Additionally, we design a machine learning framework integrating the support vector machine and novel
feature selection algorithm that achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for ISG prediction.
Its application in other IFN systems suggests the similarity between the ISGs triggered by type I and III IFNs.

Conclusions: ISGs have some unique properties that make them different from the non-ISGs. The representation of some proper-
ties has a strong correlation with gene expression following IFN-α stimulation, which can be used as a predictive feature in ma-
chine learning. Our model predicts several genes as putative ISGs that so far have shown no significant differential expression when
stimulated with IFN-α in the cell/tissue types in the available databases. A web server implementing our method is accessible at
http://isgpre.cvr.gla.ac.uk/. The docker image at https://hub.docker.com/r/hchai01/isgpre can be downloaded to reproduce the pre-
diction.
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Introduction
Interferons (IFNs) are a family of cytokines defined for their capac-
ity to interfere with viral replication. They are secreted from host
cells after an infection by pathogens such as bacteria or viruses
to trigger the innate immune response with the aim of inhibit-
ing viral spread by “warning” uninfected cells [1]. The response
induced by IFNs is rapid and feedforward, to synthesize new IFNs,
which guarantees a full response even if the initial activation is
limited [2]. In humans, several IFNs have been discovered (e.g.,
IFN-α/β/ε/κ/ω/γ /λ [3–8]). IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω are
grouped into type I IFNs for signalling through the common IFN-
α receptor (IFNAR) complex present on target cells [3–6] (Fig. 1A).
IFN-α comprises 13 subtypes in humans while the remaining type
I IFNs are encoded by a specific gene [9]. IFN-λ targets IFN-λ recep-
tor 1 (IFNLR1)/interleukin-10 receptor 2 (IL-10R2) and was clas-
sified as type III IFN following its discovery in 2003 [8] (Fig. 1C).
Similar to type I IFNs, IFN-λ also exerts antiviral properties but
functions less intensely [10–12]. IFN-γ is classified as type II IFN
and manifests its biological effects by interacting with IFN-γ re-
ceptor (IFNGR) [7] (Fig. 1B). In contrast to type I and III IFNs, IFN-γ
is also antipathogen, immunomodulatory, and proinflammatory
but more focused on establishing cell immunity [3, 7, 11, 13].

All 3 types of IFNs are capable of activating the Janus ki-
nase/signal transducer and activator of transcription (JAK-STAT)
pathway and inducing the transcriptional upregulation of ap-
proximately 10% of human genes that prime cells for stronger
pathogen detections and defence [9, 14, 15]. These upregulated
human genes are referred to as IFN-stimulated genes (ISGs). They
play an important role in the establishment of the cellular an-
tiviral state, inhibition of viral infection, and return to cellular
homeostasis [3, 9, 14, 16]. For example, the ectopic expression of
heparinase (HPSE) can inhibit the attachment of multiple viruses
[17, 18], interferon-induced transmembrane proteins (IFITM) can
impair the entry of multiple viruses and traffic viral particles to
degradative lysosomes [19, 20], and MX dynamin-like GTPase pro-
teins (MX) can effectively block early steps of multiple viral repli-
cation cycles [21]. Abnormality in the IFN-signalling cascade, for
example, the absence of signal transducer and activator of tran-
scription 1 (STAT1), will lead to the failure of activating ISGs, mak-
ing the host cell highly susceptible to virus infections [22].

Most research on ISGs has focused on elucidating their role
in antiviral activities or discovering new ISGs within or across
species [3, 9, 14, 19, 23, 24]. The identification of ISGs can be
achieved via various approaches. Associating gene expression
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Figure 1: Illustration of signalling cascade triggered by different IFNs. (A) Type I IFN signals through IFNAR, Janus kinase 1 (JAK1), tyrosine kinase 2
(TYK2), STAT, and IFN regulatory factor 9 (IRF9) to form IFN stimulated gene factor 3 complex (ISGF3) and binds to IFN-stimulated response elements
(ISRE) to induce the expression of type I ISGs. (B) Type II IFN signals through IFNGR, JAK1, and JAK2 to form IFN-γ activation factor (GAF) and binds to
gamma-activated sequence promoter elements (GAS) to induce the expression of type II ISGs. (C) Type III IFN signals through IFNLR1, IL-10R2, JAK1,
TYK2, STAT, and IRF9 to form ISGF3 and then binds to ISRE to induce the expression of type III ISGs. Figure created using the BioRender
(https://biorender.com/).

with suppression of viral infection is a reasonable strategy to iden-
tify ISGs with obvious antiviral performance, exemplified by the
influenza inhibitor, MX dynamin like GTPase 1 (MX1), and the hu-
man immunodeficiency virus 1 inhibitor, MX dynamin-like GT-
Pase 2 (MX2) [21]. CRISPR screening is a loss-of-function experi-
mental approach to identify ISGs required for IFN-mediated in-
hibition to viruses. It enabled the discovery of tripartite motif
containing 5 (TRIM5), MX2, and bone marrow stromal cell anti-
gen 2 (BST2) [25]. Monitoring the ectopic expression of ISGs is an-
other instrumental way to identify ISGs that are individually suffi-
cient for viral suppression [26], for example, interferon-stimulated
exonuclease gene 20 (ISG20) and ISG15 ubiquitin-like modifier
(ISG15). Using RNA sequencing [27] and fold change–based crite-
ria to measure whether a target human gene is induced by IFN
signalling is routinely used [24, 28, 29]. In most cases, a gene is de-
fined as IFN stimulated (upregulated) when its expression value
is increased in the presence of IFNs (fold change >2) [3, 24, 30].

There are several online databases to support IFN- or ISG-
related research. For example, Interferome [24] provides an excel-
lent resource by compiling in vivo and in vitro gene expression pro-
files in the context of IFN stimulation [24]. The Orthologous Clus-
ters of Interferon-stimulated Genes [3, 24] demonstrates an evo-
lutionary comparative approach of genes differentially expressed
in the type I IFN system for 10 different species [3].

Experimental data in the Interferome database indicate that
a human gene may show differential responses to different IFNs
in different tissues or cells [24]. Despite some well-investigated
ISGs, the majority of classified ISGs have limited expression fol-
lowing IFN stimulation [3, 24]. This means that the difference be-
tween ISGs and those human genes not significantly upregulated
in the presence of IFNs (non-ISGs) may not be obvious especially
when being assessed more generally. It should also be noted that,
within non-ISGs, there are a group of genes downregulated during
IFN stimulations. We refer to them as interferon-repressed hu-

man genes (IRGs), and they constitute another major part of the
IFN regulation system [3, 31]. Collectively, the complex nature of
the IFN-stimulated system results in knowledge that is far from
comprehensive.

In this study, we try to associate the inherent properties of
human genes with their expression following IFN-α stimulation.
We show that it is feasible to make ISG predictions on human
genes with a model only compiled from the knowledge of IFN-
α responses in the human fibroblast cells. To achieve this, we
first constructed a refined high-confidence dataset consisting of
620 ISGs and 874 non-ISGs by checking the genes across multiple
databases, including OCISG [3], Interferome [24], and Reference
Sequence (RefSeq) [32]. The analyses were conducted primarily
on our refined data using genome- and proteome-based features
that were likely to influence the expression of human genes in
the presence of IFN-α (Fig. 2). Based on the calculated features,
we designed a machine learning framework with an optimised
feature selection strategy for the prediction of putative ISGs in
different IFN systems. Finally, we also developed an online web
server and Docker application to implement our machine learning
method.

Results
Evolutionary characteristics of ISGs
In this study, we constructed dataset S2 from 10,836 well-
annotated human genes (dataset S1). It consists of 620 ISGs and
874 non-ISGs with high confidence based on their records in both
the OCISG [3] and Interferome [24]. Dataset S1 was used as the
background set. Human genes in this set were evolutionarily un-
related to each other as they were retrieved from the OCISG [3].
Detailed information about our compiled datasets is provided in
Table 5 and Supplementary Data S1.
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Figure 2: Diagrammatic representation of the project pipeline. Human genes used in analyses and machine learning modelling are classified based on
their clinical representations following IFN-α treatment in human fibroblast cells. ISGs (pink block) and non-ISGs (green block) in other IFN systems
are only used for testing. The figure is created using images from Wikimedia Commons, https://commons.wikimedia.org.

Here, we explored features relating to alternative splicing [33],
duplication [34], and mutation [35]. We found that more highly up-
regulated human genes tended to have fewer open reading frames
(ORFs) (Pearson’s correlation coefficient [PCC] = −0.287, Fig. 3A),
transcripts (PCC = −0.407, Fig. 3B), and protein-coding exons (PCC
= −0.441, Fig. 3C). These results illustrate that alternative splicing
may be linked to IFN-α upregulation. Particularly, the data points
of IRGs are generally placed below those of non-ISGs, suggesting
these 3 features (number of ORFs, number of transcripts, and the
usage of protein-coding exons) are all differentially represented
in some IRGs compared to the remaining non-ISGs. This distribu-
tion also indicates that some IRGs have similar feature properties
to ISGs, especially to those highly upregulated in the presence of
IFN-α (right part of the scatterplots in Fig. 3A–C).

To determine whether ISGs tend to originate from duplication
events, we first counted the number of human paralogues of each
gene (Fig. 4A). We found that there were around 22% of singletons
in our main dataset, whilst ISGs had 15% and non-ISGs had 26%.
The result of a Mann–Whitney U test [36] indicated that the num-
ber of human paralogues was significantly underrepresented in
the ISGs compared to the background human genes (M1 = 10.5, M2

= 11.5, P = 8.8E-03). Next, we used the number of nonsynonymous
substitutions (dN) and synonymous substitutions (dS) within hu-
man paralogues to measure the type and strength of selection
pressure acting on human genes [37]. As shown in Fig. 4B, non-
synonymous substitutions are more frequently observed in the
ISGs than in the background human genes (M1 = 0.62, M2 = 0.55,
P = 4.0E-03). On the other hand, the ISGs tend to have a higher
frequency of synonymous substitutions than the background hu-
man genes (M1 = 37.7, M2 = 34.6, P = 1.1E-02) (Fig. 4C), but the
difference is not as obvious as for nonsynonymous substitutions.
In Fig. 4D, the distribution of dN/dS ratios for human paralogues
indicates that most human genes, including ISGs and non-ISGs,
are constrained by natural selection, but the ISGs, in general, tend
to be moderately less constrained (M1 = 0.036, M2 = 0.045, P =

8.3E-03). When eliminating the influence of duplication events,
the ISGs still receive less selection pressure than the non-ISGs,
but the difference in the dN/dS ratio is not significant (M1 = 0.053,
M2 = 0.031, P > 0.05).

Differences in the coding region of the canonical
transcripts
Compared to general profile features (e.g., number of ORFs),
the sequences themselves provide more direct mapping to the
protein function and structure [38]. Here, we encoded 344 dis-
crete features and 7,026 categorical features from complemen-
tary DNA (cDNA) of the canonical transcript to explore features
specific to ISGs. We divided the discrete features into 4 cate-
gories (nucleotide composition/dinucleotide composition/codon
usage/nucleotide 4-mer composition) and compared their rep-
resentations among 3 different groups of human genes, includ-
ing recompiled ISGs from dataset S2, recompiled non-ISGs from
dataset S2, and the background human genes from dataset S1
(Fig. 5).

First, guanine and cytosine were both more depleted in ISGs
than non-ISGs, leading to an underrepresentation of GC content
in the ISGs (Mann–Whitney U test: M1 = 52%, M2 = 55%, P = 2.3E-
11). This attribute is the opposite to the GC-biased gene conver-
sion (gBGC) process and would result in ISGs being less stable with
weak evolutionary conservation (Fig. 4) [39]. Additionally, the un-
derrepresentation of GC content also influenced the representa-
tion of other dinucleotide features. Among all dinucleotide deple-
tions in ISGs, CpG depletion was ranked first followed by GpG and
GpC depletions (P = 2.9E-14, 4.9E-13, and 1.2E-10, respectively).
In turn, adenine- and thymine-related dinucleotide composition,
exemplified by ApT and TpA, were more enriched in ISGs than
non-ISGs (P = 8.0E-10 and 8.5E-10, respectively).

We compared the usage of 64 different codons in the third
category as their frequencies influence transcription efficiency
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Figure 3: The average representation of alternative splicing features associated with IFN-α stimulations in experiments. (A) The numbers of ORFs and
(B) transcripts are used as measurements of the diversity of the alternative splicing process. (C) The count of exons used for coding is used as a
measurement of the complexity of alternative splicing process. These 3 plots are drawn based on the expression data of 8,619 human genes with valid
fold change in the IFN-α experiments (Supplementary Data S1). The 0.1-length sliding window is adopted to divide the data into 126 bins with
different log2(fold change). Vertical dashed lines x = −0.871 and x = 0.686 are used to divide the plot into 3 regions. Data points in the left and right
regions are produced by IRGs and ISGs, respectively. Data points in the middle region come from ISGs or non-ISGs (including IRGs). A total of 2,217
human genes are not shown in these figures as they had insufficient read coverage to determine a fold change in the experiments (Table 5). Points in
the scatterplot are located based on the average feature representation of genes with similar expression performance in experiments.

Figure 4: Differences in the evolutionary constraints of human genes. (A) Paralogues within Homo sapiens. (B) Nonsynonymous substitutions within
human paralogues. (C) Synonymous substitutions within human paralogues. (D) dN/dS ratios within human paralogues. Here, the ISGs and non-ISGs
are taken from dataset S2 while the background human genes are from dataset S1 (Table 5). Mann–Whitney U tests are applied for the hypothesis
testing between the feature distribution of different classes. Boxes in the plot represent the major distribution of values (from the first to the third
quartiles); outliers are added for values higher than 2-fold of the third quartile; cross symbol marks the position of the average value, including the
outliers; upper and lower whiskers show the maximum and minimum values excluding the outliers.

[40]. Differences between the ISGs and background human genes
were observed in codons for 11 amino acids, including leucine (L),
isoleucine (I), valine (V), serine (S), threonine (T), alanine (A), glu-
tamine (Q), lysine (K), glutamic acid (E), arginine (R), and glycine
(G). The most significant difference was observed in the usage
of codon “AGA.” Among all arginine-targeted alternative codons,
codon “AGA” was usually favoured, and its presence reached an
estimated 25% in the ISGs but reduced to 22% in the background
human genes (P = 1.4E-05). It was significantly lower in the non-
ISGs, at 18% (P = 1.9E-13). On the other hand, compared to the
background human genes, the codon “CAG” coding for amino
acid “Q” was the most underrepresented in the ISGs. It was less
favoured by the ISGs than non-ISGs (M1 = 72%, M2 = 78%, P =
7.3E-13), although it dominated in coding patterns. As for the 3

stop codons, compared with the background human genes, the
usage of the TAA stop codon was overrepresented in the ISGs (M1

= 28%, M2 = 33%, P = 9.7E-03). In this category of codon usage, the
features with different frequencies between the ISGs and back-
ground human genes became more discriminating when compar-
ing the ISGs with non-ISGs. Significant differences in codon us-
ages between the ISGs and non-ISGs were widely observed except
for methionine (M) and tryptophan (W). Hence, despite the limited
differences of codon usages between the ISGs and background hu-
man genes, these features were useful for discriminating the ISGs
from non-ISGs.

In the last category, we calculated the occurrence frequency
of 256 nucleotide 4-mers to add some positional resolution for
finding and comparing interesting organisational structures [41].
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Dinucleotide composition features (16)

Codon usage features (64)
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Figure 5: Differences in the representation of discrete features encoded from coding regions (canonical). Mann–Whitney U tests are applied for
hypothesis testing on the whole comparing data without sampling, and the results are provided in Supplementary Data S2. Here, the ISGs and
non-ISGs are taken from dataset S2 (No. = 620 and 874) while the background human genes are from dataset S1 (No. = 10,836) (Table 5).

Among the 256 4-mers, 46 of them were differentially represented
between the ISGs and background human genes (Supplementary
Data S2). Most of these 4-mers were overrepresented by the ISGs
except 2 with the pattern “TAAA” and “CGCG.” Interestingly, the
feature of “TAAA” composition became a positive factor when
comparing ISGs and non-ISGs (M1 = 4.1%, M2 = 3.7%, P = 4.1E-
06), suggesting it might be a suitable feature to discern poten-
tial or incorrectly labelled ISGs. We found that 6 nucleotide 4-
mers (“ACCC,” “AGTC,” “AGTG,” “TGCT,” “GACC,” and “GTGC”) were
overrepresented in the ISGs when compared to the background
human genes. However, they were not differentially represented
when comparing the ISGs with non-ISGs. These 6 features might
be inherently biased for some reason and were not powerful
enough to contribute to distinguishing the ISGs from non-ISGs. In
addition to the aforementioned 40 features (except 4-mer “ACCC,”
“AGTC,” “AGTG,” “TGCT,” “GACC,” and “GTGC”) that were differen-
tially represented in ISGs compared to background human genes,
we found a further 39 features that nucleotide 4-mers differen-
tially represented between ISGs and non-ISGs (Supplementary
Data S2).

To check the effect of these aforementioned 343 features on the
level of stimulation in the IFN-α system (log2(fold change) >0), we
calculated the PCC for the normalised features (Eq. 2) and found
106 features were positively related to the increase of fold change,
and 34 features were suppressed when human genes were more
upregulated after IFN-α treatments (Student t-test: P < 0.05) (Sup-
plementary Data S3). ApA composition showed the most obvious
positive correlation with stimulation level (PCC = 0.464, P = 8.8E-
06), while a negative association between the representation of
4-mer “CGCG” and IFN-α–induced upregulation was the most sig-
nificant (PCC = −0.593, P = 3.2E-09). Human genes with higher up-
regulation in the presence of IFN-α contained more codons “CAA,”

rather than “CAG” for coding amino acid “Q.” The depletion of GC
content, especially cytosine content, promotes the suppression of
many nucleotide compositions in the cDNA (e.g., CpG composi-
tion).

To find conserved sequence patterns relating to gene regula-
tion [42], we checked the existence of 2,940, 44,100, and 661,500
short linear nucleotide patterns (SLNPs) consisting of 3 to 5 con-
secutive nucleobases in the group of the ISGs and non-ISGs. By
using a positive 5% difference in the occurrence frequency as the
cutoff threshold, we found 7,884 SLNPs with a maximum differ-
ence in representation of around 15%. After using Pearson’s chi-
squared tests and Benjamini–Hochberg correction to avoid type
I error in multiple hypotheses [43], 7,025 SLNPs remained with
an adjusted P-value lower than 0.01 (Supplementary Data S4),
hereon referred to as “flagged” SLNPs. The differentially repre-
sented 7,025 SLNPs were ranked according to the adjusted P-value.
As shown in Fig. 6A, dinucleotide “TpA” dominates in the top 10,
top 100, top 1,000, and all differentially represented SLNPs even if
TpA representation is suppressed in the cDNA of genes’ canonical
transcripts compared to other dinucleotides. Dinucleotide “ApT”
and “ApA” are also frequently observed in the flagged SLNPs, but
their occurrences do not show significant differences in the top
100 SLNPs (Pearson’s chi-squared test: P > 0.05). GC-related din-
ucleotides (e.g., “CpC,” “GpC,” and “GpG”) are rarely observed in
the flagged SLNPs, especially in the top 10 or top 100. In view of
this, we hypothesize that the differential representation of nu-
cleotide compositions influences and reflects on the pattern of
SLNPs in the ISGs. By checking the co-occurrence status of the
flagged SLNPs, we found that these sequence patterns had a cu-
mulative effect in distinguishing the ISGs from non-ISGs, espe-
cially when the number of co-occurring SLNPs reached around
5,320 (Pearson’s chi-squared test: P = 7.9E-13, Fig. 6B). There were
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Figure 6: Short linear nucleotide patterns (SLNPs) in the coding regions (canonical). (A) Influence of dinucleotide composition on the flagged SLNPs. (B)
The co-occurrence status of SLNPs in different human genes. Ranks in (A) are generated based on the adjusted P-value given by Pearson’s chi-squared
tests after the Benjamini–Hochberg correction procedure. Detailed results of the hypothesis tests are provided in Supplementary Data S4. Here, the
ISGs and non-ISGs are taken from dataset S2 while the background human genes are from dataset S1 (Table 5).

8 (∼1.3%) ISGs in dataset S2 containing all the flagged 7,025 SLNPs.
Their upregulations after IFN-α treatment were generally low with
a fold change fluctuating around 2.2. However, some of these 8
genes, such as desmoplakin (DSP), were clearly highly upregulated
in endothelial cells isolated from human umbilical cord veins af-
ter not only IFN-α treatments (fold change = 11.1) but also IFN-β
treatments (fold change = 13.7). We also found some non-ISGs
(e.g., hemicentin 1 [HMCN1]) and human genes with limited ex-
pression in the IFN-α experiments (ELGs) (e.g., tudor domain con-
taining 6 [TDRD6]) containing the flagged SLNPs, but their fre-
quencies were lower than that in the ISGs.

Differences in the protein amino acid sequence
We used the amino acid sequences generated by the canonical
transcript to extract features at the proteomic level. In addition
to the basic composition of 20 standard amino acids, we consid-
ered 17 additional features related to physicochemical (e.g., hy-
dropathy and polarity) or geometric properties (e.g., volume) [44,
45]. We found several amino acids that were either enriched or
depleted in the ISG products compared to the background hu-
man proteins, which were produced by genes in dataset S1 (Fig. 7).
The differences were even more marked between protein prod-
ucts of the ISGs and non-ISGs, highlighting some differences that
were not observed when comparing the ISG products to the back-
ground human proteins (e.g., isoleucine composition). The differ-
ences observed in the amino acid composition were at least in
part associated with the patterns previously observed in features
encoded from genetic coding regions. For example, asparagine (N)
showed significant overrepresentation in the ISG products com-
pared to the non-ISG products or background human proteins
(Mann–Whitney U test: P = 2.8E-12 and 1.2E-03, respectively). This
was expected as there are only 2 codons (i.e., “AAT” and “AAC” cod-
ing for amino acid “N”), and dinucleotide “ApA” showed a remark-
able enrichment in the coding region of ISGs. A similar explana-
tion could be given for the relationship between the deficiency of
GpG content and amino acid “G.” The translation of amino acid
“K” was also influenced by ApA composition but was not signifi-
cant due to the mild representation of dinucleotide “ApG” in the
genetic coding region. Additionally, as previously mentioned, the
ISGs showed a significant depletion in the CpG content, and con-

sequently, the amino acids “A” and “R” in the ISG products were
significantly underrepresented. Cysteine (C) was not frequently
observed in human proteins but still showed a relatively signif-
icant enrichment in the ISG products (M1 = 2.3%, M2 = 2.5%, P =
1.8E-03).

When focusing on the composition of amino acid sequences
grouped by physicochemical or geometric properties, we found
some features differentially represented between the ISG prod-
ucts and background human proteins. The result showed that
hydroxyl (amino acids “S” and “T”), amide (amino acids “N” and
“Q”), or sulphur amino acids (amino acids “C” and “M”) were more
abundant in the ISG products compared to the background hu-
man proteins (Mann–Whitney U test: P = 0.04, 1.0E-03, and 0.02,
respectively). Small amino acids (amino acids “N,” “C,” and “T”; as-
partic acid [D]; and proline [P]; the volume ranging from 108.5 to
116.1 cubic angstroms) were more frequently observed in the ISG
products than in background human proteins (M1 = 22.1%, M2 =
21.7%, P = 0.02). These differences became more marked when
comparing the representation of these features between the ISG
and non-ISG products. For example, features relating to chemical
properties of the side chain (e.g., aliphatic), charge status, and geo-
metric volume showed differences between proteins produced by
the ISGs and non-ISGs. Some features such as neutral amino acids
that include amino acids “G,” “P,” “S,” and “T”; histidine (H); and
tyrosine (Y) were not differentially represented between the ISG
and non-ISG products, but they indicated an obvious association
with the change of IFN-α–triggered stimulations (PCC = −0.556, P
= 4.1E-08) (Supplementary Data S3).

Next, we searched the sequence of the ISG products against
that of the non-ISG products to find conserved short linear amino
acid patterns (SLAAPs), which might be constrained by strong pu-
rifying selection [47]. As opposed to the analysis of the genetic
sequence, we obtained only 19 enriched sequence patterns with
a Pearson’s chi-squared P-value ranging from 1.5E-04 to 0.02 (Ta-
ble 1), hereon referred to as flagged SLAAPs. They were greatly in-
fluenced by 4 polar amino acids, “K,” “N,” “E,” and “S,” and 1 non-
polar amino acid: “L.” Some of these flagged SLAAPs (e.g., SLAAP
“NVT” and “S-N-E”) were clearly overrepresented in the ISG prod-
ucts compared to the background human proteins and could be
used as features to differentiate the ISGs from background hu-
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Figure 7: Differences in the representation of discrete features encoded from protein sequences. Mann–Whitney U tests are applied for hypothesis
testing on the whole data without sampling and the results are provided in Supplementary Data S2. Here, the ISGs and non-ISGs are taken from
dataset S2 (No. = 620 and 874) while the background human genes are from dataset S1 (No. = 10,836) (Table 5). Aliphatic group: amino acids “A,” “G,” “I,”
“L,” “P,” and “V”; aromatic/huge group: amino acids “F,” “W,” and “Y” (volume >180 cubic angstroms); sulphur group: amino acids “C” and “M”; hydroxyl
group: amino acids “S” and “T”; acidic/negative_charged group: amino acids “D” and “E”; amide group: amino acids “N” and “Q”; positive_charged group:
amino acids “R,” “H,” and “K”; hydrophobic group: amino acids “A,” “C,” “I,” “L,” “M,” “F,” “V,” and “W” that participate in the hydrophobic core of the
structural domains [46]; neutral group: amino acids “G,” “H,” “P,” “S,” “T,” and “Y”; hydrophilic group: amino acids “R,” “N,” “D,” “Q,” “E,” and “K”; tiny
group: amino acids “G,” “A,” and “S” (volume <90 cubic angstroms); small group: amino acids “N,” “D,” “C,” “P,” and “T” (volume ranged from 109 to 116
cubic angstroms); medium group: amino acids “Q,” “E,” “H,” and “V” (volume ranged within 138 to 153 cubic angstroms); large group: amino acids “R,”
“I,” “L,” “K,” and “M” (volume ranged within 163 to 173 cubic angstroms); uncharged group: the remaining 15 amino acids except electrically charged
ones; polar group: amino acids “R,” “H,” “K,” “D,” “E,” “N,” “Q,” “S,” “T,” and “Y”; nonpolar group: the remaining 10 amino acids except polar ones.

man genes. The third column in Table 1 indicates a number of
patterns that are lacking in the non-ISG products and hence may
be the reason for the lack of upregulation in the presence of IFN-α.
Particularly, we noticed that SLAAP “KEN” was a destruction mo-
tif that could be recognised or targeted by anaphase promoting
complex (APC) for polyubiquitination and proteasome-mediated
degradation [48, 49]. Results shown in Fig. 8A illustrate that the
co-occurrence of differentially represented SLAAPs (flagged) has
a cumulative effect in distinguishing the ISGs from non-ISGs.
This cumulative effect can even be achieved with only 2 random
SLAAPs (Pearson’s chi-squared test: P = 4.6E-10). The bias in the
co-occurring SLAAPs (flagged) in the background human proteins
towards a pattern similar to the non-ISG products further proves

the importance of these 19 SLAAPs. However, their co-occurrence
is not associated with the level of IFN-triggered stimulations (PCC
= 0.015, P > 0.05) (Fig. 8B).

Regions that lacked stable structures under normal physiolog-
ical conditions within proteins are termed intrinsically disordered
regions (IDRs). They play an important role in cell signalling [50].
Compared with ordered regions, IDRs are usually more accessi-
ble and have multiple binding motifs, which can potentially bind
to multiple partners [51]. According to the results calculated by
IUPred [52], we identified 6,721, 10,510, and 119,071 IDRs (IUpred
score no less than 0.5) in proteins produced by the ISGs, non-
ISGs, and background human genes, respectively. We hypothesize
that enriched SLAAPs widely detected in the IDRs may be impor-
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Table 1: Representation of SLAAPs in protein sequences and their IDRs

SLAAPa

Frequency in
ISG/non-ISG

productsb

Bias based on the
frequency in human

proteins P- valuec

Conditional frequency
in the IDRs of
ISG/non-ISG

products/background
human proteinsc,d P- valuee

SxNxE 15.2%/8.8% +47.6%/−14.2% 1.5E-04 39.4%/40.3%/33.4% 0.90
ENE 15.0%/8.8% +20.9%/−29.0% 2.1E-04 37.6%/42.9%/40.9% 0.49
SxNxT 11.5%/6.2% +21.9%/−34.2% 2.9E-04 40.8%/25.9%/27.3% 0.08
SVI 15.2%/9.2% +37.6%/−16.9% 3.6E-04 18.1%/11.3%/15.2% 0.21
LxNL 23.7%/16.4% +13.2%/−21.9% 4.0E-04 10.2%/11.9%/9.4% 0.65
LxKL 30.8%/22.8% +18.0%/−12.8% 4.9E-04 12.6%/10.1%/8.7% 0.43
NVT 13.7%/8.5% +52.1%/−6.1% 1.2E-03 18.8%/21.6%/15.4% 0.66
ISS 20.5%/14.3% +20.7%/−15.7% 1.7E-03 29.9%/25.6%/23.8% 0.44
LKxK 24.4%/17.7% +24.5%/−9.3% 1.8E-03 14.6%/20.6%/20.0% 0.16
IKxE 14.2%/9.0% +34.2%/−14.5% 1.8E-03 26.1%/16.5%/25.8% 0.13
EKxI 15.8%/10.4% +31.0%/−13.7% 2.0E-03 15.3%/20.9%/16.0% 0.32
KxExS 16.9%/11.4% +21.9%/−17.7% 2.4E-03 36.2%/36.0%/39.2% 0.98
LNS 17.7%/12.1% +21.2%/−17.1% 2.4E-03 20.0%/25.5%/20.5% 0.34
KEN 16.0%/10.6% +33.5%/−11.0% 2.4E-03 27.3%/41.9%/34.8% 0.03
LxNxL 22.6%/17.5% +14.3%/−11.4% 1.5E-02 10.7%/11.8%/9.5% 0.78
KxExL 25.8%/20.5% +25.7%/−0.3% 1.5E-02 18.8%/17.9%/18.7% 0.84
KLL 27.1%/21.9% +9.9%/−11.4% 1.9E-02 11.3%/8.4%/9.9% 0.35
LKE 29.8%/24.5% +18.2%/−3.0% 2.1E-02 19.5%/24.8%/20.1% 0.20
LKxL 33.2%/27.7% +15.0%/−4.2% 2.1E-02 7.8%/12.4%/10.0% 0.11

a“x” in SLAAPs indicates 1 position occupied by a standard amino acid.
bHere, the ISGs and non-ISGs are taken from dataset S2 while the background human genes use samples from dataset S1 (Table 5).
cP-values in this column use Pearson’s chi-squared tests to measure the difference of SLAAP occurrences in the ISG and non-ISG products.
dFrequencies in this column are calculated based on a condition that corresponding SLAAPs are observed in the protein sequence.
eP-values in this column use Pearson’s chi-squared tests to measure the difference of SLAAP occurrences in the IDRs of the ISG and non-ISG products.
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Figure 8: Representation of co-occurring short linear amino acid patterns (SLAAPs, flagged), in our main dataset. (A) The co-occurrence status of
SLAAPs in different classes. (B) Relationship between co-occurrence of the marked SLAAPs and log2(fold change) after IFN-α treatments. Here, the ISGs
and non-ISGs are taken from dataset S2 while the background human genes are from dataset S1 (Table 5). Points in (B) are located based on the
average feature representation of genes with similar expression performance in IFN-α experiments.

tant for human protein–protein interactions or potentially virus
mimicry [53]. For instance, in the ISG products, about 40.8% of
SLAAP “SxNxT” were observed in the IDRs, 14.9% higher than that
in non-ISG products (Table 1). This difference reflected the im-
portance of SLAAP “SxNxT” for target specificity of IFN-α–induced
protein–protein interactions (PPIs) [9], even if it was not statisti-
cally significant. By contrast, the conditional frequency of SLAAP

“SxNxE” in the IDRs of the ISG and non-ISG products was almost
the same, indicating that SLAAP “SxNxE” might have an asso-
ciation with some inherent attributes of the ISGs but was less
likely to be involved in the IFN-α–induced PPIs. SLAAP “KEN” in
the IDRs also showed some interesting differences: in the non-ISG
products, 41.9% of SLAAP “KEN” were observed in the IDRs, 14.6%
higher than that in the ISG products, which provided an effec-
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tive approach to distinguish the ISGs from non-ISGs. When SLAAP
“KEN” is discovered in the ordered globular region of a protein se-
quence, statistically, the protein is more likely to be produced by
an ISG, but this assumption is reversed if the SLAAP is located
in an IDR (Pearson’s chi-squared tests: P = 0.03). Despite the rela-
tively low conditional frequency of SLAAP “KEN” in the IDRs of the
ISG products, these SLAAPs in the IDR are more likely to be func-
tionally active than those falling within ordered globular regions
[54].

Differences in network profiles
We constructed a network with 332,698 experimentally veri-
fied interactions among 17,603 human proteins (confidence score
>0.63) from the Human Integrated Protein–Protein Interaction
rEference (HIPPIE) database [55] to investigate if the connectivity
among human proteins has an association with genes’ expression
in the IFN-α experiments. In total, 10,169 out of 10,836 human
proteins produced by genes in our background dataset S1 were
included in the network. Based on this network, we calculated 8
features as defined in the methods, including the average shortest
path, closeness, betweenness, stress, degree, neighbourhood con-
nectivity, clustering coefficient, and topological coefficient.

As illustrated in Fig. 9B and G, ISG products tend to have higher
values of betweenness and stress than background human pro-
teins (Mann–Whitney U test: P = 0.01 and 0.03, respectively),
which means they are more likely to locate at key paths con-
necting different nodes of the PPI network. Some ISG products
with high values of betweenness and stress (e.g., tripartite motif
containing 25 [TRIM25]) can be considered the shortcut or bot-
tleneck of the network and play important roles in many PPIs,
including those related to the IFN-α–triggered immune activities
[56, 57]. However, such differential representation of betweenness
does not mean ISG products are more likely to be or even be close
to bottlenecks of the network compared to the background hu-
man proteins. Some examples shown in Table 2 indicate that ISG
products are less connected by top-ranked bottlenecks and hubs
of the network than non-ISG products or the background human
proteins. This conclusion is not influenced by the hub/bottleneck
protein’s performance in the IFN-α experiments. Comparing pro-
teins produced by the ISGs and non-ISGs, we found the former
tends to have lower values of clustering coefficient and neighbour-
hood connectivity (Mann–Whitney U test: P = 0.04 and 7.9E-03,
Fig. 9D and F). This discovery indicates that the ISG products and
some of their interacting proteins are less likely to be targeted by
lots of proteins. It also supports the finding that the ISG products
are involved in many shortest paths for nodes but are away from
hubs or bottlenecks in the network. To some extent, this location
also increases the length of the average shortest paths through
ISG products in the network (Fig. 9A).

When investigating the association between IFN-α–induced
gene stimulation and network attributes of gene products, we only
found the feature of neighbourhood connectivity was underrep-
resented as the level of differential expression in the presence of
IFN increases (PCC = −0.392, P = 2.2E-04). This suggests that pro-
teins produced by genes that are highly upregulated in response
to IFN-α are further away from hubs in the PPI networks.

Features highly associated with the level of IFN
stimulations
In this study, we encoded a total of 397 discrete and 7,046 cat-
egorical features covering the aspects of evolutionary conserva-
tion, nucleotide composition, transcription, amino acid composi-

tion, and network profiles. In order to find out some key factors
that may enhance or suppress the stimulation of human genes in
the IFN-α system, we compared the representation of discrete fea-
tures of human genes with different but positive log2(fold change).
Two features on the co-occurrence of SLNPs and SLAAPs were not
taken into consideration here as they were more subjective than
the other discrete features and were greatly influenced by the
number of sequence patterns. Upon the calculation of PCC and
the result of hypothesis tests, we found 168 features highly as-
sociated with the level of IFN-α–triggered stimulations (Student
t-tests: P < 0.05) (Supplementary Data S3). Among them, 118 fea-
tures showed a positive correlation (Fig. 10) while the remaining
50 features showed a negative correlation (Fig. 11) with the change
of upregulation in IFN-α experiments. Among these 168 features,
the number of ORFs, alternative splicing results, and counts of
exons used for coding were encoded from characteristics of the
gene. Average dN/dS and average dS within human paralogues
were encoded based on the sequence alignment results from En-
sembl [58]. In total, 140 and 22 features were encoded from the
genetic sequence and proteomic sequence, respectively. The last
one, neighbourhood connectivity, was obtained from the network
profile of a human interactome constructed based on experimen-
tally verified data in the HIPPIE database [55].

In the positive group, “large” amino acid composition that in-
cludes the composition of 5 amino acids with geometric volume
ranging from 163 to 173 cubic angstroms was ranked first for hav-
ing the highest PCC at 0.593 (Student t-test: P = 2.8E-09). This fea-
ture was not highlighted previously as it did not have a strong
signal for discriminating the ISGs from non-ISGs (Mann–Whitney
U test: P > 0.05). Similar phenomena were found on 87 features
(64 positive correlations and 23 negative correlations) such as AG
content, ApG content, and previously mentioned neutral amino
acid composition. The strongest negative correlation between fea-
ture representation and IFN-α–triggered stimulations was found
on the feature of 4-mer “CGCG” (PCC = −0.593, P = 3.2E-09). This
feature also showed a differential distribution between the ISGs
and non-ISGs, providing useful information to distinguish the ISGs
from non-ISGs. Similar phenomena were found on 81 features (54
positive correlations and 27 negative correlations) such as previ-
ously mentioned GC content, CpG content, and the usage of codon
“GCG” coding for amino acid “A.”

Collectively, the biased effect on the basic composition of nu-
cleotide sequences influences the correlation between the repre-
sentation of sequence-based features and IFN-α–triggered stimu-
lations. Human genes that show overrepresentation in more fea-
tures listed in Fig. 10 are expected to be more upregulated after
IFN-α treatments at least in the human fibroblast cells. Mean-
while, the underrepresentation of features listed in Fig. 11 also
contributes to the level of upregulation in the IFN-α experiments.

Difference in feature representation of
interferon-repressed genes and genes with low
levels of expression
We grouped human genes into 2 classes based on their response
to IFN-α in the human fibroblast cells. Genes significantly upreg-
ulated in IFN-α experiments were included in the ISG class, while
those that did not were put into the non-ISG class. However, there
is also another group of human genes downregulated in the pres-
ence of IFN-α (i.e., the IRGs). They were labelled as the non-ISGs
but contain unique patterns that constitute an important aspect
of the IFN response [3]. Some of these IRGs were not upregulated
in any known type I IFN systems, and thus they have been placed
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Figure 9: Differences in network properties. The included features are (A) average shortest path, (B) betweenness, (C) closeness, (D) clustering
coefficient, (E) degree, (F) neighbourhood connectivity, (G) stress, and (H) topological coefficient. Mann–Whitney U tests are applied for hypothesis
testing on the whole comparing data without sampling, and the results are provided in Supplementary Data S2. Here, the ISGs and non-ISGs are taken
from dataset S2 (No. = 620 and 874) while the background human genes use samples from dataset S1 (No. = 10,836) (Table 5).

Table 2: Interaction profiles of human proteins connecting top hubs/bottlenecks of the HIPPIE network

Human protein TRIM25 ELAVL1 ESR2 NTRK1

Gene class ISG IRG Not included in S1a

Degree (hub rank) 2295 (2nd) 1787 (4th) 2500 (1st) 1976 (3rd)
Betweenness (bottleneck rank) 0.067 (1st) 0.048 (4th) 0.051 (3rd) 0.026 (5th)
Difference in interacting partners Depleted P > 0.05 Depleted Depleted
(ISG products versus non-ISG
products)b

P = 0.01 P = 1.1E-4 P = 5.5E-3

Difference in interacting partners P > 0.05 P > 0.05 Depleted Depleted
(ISG products versus the
background human proteins)b

P = 8.1E-3 P = 0.03

aESR2 and NTRK1 were not included in dataset S1 as their expression data were not compiled in OCISG.
bDifferences here are measured via Pearson’s chi-squared tests on human proteins interacting with the corresponding hub/bottleneck protein.

in a refined non-ISG class for analyses and predictions. Addition-
ally, a number of genes have insufficient levels of expression in the
experiments to determine a fold change (i.e., ELGs). Here, we used
the previously defined features to compare the ISGs from dataset
S2 with the IRGs and ELGs divided from the background dataset
S1 (Table 5).

As shown in Fig. 12, the IRGs are differentially represented to a
lower extent in the majority of nucleotide 4-mer composition fea-
tures than the ISGs, indicating the deficiency of some nucleotide
sequence patterns in the coding region of IRGs. Note that many
nucleotide 4-mer composition features are more suppressed in
the ISGs than non-ISGs, although the differences are small. The bi-
ased representation of these features in the IRGs suggests that the
IRGs have characteristics similar to the ISGs rather than non-ISGs.
Additionally, there are a very limited number of features relating
to evolutionary conservation, nucleotide sequence composition,
or codon usage showing obvious differences between the ISGs and
IRGs, but many of them are differentially represented when com-
paring the ISGs with non-ISGs. Therefore, involving the IRGs in the

class of the non-ISGs will increase the risk for machine learning
models to produce more false positives. However, there are some
informative features differentiating the IRGs from ISGs. For ex-
ample, compared to the ISGs, the IRGs are more enriched in CpGs
(Mann–Whitney U test: P = 5.6E-03), which is also mentioned in
[59]. The IRGs tend to have higher closeness centrality and neigh-
bourhood connectivity than the ISGs (Mann–Whitney U test: P =
0.04 and 6.4E-06, respectively), suggesting that the IRGs are more
central in the human PPI network and connected to key proteins
with many interaction partners. Differences in some amino acid
composition features between the ISGs and IRGs can also be ob-
served in Fig. 12. Therefore, accurate predictability is still expected
when using features extracted from protein sequences.

Figure 12 illustrates 161 features showing significant differ-
ences (Mann–Whitney U tests: P < 0.05) in the representation
of the ISGs and ELGs. An estimated 82% of these features were
also differentially represented between the ISGs and non-ISGs.
Seventy-nine percent of these significant features displayed sim-
ilar overrepresentation or underrepresentation in 2 comparisons:
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Figure 10: A total of 118 features positively associated with higher upregulation after IFN-α treatments. Features here are screened based on Pearson’s
correlation coefficient (PCC) and results of Student t-tests (P < 0.05). Features with a higher PCC indicate a stronger positive correlation. Detailed
results about PCC and hypothesis tests are provided in Supplementary Data S3.

ISGs versus ELGs and ISGs versus non-ISGs. These ratios indicate
that the majority of the ELGs are less likely to be ISGs based on
their feature profile as well as their low expression levels in cells
induced with IFN-α. Network analyses showed that the ELG prod-
ucts tended to have lower values of all calculated network fea-
tures than ISG products, with the exception of topological coef-
ficient. This means that the ELG products are less connected to
other human proteins in the human PPI network. Particularly,
their abnormal representation on the feature of average short-
est paths indicates that some ELGs (e.g., vascular cell adhesion
molecule 1 [VCAM1] and ubiquitin D [UBD]) may still have high
connectivity in the human PPI network.

Implementation with machine learning
framework
In this study, we encoded 397 discrete and 7,046 categorical fea-
tures for the analyses. As excess of features will greatly increase
the dimension of feature spaces and complicate the classification
task for the classifier, we limited the number of SLNPs to the top
100 based on the adjusted P-value, and we expected these to be
sufficient to provide a picture of short linear sequence patterns in
the coding region of the canonical transcript. Accordingly, features
measuring the co-occurrence status of multiple SLNPs were recal-
culated based on the selected 100 SLNPs. As a result, we prepared
518 features (Supplementary Data S5) for our machine learning
framework. To reduce the impact of noisy data on classifications,
we used only the refined ISGs and non-ISGs from dataset S2 for
training and modelling.

Table 3 first shows the comparisons of prediction performance
among different machine learning methods. The threshold is de-
termined by maximising the value of the Matthews correlation
coefficient (MCC). As the random forest (RF) classifier was built
based on randomly selected samples and features [60], we re-
peated its modelling procedure 10 times. These initial compar-
isons showed that the support vector machine (SVM) [61] is supe-
rior to k-nearest neighbours (KNN) and RF [60]. The poor predic-
tion performance of the best base classifier (SVM, area under the
curve [AUC] = 0.6509) indicates that there are a number of poorly
performing features hidden in the set. As some genes respond to

IFNs in a cell-specific manner [2], it is hard to produce predictions
unless we detect key discriminating features, which are robust to
the change of biological environment.

Here, we considered 2 iterative strategies for selecting predic-
tive features. The first one is the forward feature selection (FFS)
[63] wherein features are added sequentially based on their indi-
vidual performance. This strategy did not work well (Table 3) as
the prediction performances were all poor when the feature was
used individually (Supplementary Data S5). The second strategy
is developed based on the backward feature elimination scheme
but uses fewer iterations to achieve the end result, namely, AUC-
driven subtractive iteration algorithm (ASI) (Fig. 15).

Preprocessing using the ASI algorithm showed that there were
at least 28% of features disrupting the prediction model. The loss
of some of the individual nucleotide 4-mer feature seemed not to
influence the performance of the classifier at this stage, but the
similarities between IRGs and ISGs (Fig. 12), particularly in the 4-
mer features, were a cause for concern when the model was used
to predict new data, especially unknown IRGs.

When using the ASI algorithm, the number of disrupting fea-
tures did not stabilise until the algorithm reached the 11th itera-
tion. The remaining 74 features constituted our optimum feature
set for predicting the ISGs (Table 4). Among them, 14 and 9 fea-
tures displayed positive and negative correlations with the level
of upregulation in IFN-α experiments (P < 0.05). During the pro-
cedure, the AUC kept increasing steadily and reached 0.7479 at
the end (Table 3). The MCC also showed an overall improvement,
although it fluctuated slightly during the last few iterations. By
ranking the scores calculated by the prediction model, we found
68.1% of the 496 genes (equal to the number of ISGs in the train-
ing dataset) were successfully predicted as the ISGs. Fig. 13B il-
lustrates the distribution of prediction scores generated by the
ASI-optimised model for human genes with different expressions
in IFN-α experiments. Human genes with higher upregulation in
IFN-α experiments tend to obtain higher prediction scores from
our optimised machine learning model (PCC = 0.243, P = 4.2E-10).

However, there were also some ISGs incorrectly predicted by
our model, even though they were highly upregulated, for exam-
ple, basic leucine zipper ATF-like transcription factor 2 (BATF2,
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Figure 11: Fifty features negatively associated with higher upregulation after IFN-α treatments. Features here are screened based on Pearson’s
correlation coefficient (PCC) and results of Student t-tests (P < 0.05). Features with a lower PCC indicate stronger negative correlation. Detailed results
about PCC and hypothesis tests are provided in Supplementary Data S3.

prediction score = 0.34). The model produced 33 ISGs with a
prediction score higher than 0.8, but this number for the non-
ISGs reduced to 6, including 1 IRG (tripartite motif containing 59
[TRIM59]). The highest prediction score within the non-ISGs was
found on ubiquitin conjugating enzyme E2 R2 (UBE2R2, predic-
tion score = 0.88). It contains many features similar to the ISGs
but was not differentially expressed in the presence of IFN-α in
the human fibroblast cells [3]. The lowest prediction score within
ISGs was found on cap methyltransferase 1 (CMTR1, prediction
score = 0.12) due to the weak signal from its features. For instance,
CMTR1 protein does not contain any ISG-favoured SLAAPs listed
in Table 1. The influence of the IRGs on the prediction was re-
flected in the training dataset but was not significant. Compared
with human genes not differentially expressed in the IFN-α ex-
periments (non-ISGs but not IRGs), there were slightly more IRGs
unsuccessfully classified when using a threshold of 0.549 (Pear-
son’s chi-squared tests: M1 = 27%, M2 = 24%, P > 0.05).

Review of different testing datasets
In this study, we trained and optimised a SVM model from our
training dataset S2′ and prepared 7 testing datasets (dataset
S2′ ′/S3/S4/S5/S6/S7/S8) to assess the generalisation capability of
our model under different conditions (Table 5). The S2′ ′ testing
dataset was a subset of dataset S2. The prediction performance on
this testing dataset was close to that in the training stage with an
AUC of 0.7455 (Fig. 14A). The best MCC value (0.345) was achieved
when setting the judgement threshold to 0.438, which meant that
the prediction model was sensitive to signals related to ISGs. In
this case, it performed predictions with high sensitivity but in-
evitably produced many false positives, especially within IRGs.

In the S3 testing dataset, we used 695 ISGs with low confidence.
The overall accuracy (equals to sensitivity as there were no neg-
atives) only reached 44.0% when using a judgement threshold of
0.549, about 0.18 lower than SN under the same threshold in the
training dataset S2′ (Table 3). It is expected as some of their inher-
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Figure 12: Differential expressions of discrete features between different genes and their coded proteins. Mann–Whitney U tests are applied for
hypothesis testing on the whole comparing data without sampling, and the results are provided in Supplementary Data S2. Here, the ISGs and
non-ISGs are taken from dataset S2 (No. = 620 and 874); the IRGs and ELGs are taken from dataset S4 (No. = 1,006) and dataset S8 (No. = 2,217); the
background human genes are from dataset S1 (No. = 10,836) (Table 5).

Table 3: Performance of different machine learning classifiers on the training dataset S2′ via 5-fold cross-validation

Classifier Method Features Threshold dependent Threshold independent
Score range Thresholda Sensitivity Specificity MCC SN_496b AUC

Basic KNNc 518 0.100∼0.900 0.500∼0.550 0.593 0.621 0.214 0.607 ± 0.014 0.6305
RFd Random 0.080∼0.900 0.380∼0.579 0.590 ± 0.168 0.617 ± 0.183 0.219 ± 0.019 0.600 ± 0.007 0.6413 ± 0.0082
SVM 518 0.328∼0.743 0.542 0.567 0.681 0.250 0.615 0.6509

Optimised SVM + FFS 78e 0.170∼0.836 0.561 0.518 0.760 0.287 0.621 0.6768
SVM + ASI 74e 0.098∼0.918 0.549 0.623 0.750 0.376 0.681 0.7479

aThis threshold is provided by maximising the value of MCC.
bThis sensitivity is measured among tested genes with the top 496 prediction probabilities.
cThe k-value here is set as the square root of the size of the training samples in 5-fold cross validation (i.e., k = 20) [62].
dThis random forest algorithm uses 50 random grown trees and the modelling and validation procedures are repeated 10 times.
eThese features constitute the best/optimum feature set for the current machine learning method.

ent attributes make them slightly upregulated, silent, or even re-
pressed (e.g., become non-ISGs in other IFN systems) in response
to some IFN-triggered signalling. On this testing dataset, our ma-
chine learning model produced 38 (5.5%) ISGs with a prediction
score higher than 0.8. This number was also lower than that on
the training dataset S2′. It further indicates the relatively low con-
fidence for the ISGs included in dataset S3.

The S4 testing dataset was constructed to illustrate our hy-
pothesis that there are some patterns shared among the ISGs
and IRGs at least in the IFN-α system in the human fibroblast
cells. On this testing dataset, the prediction accuracy (equals to

SP as there were no positives) was 60.2% under the judgement
threshold of 0.549, about 0.15 lower than the SP under the same
threshold in the training dataset S2′ (Table 3). Leucine rich repeat
containing 2 (LRRC2), carbohydrate sulfotransferase 10 (CHST10),
and eukaryotic translation elongation factor 1 epsilon 1 (EEF1E1)
showed strong signals of being ISGs (probability score >0.9). In to-
tal, there were 56 (5.6%) IRGs being incorrectly predicted as ISGs
with prediction scores higher than 0.8. This high score was found
in an estimated 8.1% of the ISGs but was observed in only 1.2%
of human genes not differentially expressed in the IFN-α experi-
ments (Fig. 13B). These results indicate that there are a consider-
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Table 4: The optimum 74 features contributing to predicting the ISGs

Evolutionary features (2)
Number of human paralogues, average dS within human paraloguesN

Codon usage features (10)
Codon usage: CTA (L)P Codon usage: ATT (I) Codon usage: TAT (Y)
Codon usage: GCG (A)N Codon usage: CAC (H)N Codon usage: TGC (C)
Codon usage: CGT (R) Codon usage: CGA (R) Codon usage: CGG (R)N

Codon usage: AGA (R)P

Genetic composition features (40)
DNA AC content Dinucleotide CpT composition DNA 4-mer CGCG compositionN

DNA 4-mer AATC compositionP DNA 4-mer TCGT composition DNA 4-mer GATG compositionP

DNA 4-mer AACA composition DNA 4-mer TGAG compositionP DNA 4-mer GACC composition
DNA 4-mer ATAT composition DNA 4-mer TGTA composition DNA 4-mer GACG composition
DNA 4-mer ATGT compositionP DNA 4-mer CACG composition DNA 4-mer GAGT compositionP

DNA 4-mer ACAC composition DNA 4-mer CTCC composition DNA 4-mer GTAC composition
DNA 4-mer ACTA composition DNA 4-mer CCAC composition DNA 4-mer GTGT composition
DNA 4-mer ACTC composition DNA 4-mer CCTA composition DNA 4-mer GTGC composition
DNA 4-mer ACCG composition DNA 4-mer CCTC compositionP DNA 4-mer GTGG composition
DNA 4-mer TATG composition DNA 4-mer CCGT composition DNA 4-mer GCAA compositionP

DNA 4-mer TTCT composition DNA 4-mer CGAG composition DNA 4-mer GCTC composition
DNA 4-mer TTCG composition DNA 4-mer CGTG composition DNA 4-mer GCCT composition
DNA 4-mer TTGA composition DNA 4-mer CGCA composition DNA 4-mer GGGG composition
DNA 4-mer TCAT composition

Proteomic composition features (9)
Arginine composition, cysteine compositionP, methionine composition
Basic amino acid composition (R/H/K)P Sulphur amino acid composition (C&M)P

Hydroxyl amino acid composition (S&T)N Small amino acid composition (N/D/C/P/T)N

Large amino acid composition (R/I/L/K/M)P

Uncharged amino acid composition (A/N/C/Q/G/I/L/M/F/P/S/T/W/Y/V)N

Features about human interactome network (3)

Average shortest pathsP, betweenness, neighbourhood connectivityN

Sequence pattern features (8)
SLNP: ATA[AG][TG] SLNP: TAT[AT]T SLNP: T[AT]AAA
SLNP: [ATG]TGTA SLAAP: SxNxE SLAAP: ENE
SLAAP: SVI Co-occurrence of SLAAPs (count)

PFeatures are positively associated with the level of upregulation in IFN-α experiments (P < 0.05).
NFeatures are negatively associated with the level of upregulation in IFN-α experiments (P < 0.05).

A B

Figure 13: The optimisation of the machine learning model with the ASI algorithm. (A) Change of the prediction models based on the one generated
with all 518 features (poorly performing feature vector = 144, best MCC = 0.250, SN_496 = 0.615, and AUC = 0.6509). (B) Distribution of prediction
scores generated by the ASI-optimised model for human genes with different expression levels in the IFN-α system. The ISGs and non-ISGs shown in
(B) are randomly selected through an undersampling strategy [64] on dataset S2. The list of gene names can be found in Supplementary Data S1.
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Table 5: A breakdown of datasets used in this study

Dataset Brief description IFN system ISGs Non-ISGs ELGs Usage

S1 Background human genes IFN-α in fibroblast cells 1,315 7,304 2,217 Analyses
S2 Dataset with high confidence IFN-α in fibroblast cells 620 874 0 Analyses
S2′ Training subset of S2 IFN-α in fibroblast cells 496 496 0 Training
S2′ ′ Testing subset of S2 IFN-α in fibroblast cells 124 378 0 Testing
S3 ISGs with low confidence in S1 IFN-α in fibroblast cells 695 0 0 Testing
S4 IRGs divided from S1 IFN-α in fibroblast cells 0 1,006 0 Analyses/testing
S5 ISGs from Interferome [24] Type I IFNs in all cells 1,259 872 0 Testing
S6 ISGs from Interferome [24] Type II IFN in all cells 2,229 755 0 Testing
S7 ISGs from Interferome [24] Type III IFN in all cells 33 1,683 0 Testing
S8 ELGs divided from S1 IFN-α in fibroblast cells 0 0 2,217 Testing

A B

S2’ (ISGs in IFN-α system), AUC = 0.7479
S2’’ (ISGs in IFN-α system), AUC = 0.7455
S5 (ISGs in type I IFN system), AUC = 0.6677
S6 (ISGs in type II IFN system), AUC = 0.5532
S7 (ISGs in type III IFN system), AUC = 0.6754

Figure 14: The performance of our optimised model on different datasets. (A, B) The AUC and best MCC. S2′ is the training dataset used in this study. It
randomly includes 496 ISGs and an equal number of non-ISGs from dataset S2 that contains ISGs/non-ISGs with high confidence (Table 5). Evaluation
on this dataset in (A) is processed via 5-fold cross-validation. S2′ ′ is the testing dataset constructed with the remaining human genes in dataset S2. S5,
S6, and S7 are collected from the Interferome database [24], including human genes with different responses to the type I, II, and III IFNs, respectively.
The label and usage of these human genes are provided in Supplementary Data S1.

able number of IRGs incorrectly predicted as ISGs in the S4 test-
ing dataset due to their close distance to the ISGs in the high-
dimensional feature space. This may be the case for many other
datasets, including dataset S2′ ′, S5, S6, S7, and S8. It also supports
our hypothesis about the shared patterns from the machine learn-
ing aspect and is consistent with the results shown in Fig. 12.

The next 3 testing datasets (S5, S6, and S7) were collected
from the Interferome database [24] to test the applicability of
the machine learning model across different IFN types. The ISGs
in these testing datasets were all highly upregulated (log2(fold
change) >1.0) in the corresponding IFN systems while all the non-
ISGs were not upregulated after corresponding IFN treatments
(log2(fold change) <0). The results shown in Fig. 14 reveal that the
ISGs triggered by type I or III IFN signalling can still be predicted
by our machine learning model, but the performance is limited to

some extent (AUC = 0.6677 and 0.6754, respectively). However, it
is almost impossible to make normal predictions with the current
feature space for human genes upregulated by type II IFNs (AUC
= 0.5532).

The S8 testing dataset consisted of 2,217 human genes that
were insufficiently expressed in IFN-α experiments in the human
fibroblast cells [3]. The results showed that there were around
41.2% ELGs being predicted as the ISGs when using a judgement
threshold of 0.549. This was approximately 0.21 lower than the SN
under the same threshold in the training dataset S2′ (Table 3). It
suggests that there are more non-ISGs than ISGs in this dataset,
which is consistent with the results shown in Fig. 12. Particularly,
we found 10 ELGs with prediction scores higher than 0.9: CD48
molecule, CD53 molecule, lipocalin 2 (LCN2), uncoupling protein
1 (UCP1), coiled-coil domain containing 68 (CCDC68), potassium
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Figure 15: Expression of the ELGs in different tissues. Expression data for 10 ELGs are collected from the Genotype-Tissue Expression project
(https://gtexportal.org/) [65]. The tissues in red are not included in the Interferome database [24]. White boxes in the heatmap indicate that there are
no data available for genes in the corresponding tissues. The overall expression level of these 10 ELGs is reflected via human perspective photo
retrieved from Expression Atlas (https://www.ebi.ac.uk/gxa) [66].

calcium–activated channel subfamily M regulatory beta subunit
2 (KCNMB2), potassium voltage–gated channel interacting pro-
tein 4 (KCNIP4), zinc finger HIT-type containing 3 (ZNHIT3), serpin
family B member 4 (SERPINB4), and fibrinogen silencer binding
protein (FSBP). By retrieving data from the Genotype-Tissue Ex-
pression project [65], we found that the expression of these ELGs
was generally limited with the exception of CD53 and ZNHIT3
(Fig. 15). The expression data of CD53 were not included in the
OCISG database [3] and also limited in the Interferome database
[24]. It only showed slight upregulation after type I IFN treatments
in blood, liver, and brain, but there is currently no record of its ex-
pression level in the presence of IFN-α in the human fibroblast

cells. ZNHIT3 is another well-expressed gene lacking information
in the OCISG. In the Interferome database [24], we found that ZN-
HIT3 could be upregulated after IFN treatments in some fibroblast
cells on the skin. As for the remaining 8 ELGs, despite their lim-
ited expression in the human fibroblast cells, their features sug-
gest that they are very likely to be IFN-α stimulated in a currently
untested cell type.

Discussion
In this study, we investigated the characteristics that influence the
expression of human genes in IFN-α experiments. We compared
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the ISGs and non-ISGs through multiple procedures to guaran-
tee strong signals for the ISGs and to avoid cell-specific influences
that resulted in the lack of ISG expression in certain cell types [2].
Even some highly upregulated ISGs can become downregulated
when the biological conditions change, exemplified by the per-
formance of C-X-C motif chemokine ligand 10 (CXCL10) on liver
biopsy specimens after IFN-α treatment. This refinement is neces-
sary as the representation of features between the ISGs and back-
ground human genes shows that many non-ISGs, especially IRGs,
have similar feature patterns to the ISGs (Fig. 12).

Generally, the ISGs are less evolutionarily conserved and in-
clude more human paralogues than the non-ISGs. They have spe-
cific nucleotide patterns exemplified by the depletion of GC con-
tent and have a unique codon usage preference in coding proteins.
There are a number of SLNPs widely observed in the cDNA of the
ISGs, which are relatively rare in the non-ISGs (Supplementary
Data S4). Likewise, there are also many SLAAPs highlighted in the
sequences of ISG products that are absent or rare in the non-ISG
products (Table 1). In the human PPI network, the ISG products
tend to have higher betweenness than the background human
protein. Abnormal expression or knockout of these proteins will
increase the diameter of the network and may lead to some lethal
consequences that are not tolerated in signalling pathways [67–
69]. These ISG-specific patterns may be the result of the evolution
of the innate immune system in vertebrates and could be adapta-
tions to the cellular environment induced by interferon following
a pathogenic infection [70]. It is also possible that some of the par-
ticular SLNPs and SLAAPs may be functionally important as the
cell changes from noninfected to infected. Experimental evidence
will be necessary to investigate this.

We found that dN/dS ratio was positively correlated with gene
upregulation following IFN-α treatments (Fig. 10). This suggests
ISGs are on average under stronger adaptive evolutionary selec-
tion pressure than the non-ISGs possibly linked to their evolution
as antiviral molecules. Some other properties of the ISGs facili-
tate or elevate their expression after IFN-α treatments but may
also be used by viruses to escape from IFN-α–mediated antiviral
response [ 22]. For instance, we found arginine was underrepre-
sented in the ISG products compared to the non-ISG products.
As arginine is essential for the normal proliferation and matu-
ration of human T cells [ 71], such depletion in the ISG products
may leave a risk of inhibiting T-cell function and potentially in-
crease susceptibility to infections [72]. Furthermore, the special
pattern of the ISGs also promotes the representation of some fea-
tures even if they are not well represented in nature, for example,
the higher cysteine composition in the ISGs. We hypothesize that
it may be helpful to activate T cells to regulate protein synthesis,
proliferation, and secretion of immunoregulatory cytokines [73,
74]. There are also some features (e.g., methionine composition)
not differentially represented between the ISGs and non-ISGs but
that play important roles in IFN-α–mediated immune responses.
For example, there is evidence for the methionine content playing
a role in the biosynthesis of S-adenosylmethionine (SAM), which
can improve interferon signalling in cell culture [ 75, 76].

As previously mentioned, there were similar patterns between
the feature representation of the ISGs and IRGs, which led to an
unclear boundary for the ISGs and non-ISGs in the feature space.
We found significant differences in the representation of features
on evolutionary conservation (Fig. 4) between the ISGs and non-
ISGs, but they became nonsignificant when comparing the ISGs
with IRGs. Similar phenomena were observed on many features
deciphered from the canonical transcript (e.g., dinucleotide com-
position and codon usage features). We hypothesise that IRGs

are former ISGs that have evolved to be downregulated to avoid
any unintended harmful consequences. Furthermore, despite so
many similarities between the ISGs and IRGs, the separate clas-
sification of these genes is still possible. The 4-mer composition
features can be considered the key features as most of them are
differentially represented between ISGs and IRGs (Fig. 12). Using
proteomic features can also help to differentiate the ISGs from
IRGs but is not as predictive as using 4-mer features.

In the machine learning framework, we developed the ASI al-
gorithm to remove poorly performing features but kept features
that do not influence prediction performance when removed in-
dividually from iterations. Features may have synergistic effects
on the prediction performance. The elimination of some specific
features may ruin such improvement even when they were in-
dividually uninformative for the improvement of the classifier. In
this case, keeping as many useful features as possible seems to be
a reasonable option but will greatly increase the dimension of the
feature space and increase the risk of overfitting [77]. By contrast,
our ASI algorithm avoided such a risk and kept the synergistic ef-
fect of different features through iterations.

In the prediction task, we found some previously labelled non-
ISGs with very high prediction scores, suggesting that they had
some inherent properties consistent with them being stimulated
after IFN-α treatments. Some (e.g., UBE2R2) have been shown to
be significantly upregulated after IFN-α treatment [78]. The non-
ISG label had been assigned because the relevant expression data
in the presence of IFN-α were not included in the OCISG [3] and
Interferome databases [24]. We also found 10 ELGs with very high
prediction scores (>0.9). Literature searches on these genes indi-
cate that they are likely to be involved in the innate immune re-
sponse [79, 80]. Their responses may be limited to certain tissues
or cell types for which there are limited expression data in the
Interferome database [24]. For example, LCN2 has been shown to
mediate an innate immune response to bacterial infections by se-
questering iron [79] and is induced in the central nervous system
of mice infected with West Nile virus encephalitis [81]. CD48 was
shown to increase in levels in the context of human IFN-α/β/γ
stimulation [80]. Interestingly, CD48 is also the target of immune
evasion by viruses [82] and has been captured in the genome of cy-
tomegalovirus and undergone duplication [83]. Evidence for other
ELGs is harder to assess, particularly those for which expression is
absent in a range of tissues (e.g., UCP1 in Fig. 15). UCP1 is a mito-
chondrial carrier protein expressed in brown adipose tissue (BAT)
responsible for nonshivering thermogenesis [84]. It is possible that
UCP1 is stimulated directly or indirectly by IFN-α in BAT, resulting
in the defended elevation of body temperature in response to in-
fection.

We developed the machine learning model based on experi-
mental data from the human fibroblast cells stimulated by IFN-α.
It can be generalised to type I or III IFN systems, presumably be-
cause activations of type I and III ISGs are both controlled by ISRE
[9] and aim to regulate host immune response [10–12]. However,
our model cannot be used for predictions in the type II IFN sys-
tem (AUC = 0.5532, best MCC = 0.083, Fig. 14). This is possibly
caused by the different control elements used and their different
roles in human immune activities [14]. One feasible strategy is
to reclassify the ISGs/non-ISGs based on the IFN experiments in
the type II IFN system. Using only the overlapping ISGs and non-
ISGs in both type I and type II IFN system for modelling could be
another solution. In summary, our analyses highlight some key
sequence-based features that are helpful to distinguish the ISGs
from non-ISGs, or IRGs. While reliable ISG prediction remains a
difficult challenge, our machine learning model is able to pro-
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duce a list of putative ISGs to support IFN-related research. As
knowledge of the ISG functions continues to be elucidated by ex-
perimentalists, the in silico approach applied here can in future
be extended to classify the different functions of ISGs. The “im-
portant” features mentioned in this study may become a focus
for investigating the interferon antagonists expressed by different
viruses [85].

Methods
Dataset curation
In this study, we retrieved 2,054 ISGs (upregulated), 12,379 non-
ISGs (downregulated or not differentially expressed), and 3,944
unlabelled human genes (ELGs with less than 1 count per mil-
lion reads mapping across the 3 biological replicates [86, 87]) from
the OCISG database [3]. Gene clusters in the OCISG database were
built through Ensembl Compara [88], which provided a thorough
account of gene orthology based on whole genomes available in
Ensembl [58]. Labels of these human genes were defined based
on the fold change and a false discovery rate (FDR) following the
IFN-α treatments in the human fibroblast cells. We searched the
collected 18,377 entries against the RefSeq database [32] to de-
cipher features based on appropriate transcripts (canonical) [89]
coding for the main functional isoforms of these human genes.
It produced 1,315, 7,304, and 2,217 results for the ISGs, non-ISGs,
and ELGs, respectively. These 10,836 human genes were well an-
notated by multiple online databases and were used as the back-
ground dataset S1 in the analyses.

For the purpose of generating a set of human genes with high
confidence of being upregulated and not upregulated in response
to the IFN-α, we searched the recompiled 8,619 human genes (ISGs
or non-ISGs) against Interferome [24]. We filtered out the ISGs
without high upregulation (log2(fold change) >1.0) or with obvious
downregulation (log2(fold change) <−1.0) in the presence of type I
IFNs. This procedure guaranteed a refined ISG dataset with strong
levels of stimulation induced by any type I IFNs and reduced bi-
ases driven by the IRGs for the analyses and predictions. We fil-
tered out the non-ISGs showing enhanced expression after type I
IFN treatments (log2(fold change) >0). The exclusion of these non-
ISGs could effectively reduce the risk of involving false negatives
in analyses and producing false positives in predictions. As a re-
sult, the refined dataset S2 contains 620 ISGs and 874 non-ISGs
with relatively high confidence.

The training procedure in the machine learning framework was
conducted on the balanced dataset S2′. It consisted of 992 ran-
domly selected ISGs and non-ISGs from dataset S2. The remaining
human genes in S2 were used for independent testing. Addition-
ally, we also constructed another 6esting datasets for the purpose
of review and assessment. Dataset S3 contained 695 ISGs with low
confidence compared to those ISGs in dataset S2. Some of them
could be non-ISGs or even IRGs in the type I IFN system. Dataset
S4 contained 100,6 IRGs from the human fibroblast cell experi-
ments. Dataset Ss5, S6, and S7 were constructed based on records
for experiments in type I, II, and III IFN systems from Interfer-
ome (RRID:SCR_007743) [24]. The criterion for an ISG in the lat-
ter 3 datasets was a high level of upregulation (log2(fold change)
>1.0) while that for non-ISGs was no upregulation after IFN treat-
ments (log2(fold change) <0). The last testing dataset S8 was de-
rived from our background dataset S1, containing 2,217 ELGs. A
breakdown of the aforementioned 8 datasets is shown in Table 5.
Detailed information of the human genes used in this study is

provided in Supplementary Data S1. The cDNA and protein se-
quences are accessible at [90].

Generation of discrete features
We encoded 397 discrete features from aspects of evolution, nu-
cleotide composition, transcription, amino acid composition, and
network properties. Original values of these features for our com-
piled 10,836 human genes are accessible at [90].

From the perspective of evolution, we used the number of tran-
scripts, ORFs, and count of exons used for coding to quantify
the alternative splicing process. Genes with more transcripts and
ORFs have higher alternative splicing diversity to produce pro-
teins with similar or different biological functions [33, 91, 92]. Fre-
quent use of protein-coding exons indicates more complex al-
ternative splicing products [93]. Here, duplication and mutation
features were measured by the number of within-species par-
alogues and substitutions [34, 35]. These data were collected from
BioMart (RRID:SCR_002987) [58] to assess the selection on pro-
tein sequences and mutational processes affecting the human
genome [94].

From the perspective of nucleotide composition, we calculated
the percentage of adenine, thymine, cytosine, guanine, and their 4-
category combinations in the coding region of the canonical tran-
script. The first category measured the proportion of 2 different
nitrogenous bases out of the implied 4 bases (e.g., GC content).
The second category also focused on the combination of 2 nu-
cleotides but added the impact of phosphodiester bonds along the
5′ to 3′ direction (e.g., CpG content) [95]. The third category calcu-
lated the occurrence frequency of 4-mers (e.g., “CGCG” composi-
tion to involve some positional resolution) [41]. The last category
considered the co-occurrence of SLNPs. From the perspective of
transcription, we calculated the usage of 61 coding codons and
3 stop codons in the coding region of the canonical transcripts.
Codon usage biases are observed when there are multiple codons
available for coding 1 specific amino acid. They can affect the dy-
namics of translation and thus regulate the efficiency of transla-
tion and even the folding of the proteins [40, 96].

From the perspective of amino acid composition, we calculated
the percentage of 20 standard amino acids and their combina-
tions based on their physicochemical properties [46]. Patterns in
the amino acid level are considered to have a direct impact on
the establishment of biological functions or to reflect the result of
strong purifying selection [47]. Based on the chemical properties
of the side chain, we grouped amino acids into 7 classes, includ-
ing aliphatic, aromatic, sulphur, hydroxyl, acidic, amide, and ba-
sic amino acids. We also grouped amino acids based on geometric
volume, hydropathy, charge status, and polarity but found some
overlaps among these features. For instance, amino acids with ba-
sic side chains are all positively charged. Aromatic amino acids
all have large geometric volumes (volume >180 cubic angstroms).
Likewise, we also considered the co-occurrence of short linear se-
quence patterns at the protein level. These co-occurring SLAAPs
may relate to potential mechanisms regulating the expression of
the ISGs [97].

To infer network properties for the gene products, we con-
structed a human PPI network based on 332,698 experimentally
verified interactions (confidence score >0.63) from HIPPIE (RRID:
SCR_014651) [56]. Nodes and edges of this network are provided
at our web server. Eight network-based features, including the av-
erage shortest path, closeness, betweenness, stress, degree, neigh-
bourhood connectivity, clustering coefficient, and topological co-
efficient, were calculated from this network. Isolated nodes or pro-
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teins were not included in our network and were assigned zero
values for all these 8 features. The shortest path measures the
average length of the shortest path between a focused node and
others in the network. Closeness of a node is defined as the re-
ciprocal of the length of the average shortest path. Proteins with a
low value of the shortest paths or closeness are close to the centre
of the network. Betweenness reflects the degree of control that 1
node exerted over the interactions of other nodes in the network
[98]. Stress of a node measures the number of shortest paths pass-
ing through it. Proteins with a high value of betweenness or stress
are close to the bottleneck of the network. Degree of a node counts
the number of edges linked to it while neighbourhood connec-
tivity reflects the average degree of its neighbours. Proteins with
high values of degree or neighbourhood connectivity are close to
the hub of the network. They are considered to play an important
role in the establishment of the stable structure of the human in-
teractome [99]. Clustering and topological coefficient measure the
possibility of a node to form clusters or topological structures with
shared neighbours. The former coefficient can be used to identify
the modular organisation of metabolic networks [100] while the
latter one may be helpful to find out virus mimicry targets [53].

Generation of categorical features
In this study, categorical features were used to check the occur-
rence of short linear sequence patterns in the genome and pro-
teome. SLNPs constructed in this study contained 3 to 5 random
nucleotides, producing 708,540 alternative choices. SLNPs with no
restrictions on their first or last position were not taken into con-
sideration as their patterns could be expressed in a more concise
way. A SLNP was picked out to encode a binary feature when its
occurrence level in the coding region of the canonical ISG tran-
scripts was significantly higher than that for the non-ISGs (Pear-
son’s chi-squared test: P < 0.05). SLAAPs were constructed with 3
to 4 fixed amino acids separated by putative gaps. The gap could
be occupied by at most 1 random amino acid, producing 1,312,000
alternative choices. Likewise, binary features were prepared for
SLAAPs showing significant enrichment in the ISG products than
in the non-ISG products (Pearson’s chi-squared test: P < 0.05).
Since there were lots of results rejecting the null hypothesis, we
adopted the Benjamini–Hochberg correction procedure to avoid
type I error [43]. Additionally, we also encoded 2 features to check
the co-occurrence or absence of multiple SLNPs and SLAAPs. This
co-occurrence status might be a better representation of func-
tional sites composed of short stretches of adjacent nucleobases
or amino acids surrounding SLNPs or SLAAPs [47].

Assessment of associations between feature
representation and IFN-triggered stimulations
We obtained 8,619 human genes with expression data from the
OCISG database [3]. In total, 4,111 of them were annotated with
a positive log2(fold change) ranging from 0 to 12.6, which meant
they were upregulated after IFN-α treatments in the human fi-
broblast cells. In order to measure the average level of feature rep-
resentation (AREP) for genes with similar expression during IFN
stimulations, we introduced a 0.1-length sliding window to divide
the data into 126 bins with different log2(fold change). Here, PCC
was introduced to test the association between the representa-
tion of discrete features and IFN-α–triggered stimulation (log2(fold
change) >0). It can be formulated as

PCC ( f ) = 1
n − 1

	n
i=1

(
LFCi − M0

SD0

)
×

(
AREPi − M f

SD f

)
(1)

where n is the number of divided parts that equals 126 in this
study; LFCi and AREPi are the value of log2(fold change) and AREP
in the ith part; M0 and SD0 are the mean and standard deviation of
log2(fold change), which are set as 6.4 and 3.7, respectively, in this
study; and M f and SD f are the mean and standard deviation of 126
AREPs that reflect the representation of the considered feature. To
make fair comparisons among features with different scales, we
normalised them based on the major value of their representa-
tions:

Norm ( f ) =

⎧⎪⎨
⎪⎩

1, f > UB ( f )
f−LB( f )

UB( f )−LB( f )

0, f < LB ( f )

, LB ( f ) < f < UB ( f ) (2)

where LB( f ) and UB( f ) are the lower and upper bound represent-
ing the 5th and 95th percentile within representation values for
the target feature. The representation of feature was considered to
have a stronger positive/negative association with IFN-α–triggered
stimulations if the PCC calculated from the normalised features
was closer to 1.0/−1.0 and the P-value calculated by the Student
t-test was lower than 0.05.

Machine learning and optimisation
We designed a machine learning framework for the prediction of
ISGs. First, all features were encoded and normalised based on
their major representations (Eq. 2). Then we used an undersam-
pling procedure [64] to generate a balanced dataset from dataset
S2 for training and modelling. The SVM with radial basis function
[61] was used as the basic classifier. It maps the normalised fea-
ture space to a higher dimension to generate a space plane to bet-
ter classify the majority of positive and negative samples. In order
to avoid overfitting [77] and make it easier for the SVM model to
generate an appropriate classification plane that involved fewer
false positives and false negatives, here we propose a subtractive
iteration algorithm driven by the change of AUC. This algorithm is
developed based on the traditional backward feature elimination
method [63] but uses fewer iterations to filter out poorly perform-
ing features (Fig. 16). In each iteration, we traversed the features
and removed those that did not improve the AUC of the predic-
tion results. In the testing procedure, we encoded the optimum
features for testing samples and placed them in the optimised
feature space. Samples with longer distance to the optimised clas-
sification plane indicated a stronger signal of being the ISGs or
non-ISGs. They were more likely to get higher prediction scores
(close to 0 or 1) from the SVM model.

Performance evaluation
In this study, the prediction results were evaluated with 3
threshold-dependent criteria, including sensitivity, specificity, and
MCC [101], and 2 threshold-independent criteria: SN_n and AUC.
Sensitivity and specificity were used to assess the quality of the
machine learning model in recognising ISGs and non-ISGs, respec-
tively, while MCC provided a comprehensive evaluation for both
positives and negatives. The number of “n” in the SN_n criterion
was determined based on the number of ISGs used for testing. It
was used to measure the upper limit of the prediction model as
well as to check the existence of important false positives close to
the class of ISGs from the perspective of data expression. Finally,
AUC was a widely used criterion to evaluate the prediction abil-
ity of a binary classifier system. The group of interest was almost
unpredictable in a specific binary classifier system if the AUC of
the classifier was close to 0.5.
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Figure 16: The pseudo-code of the AUC-driven subtractive iteration algorithm.

Availability of Source Code and Requirements
� Project name: ISGPRE
� Project homepage: http://isgpre.cvr.gla.ac.uk/
� Operating system: Platform independent
� Programming language: Java
� Other requirements: Docker or JDK 8+
� Docker image: https://hub.docker.com/repository/docker/h

chai01/isgpre
� Biotools repository: https://bio.tools/isgpre
� Research Resource Identification Initiative ID: SCR_022730
� Documentation and tutorials: https://github.com/HChai01/I

SGPRE
� License: GNU GPL v3.0

Data Availability
The implemented web server and all reproduceable data are freely
accessible at https://isgpre.cvr.gla.ac.uk/ and [90]. Code snapshots
and other supplementary data are also available in the GigaScience
GigaDB repository [102].

Additional Files
Supplementary Data S1. Basic information and usage of our com-
piled 10,836 human genes.
Supplementary Data S2. The result of Mann–Whitney U tests for
discrete features.
Supplementary Data S3. Association between feature represen-
tations and IFN-α stimulations.
Supplementary Data S4. The result of Pearson’s chi-squared tests
for sequence motifs.
Supplementary Data S5. Features and their individual perfor-
mance in machine learning.
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