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Abstract
This article considers mixed platoons consisting of both human-driven vehi-
cles (HVs) and automated vehicles (AVs). The uncertainties and randomness in
human driving behaviors highly affect the platoon safety and stability. However,
most existing control strategies are either for platoons of pure AVs, or for spe-
cial formations of mixed platoons with known HV models. This article addresses
the control of mixed platoons with more general formations and unknown
HV models. An innovative data-driven policy learning strategy is proposed to
design the controllers for AVs based on vehicle-to-vehicle (V2V) communica-
tions. The policy learning strategy is embedded with the constraints of control
input, inter-vehicular distance error and V2V communication topology. The
strategy establishes a safe and robustly stable mixed platoon using prescribed
communication topologies. The design efficacy is verified through simulations
of a mixed platoon with different communication topologies and leader velocity
profiles.
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1 INTRODUCTION

Cooperative vehicle platooning based on vehicle-to-vehicle (V2V) communications has great potential in improving traf-
fic capacity, safety and fuel consumption.1-5 The goal of platooning control is to ensure all the vehicles travel at the same
velocity while keeping a safe inter-vehicular distance. Many cooperative control strategies have been proposed to real-
ize effective platooning of automated vehicles (AVs) and ensure longitudinal safety of platoons (e.g., string stability and
robustness against leader velocity changes).6-8 However, due to the unsaturated penetration rate of AVs in the transporta-
tion system, AVs and human-driven vehicles (HVs) will co-exist for a long period.9 Hence, effective control designs for
mixed vehicle platoon with both AVs and HVs are highly demanded.

The control design for mixed platoons is challenging in several aspects. First, a platoon of pure AVs is fully control-
lable because the control commands of all the vehicles are fully programmable; however, a mixed platoon is not fully
controllable, because the control command of each HV in the platoon is given by the human driver rather than by an
onboard computer automatically. Second, human driving behaviors have uncertainties and randomness,10 which highly
affect the traffic flow and may cause traffic congestion11 and oscillation.12 Third, planning of platoons is recognized as
a challenge for vehicles that are of different types, brands, and automation levels.13 To address the first two challenges,
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the behaviors of HVs need to be considered in the control of AVs to establish a safe (i.e., collision-free) and robust
(i.e., formation-maintainable) mixed platoon. To address the third challenge, the platooning control strategy should also
be adaptive to different formations of mixed platoons. However, the control strategies for platooning pure AVs6-8 can-
not address these challenges or guarantee the safety and robust stability of mixed platoons. This raises the necessity of
developing new control strategies for mixed platoons.

Within a mixed platoon, the car-following behaviors of HVs can be captured by a few existing dynamic models,14

among which the popular ones are the intelligent vehicle model and the optimal velocity (OV) model. Compared to other
car-following models, the OV model has a simple mathematical representation and can characterize almost all kinds
of traffic behaviors and the transitions between them.14,15 The OV model has been used to develop control for mixed
platoons.15-21 An AV is controlled to smooth the mixed traffic flow on a ring road.16,17 The “1 AV + n HVs” mixed platoon
on more general roads is established by controlling an AV to lead n HVs.18 The optimal control of “1 AV + n HVs” mixed
platoons has also been designed in the context of a signalized intersection.15 The “1 AV + n HVs + 1 AV” mixed platoon
is achieved by controlling the rear AV using a tube model predictive controller.19 The stability analysis and robust control
have also been studied for a more general formation of mixed platoons.20,21 However, all the above works assume known
OV model parameters, which is too restrictive because the HV behaviors are difficult to be modeled exactly.9 Even it is
possible to calibrate accurate OV models, sharing the parameters is in general unrealistic for platoons that are formed
during trips.13 Therefore, it is more appealing to develop platooning control without knowing the HV parameters.

Only a few published works22-24 have studied mixed platoons with unknown HV parameters. A recursive least squares
method22 is adopted to estimate the HV model, but platooning control is not investigated. Adaptive dynamic programming
(ADP)25 is currently the most well-established data-driven control policy learning for systems with unknown dynamic
models. Building on ADP, strategies for learning data-driven control policy are developed for mixed platoons with input
constraint23 and with human reaction delays.24 However, these works focus particularly on the “n HVs + 1 AV” mixed
platoon. Moreover, their strategies cannot guarantee both (i) satisfaction of input and safety constraints, and (ii) platoon
robustness against leader velocity changes and uncertain behaviors of HVs.

This article aims to develop a new data-driven control policy learning strategy for more general mixed platoons, to
ensure satisfaction of input/safety constraints and platoon robustness against leader velocity disturbances and HV model
uncertainties. The main contributions are summarized as follows:

• A data-driven learning strategy based on ADP is proposed to obtain the cooperative control for mixed platoons with
unknown HV parameters. The strategy is applicable for a wide range of mixed platoon formations that contain the
“n HVs + 1 AV” platoons23,24 as a special case.

• The policy learning incorporates input and safety constraints and a robust constrained invariant set,26 which establishes
a safe and robustly stable mixed platoon. This aspect has not been investigated in the existing mixed platoon designs.23,24

Recent advances in the ADP theory can incorporate state constraints27 or parameter uncertainties,28 but none has
studied both safety and robustness with vehicle platoon applications.

• The learning strategy includes structural constraint on the control gain, which enables the controller to be implemented
under a prescribed V2V communication topology. It then offers more flexibility for implementing the control policy
and offers a chance to consider the range limit of V2V communications during control design. This aspect has not been
studied in the existing mixed platoon designs,23,24 or the ADP designs.25,27,28

The rest of this article is organized as follows. Section 2 describes the platoon model and control problem. Section 3
presents the model-based policy learning strategy, followed by its data-driven implementation in Section 4. Section 5
provides the simulation results. Section 6 draws the conclusions.

Notations: The symbols ⊗ and ◦ are the Kronecker and element-wise products, respectively. vec is the vectorization
operator. | ⋅ | is the absolute value. || ⋅ || is the 2-norm. Im is a m ×m identity matrix. 1a×b is a a × b dimensional matrix
with all elements being 1. 0 is a zero matrix whose dimensions are known from the context unless it is necessary to be
given. diag(⋅, … , ⋅) is a diagonal matrix whose main diagonals are the given elements. col(⋅, … , ⋅) stacks up its operands
as a column vector.

2 PLATOON MODELING AND CONTROL PROBLEM

This article considers the general mixed platoon in Figure 1A, where all the vehicles can share their positions and veloc-
ities through the DSRC V2V wireless communication networks.29 An AV is set as the leader to ensure controllability of
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LAN et al. 4173

F I G U R E 1 Formations of the (A) general mixed platoon and (B) unified formation for control design. The small mixed platoons in the
dash-dotted and dashed blocks in (A) share the unified formation in (B)

the platoon and assist other AVs to design their control policies. The lead AV is assumed to be equipped with a model
predictive controller30 that guarantees accurate reference velocity tracking. This article aims to design the longitudi-
nal acceleration commands of the other AVs to follow the lead AV by using information from the surrounding HVs to
enhance the platooning performance. To facilitate the control design, the general mixed platoon in Figure 1A is divided
into a set of small mixed platoons that are in the dash-dotted and dashed blocks. These small mixed platoons can be
represented by the unified mixed platoon in Figure 1B. This unified mixed platoon has (N + 1) vehicles, including the
host AV nc whose controller is to be designed, the assistant AV 0 supporting the control design, (nc − 1) HVs ahead the
host AV, and (N − nc) HVs behind the host AV. The unified mixed platoon is more general than the “1 AV + n HVs,”18

“1 AV + n HVs,”15 “1 AV + n HVs + 1 AV,”19 or “n HVs + 1 AV”23,24 mixed platoons studied in the literature. This article
will develop a cooperative control policy for the unified mixed platoon in Figure 1B, which can then be directly applied
to the mixed platoon in Figure 1A.

A control-oriented mixed platoon model needs to be built to perform control design. Define the index set of HVs in
the unified mixed platoon ash = {i ∶ i ∈ [1,N], i ≠ nc}. The behaviors of HV i, i ∈h, can be captured by the widely
used OV model:14-21,23

ḣi = vi−1 − vi, (1a)

v̇i = 𝛼i (V(hi) − vi) + 𝛽i (vi−1 − vi) , (1b)

where the variables pi and vi are the vehicle position and longitudinal velocity, respectively. hi = pi−1 − pi is the
inter-vehicular distance between vehicles i − 1 and i, 𝛼i is the headway gain and 𝛽i is the relative velocity gain. V(hi) is
the spacing-dependent desired velocity defined by

V(hi) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0, hi ≤ hs,
vmax

2

[

1 − cos
(

𝜋
hi−hs
hg−hs

)]

, hs < hi < hg,

vmax, hi ≥ hg,

(2)

where hs is the smallest inter-vehicular distance before the HV intends to stop, and hg is the largest inter-vehicular distance
after which the HV intends to maintain the maximum velocity vmax. This article establishes a stable platoon and hs < hi <

hg and the values of hs and hg are the same for all HVs.
When AV 0 travels at the velocity v0, the equilibrium point of all the HVs is (h∗, v∗), where v∗ = v0 and h∗ satisfies

v∗ = V(h∗). Upon knowing v∗, the corresponding spacing h∗ can be easily determined from v∗ = V(h∗), because there is
an one-to-one mapping between hi and V(hi) when hs < hi < hg,∀i ∈h. This mapping is illustrated by the example
in Figure 2 with the typical settings:16,23 hs = 5 m, hg = 35 m, and vmax = 30 m/s. These settings will also be used for
simulation in Section 5.

Define platooning error vector as xi = col(Δhi,Δvi), where Δhi = hi − h∗ and Δvi = vi − v0, i ∈h. The time deriva-
tives of Δhi and Δvi are Δḣi = v̇i−1 − v̇i − ḣ∗ = Δvi−1 − Δvi − ḣ∗ and Δv̇i = v̇i − v̇0 = v̇i − u0. Since v∗ = V(h∗) and v̇∗ = u0
where u0 is the acceleration of AV 0, it can be derived that u0 = 𝜕V(h)

𝜕h
|
|
|h=h∗

⋅ ḣ∗ and thus ḣ∗ = 𝜏−1u0, with 𝜏 = 𝜕V(h)
𝜕h

|
|
|h=h∗

=
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4174 LAN et al.

F I G U R E 2 The relationship between V(hi) and hi with the typical settings: hs = 5 m, hg = 35 m, and vmax = 30 m/s

vmax𝜋

2(hg−hs)
sin

(
𝜋(h∗−hs)

hg−hs

)

which is known for each value of h∗. The OV model (1) is linearized around the equilibrium point
(h∗, v∗) and given as

ẋ1 = A1x1, (3a)

ẋi =

[
0 −1
𝛼i −𝛽 i

]

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Ai

xi +

[
0 1
0 ci

]

⏟⏞⏟⏞⏟

Di

xi−1 +

[
−𝜏−1

−1

]

⏟⏞⏟⏞⏟

Ei

u0, i ∈h ⧵ {1}, (3b)

where 𝛼i = 𝛼i𝜏, 𝛽 i = 𝛼i + 𝛽i, and ci = 𝛽i.
The dynamics of AV 0 and AV nc are represented by the following point-mass model that is widely used for vehicle

platoons:6,7

ṗi = vi, (4a)

v̇i = ui, (4b)

where i = 0,nc. The acceleration command u0 is known while unc is to be designed.
The AV nc is controlled to track v0 while keeping a desired and safe inter-vehicular distance h∗ between itself and HV

nc − 1. Hence, the platooning error vector is defined as xnc = col
(
Δhnc ,Δvnc

)
, whereΔhnc = hnc − h∗,Δvnc = vnc − v0, and

hnc = pnc−1 − pnc . By using (4), the platooning error system of AV nc is derived as

ẋnc =

[
0 −1
0 0

]

⏟⏞⏞⏟⏞⏞⏟

Anc

xnc +

[
0
1

]

⏟⏟⏟

Bnc

unc +

[
0 1
0 0

]

⏟⏟⏟

Dnc

xnc−1 +

[
−𝜏−1

−1

]

⏟⏞⏟⏞⏟

Enc

u0, (5)

where xnc−1 is the platooning error vector of HV nc − 1.
Define the overall platooning error vector as x = col(x1, … , xN), control input as u = unc and disturbance as d = u0.

By using (3) and (5), the overall platooning error system is derived as

ẋ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A1

D2 A2

⋱ ⋱

DN AN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

x +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

B1

B2

⋮

BN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏟⏟

B

u +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

E1

E2

⋮

EN

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏟⏟

E

d, (6)
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LAN et al. 4175

where Bi = 0, i ∈h. Here the leader acceleration command u0 (i.e., d) is regarded as a disturbance, because it is an
external input that will drift the platooning error system (6) away from the steady state. Hence, u will be designed to
ensure that the platooning error system is robustly internal and string stable against d.

To eliminate the steady-state error of Δhnc , the integral term xI = ∫
t

0Δhnc is to be used by the controller. Based on (6),
the augmented platooning error system is given by

[
ẋ
ẋI

]

⏟⏟⏟

�̇�

=

[
A 0
C 0

]

⏟⏞⏟⏞⏟

Āc

[
x
xI

]

⏟⏟⏟

𝜉

+

[
B
0

]

⏟⏟⏟

Bc

u +

[
E
0

]

⏟⏟⏟

Ēc

d, (7)

where C =
[
01×2(nc−1) 1 0 01×2(N−nc)

]
.

Discretizing (7) using the forward Euler method with the sampling time ts yields the control-oriented mixed platoon
model

𝜉(t + 1) = Ā𝜉(t) + Bu(t) + Ēd(t), (8)

where Ā = In + tsĀc, B = tsBc, Ē = tsĒc, and n = 2N + 1.
Although the car-following behavior of HV can be captured by the OV model (3), the uncertainty and randomness

properties of human driving behaviors make it impossible to identify the exact model parameters 𝛼i and 𝛽i. Hence, the
system matrix Ā of (8) is unknown and the model-based platooning control designs15-21 are inapplicable. By collecting
experimental data, an OV model can be calibrated to capture the average behavior of human drivers and used to synthesize
a robust controller for the AV.21 However, the robust control is known to be conservative and it cannot ensure satisfaction
of the input and safety constraints. This article proposes an online data-driven strategy to learn a control policy based on
(8) to realize three objectives:

1. The mixed platoon maintains a safe inter-vehicular distance within the acceleration limits.
2. The mixed platoon is internally stable (i.e., settles at the desired velocity and inter-vehicular distance) and head-to-tail

string stable21 (i.e., robust against leader disturbances).
3. The mixed platoon performs well under different V2V communication topologies.

To realize Objective 1, the controller will be designed to satisfy the following input limits and safety constraints:

|u| ≤ umax, (9a)

|Δhi| ≤ Δhmax, i ∈ [nc,N], (9b)

where umax is the acceleration limit and Δhmax is the maximum allowable inter-vehicular distance error (i.e., deviation
from h∗). By setting 0 < Δhmax < h∗, (9b) guarantees 0 < pi−1 − pi < 2h∗, i ∈ [nc,N], and avoids vehicle collisions. The
HVs i, i ∈ [1,nc − 1], can be controlled by AV 0 but not by AV nc. Hence, their inter-vehicular distance errors cannot be
controlled by u(t) to satisfy (9b). However, according to (2), the HVs will intend to stop once their inter-vehicular distances
reduce to be hs to avoid collisions. Objective 2 will be realized by using the concept of robust constrained invariant set
(RCIS).26 To realize Objective 3, a structural constraint will be imposed on u(t) to indicate the platooning errors of which
vehicles are used. The structural constraint is important because AV nc may not receive reliable information from all
the HVs, especially when the inter-vehicular distances are large.31 Incorporating the structural constraint enables u(t)
to be implemented using a specified V2V communication topology, offering a chance to take the range limit of V2V
communications into account during control design.

This article aims to illustrate the key ideas of the proposed policy learning strategy and thus focuses only on ensuring
that the mixed platoon travels at safe inter-vehicular distance and is string stable. The safety and robustness of platoons
also need to be guaranteed in the presence of platoon formation/deformation8,13 and disturbances from surrounding
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4176 LAN et al.

vehicles.32 These will be considered in the future work by adding a trajectory planner33-35 to generate real-time safe and
optimal speed references for the platoon.

To clearly illustrate the proposed strategy, Section 3 will present a model-based control policy learning strategy, assum-
ing that the matrix Ā of the platooning error system (8) is known. Based on this, Section 4 develops the data-driven policy
learning strategy with an unknown Ā.

3 MODEL-BASED CONTROL POLICY LEARNING

As described in Section 2, the control policy to be designed needs to ensure safety, stability and robustness of the mixed
platoon under the prescribed V2V communication topology. Section 3.1 presents the standard model-based control policy
learning strategy to ensue platoon stability for the given V2V communication topology, without considering platoon safety
and robustness. Section 3.2 further ensures safety and robustness of the policy learning. Section 3.3 summarizes the
proposed model-based control policy learning strategy.

3.1 Standard structurally constrained policy learning

When the system (8) has known matrices Ā and B and d = 0, designing an optimal controller u(t) = K𝜉(t) can be
formulated as solving the linear quadratic regulator (LQR) problem25 with the cost function

J =
∞∑

t=0

(
𝜉(t)⊤Q𝜉(t) + u(t)⊤Ru(t)

)
,

where Q ≽ 0 and R ≻ 0 are user-defined matrices. Solving the LQR problem gives an optimal control gain K∗ without any
restrictions on the V2V communication topology. To address this, for a given topology I, design the structural control
gain K as

K = K∗◦I. (10)

The V2V communication topology I is an 1 × n vector whose elements are either 0 or 1. If u(t) uses the ith element 𝜉i(t)
of the platooning error vector 𝜉(t), then I(i) = 1; otherwise, I(i) = 0. For example, I = [01×2(nc−1) 11×(n−2nc+2)] indicates
that u(t) uses the platooning errors of AV nc, HV i, i ∈ [nc + 1,N], and the integration xI . Imposing the constraint in (10)
ensures u(t) use the specified V2V communication topology I. The platooning performance under different topologies
will be investigated via simulations in Section 5.

The structural control gain K in (10) is determined using Algorithm 1. Since the system (8) is controllable, then by
selecting Q to make (Ā,

√
Q) detectable, the sequence {Kl}∞l=1 generated by Algorithm 1 converges to the optimal structural

gain Kopt.36 The obtained controller ensures platoon stability, but cannot guarantee its safety and robustness. To overcome
this, new policy evaluation and policy improvement methods are presented in Section 3.2.

3.2 Safe and robust policy learning

3.2.1 Policy evaluation

To incorporate the requirements of safety (formulated as (9)) and robustness into policy evaluation (see step 1 in
Algorithm 1), it is necessary to establish their connections. The constraints in (9) are equivalently reformulated with
respect to the augmented system (8) and given as

 =
{

(𝜉,u) ∶ Hx𝜉 +Huu ≤ h
}

, (11)
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LAN et al. 4177

Algorithm 1. Structurally constrained policy learning

Require: Ā, B̄, I, Q, R, K0, 𝛿 > 0.
Initialize: Q0 = Q.
for l = 0, 1, 2,… do

Step 1. Policy evaluation: Compute Pl+1 using

(Ā + B̄Kl)⊤Pl+1(Ā + B̄Kl) − Pl+1 + Ql + K⊤

l RKl = 0.

Step 2. Policy improvement: Compute K∗
l+1 using

K∗
l+1 = −

(
R + B̄⊤Pl+1B̄

)−1 B̄⊤Pl+1Ā.

Step 3. Policy structure-enforcement: Kl+1 = K∗
l+1◦I.

if ‖Kl+1 − Kl‖∕‖Kl‖ ≤ 𝛿 then
Stop iteration and return K = Kl+1.

else
Ll+1 = K∗

l+1 − Kl+1.

Ql+1 = Q + L⊤l+1

(
R + B̄⊤Pl+1B̄

)
Ll+1.

end if
end for

where

Hx =

[
Θ 0
0 0

]

, Θ = [02(N−nc+1)×2(nc−1) diag(Θ, … ,Θ)], Θ =
⎡
⎢
⎢
⎣

0 1
Δhmax

0 − 1
Δhmax

⎤
⎥
⎥
⎦

, Hu =

⎡
⎢
⎢
⎢
⎢
⎣

0
1

umax

− 1
umax

⎤
⎥
⎥
⎥
⎥
⎦

, h = 1[2(N−nc+2)]×1.

By using the formulation in (11), Lemma 1 is given.

Lemma 1. The constraint in (11) is satisfied if

𝜉(t)⊤P𝜉(t) ≤ 𝜌, (12a)

𝜌(Hx +HuK)⊤(Hx +HuK) ≼ 2P, (12b)

for a matrix P ≻ 0 and a scalar 𝜌 > 0.

Proof. If (12) holds, then

𝜌𝜉(t)⊤(Hx +HuK)⊤(Hx +HuK)𝜉(t) ≤ 2𝜉(t)⊤P𝜉(t) ≤ 2𝜌. (13)

By defining 𝜁(t) = (Hx +HuK)𝜉(t), it follows from (13) that

𝜉(t)⊤(Hx +HuK)⊤(Hx +HuK)𝜉(t) ≤ 2 ⇒ 𝜁(t)⊤𝜁(t) ≤ 2. (14)

Due to the structures of the matrices Hx and Hu given in (11), the vector 𝜁(t) is of the following form:

𝜁(t) =
[
𝜁1(t), −𝜁1(t), 𝜁2(t), −𝜁2(t), … , 𝜁N−nc+2(t), −𝜁N−nc+2(t)

]⊤
. (15)
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4178 LAN et al.

It thus follows from (14) that

2
N−nc+2∑

i=1
𝜁i(t)2 ≤ 2 ⇒

N−nc+2∑

i=1
𝜁i(t)2 ≤ 1 ⇒ |𝜁i(t)| ≤ 1, i ∈ [1,N − nc + 2]. (16)

Therefore, the constraint in (11) is satisfied. ▪

The disturbance d in the system (8) satisfies |d| ≤ dmax, where dmax is the maximal acceleration of AV 0. The system
robustness is investigated using the concept of RCIS26 defined below.

Definition 1. Consider the ellipsoidal set (P, 𝜌) = {𝜉 ∶ 𝜉⊤P𝜉 ≤ 𝜌}with a matrix P ≻ 0 and a scalar 𝜌 > 0. The set (P, 𝜌)
is a RCIS for the system (8) if for any initial 𝜉(t0) ∈ (P, 𝜌), there exists a control policy u(t) = K𝜉(t) such that 𝜉(t) ∈ (P, 𝜌)
and (𝜉(t),u(t)) ∈  , for all disturbance |d(t)| ≤ dmax and t ≥ t0.

Definition 1 shows that the system (8) is robust against the disturbance d if (P, 𝜌) is a RCIS for it. The condition to
guarantee this is provided in Lemma 2.

Lemma 2. The ellipsoidal set (P, 𝜌) = {𝜉 ∶ 𝜉⊤P𝜉 ≤ 𝜌} is a RCIS for system (8) if

𝜉(t + 1)⊤P𝜉(t + 1) − 𝜆𝜉(t)⊤P𝜉(t) + 𝛽(𝜉(t)⊤P𝜉(t) − 𝜌) + 𝛼(d2
max − d(t)2) < 0, (17)

where 𝜆 ∈ (0, 1), 𝛼 > 0 and 𝛽 > 0 are given scalars.

Proof. Consider the Lyapunov function W(t) = 𝜉(t)⊤P𝜉(t). The system (8) is quadratically bounded37 if

W(t + 1) < 𝜆W(t) when W(t) > 𝜌 (18)

for all |d(t)| ≤ dmax, with the scalars 𝜆 ∈ (0, 1) and 𝜌 > 0.
If W(t + 1) < 𝜆W(t), then W(t + 1) −W(t) < (𝜆 − 1)W(t) < 0. This implies that the Lyapunov function W(t) decreases

when W(t) > 𝜌. Hence, the state 𝜉(t) will remain in the set (P, 𝜌) = {𝜉 ∶ 𝜉(t)⊤P𝜉(t) ≤ 𝜌} once entering it, which makes
(P, 𝜌) a RCIS for the system (8). The condition (18) can be effectively examined by using the inequality:37

W(t + 1) − 𝜆W(t) + 𝛽 (W(t) − 𝜌) + 𝛼
(

d2
max − d(t)2

)
< 0

with the scalars 𝛼 > 0 and 𝛽 > 0. Substituting W(t) = 𝜉(t)⊤P𝜉(t) into the above inequality gives (17). ▪

According to Lemmas 1 and 2, the constraint in (11) is satisfied and the system (8) is robust against the disturbance
if both (12) and (17) hold. Hence, the policy evaluation in Algorithm 1 is reformulated as the following optimization
problem:

min
Pl+1,𝜌l+1

||l||,

subject to: 𝜉(t + 1)⊤Pl+1𝜉(t + 1) − 𝜆𝜉(t)⊤Pl+1𝜉(t) + 𝛼
(

d2
max − d(t)2

)
< 0, (19a)

𝜉(t)⊤Pl+1𝜉(t) ≤ 𝜌l+1, (19b)

𝜌l+1(Hx +HuKl)⊤(Hx +HuKl) ≼ 2Pl+1, (19c)

𝜖1I ≼ Pl+1 ≼ 𝜖2I, 𝜌l+1 > 0 (19d)

with the cost function l defined as

l = (Ā + BKl)⊤Pl+1(Ā + BKl) − Pl+1 + Q + K⊤

l RKl (20)

and the given scalars 𝜆 ∈ (0, 1), 𝛼 > 0, 𝜖1 > 0, and 𝜖2 > 0.
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LAN et al. 4179

Algorithm 2. Backtracking constraint enforcement

Require: Kl, Ks
l+1, 𝛾 ∈ (0, 1).

Initialize: s0 = 1.
for j = 0, 1, 2,… do

sj+1 = 𝛾sj.
Kl+1 = Kl + sj

(
Ks

l+1 − Kl
)
.

if 𝜌l+1(Hx +HuKl+1)⊤(Hx +HuKl+1) ≻ 2Pl+1 then
Stop and return Kl+1.

end if
end for

Minimizing ||l|| promotes a solution that is close to the solution of the traditional policy evaluation in Algorithm 1
without constraint and disturbance. Combining (19a) and (19b) ensures satisfaction of (17), while combining (19b) and
(19c) ensures satisfaction of (12). The inequalities in (19d) ensure positive definiteness of the decision variables Pl+1
and 𝜌l+1.

3.2.2 Policy improvement and structure-enforcement

After solving Pl+1 from (19), the non-structural gain K∗
l+1 and the structural gain Ks

l+1 are computed steps 2 and 3 in
Algorithm 1 and given as

K∗
l+1 = −(R + B

⊤

Pl+1B)−1B
⊤

Pl+1Ā, (21a)

Ks
l+1 = K∗

l+1◦I. (21b)

The obtained gain Ks
l+1 may not satisfy the constraint in (11). To ensure this, a new gain Kl+1 that is as close as possible to

Ks
l+1 is generated using Algorithm 2 based on the backtracking linear search technique.38

3.3 Model-based control policy learning strategy

The proposed model-based policy learning involves an iterative execution of two steps: (i) Policy evaluation by solving the
optimization problem in (19), and (ii) Policy improvement and structure-enforcement by using (21) and Algorithm 2. The
policy learning needs to be implemented online because the optimization problem in (19) depends on the real time values
of 𝜉(t + 1), 𝜉(t), and d(t). This is different from the traditional policy iteration in Algorithm 1 that can be implemented
fully offline. The matrix B is known and constant, but the system matrix Ā is unknown due to its dependence on the
unknown HV parameters. Since both (19) and (21a) use the unknown system matrix Ā, the proposed model-based policy
learning is not yet implementable. To address this, a data-driven control policy learning is developed in Section 4 based
on the results in this section.

4 DATA-DRIVEN CONTROL POLICY LEARNING

Building on the model-based policy learning strategy in Section 3, Section 4.1 presents an online data-driven learning
strategy for the mixed platoon. Section 4.2 further discusses the extension of the proposed strategy to mixed platoons
that are (i) with nonlinear AV models and inertial delays, (ii) with more general formations, and (iii) under non-steady
state.
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4180 LAN et al.

4.1 The proposed data-driven policy learning strategy

Efficient policy learning requires persistent excitation of the system by injecting a proper perturbation signal.25 A tradi-
tional method is adding a noise to the controller of AV nc for policy learning,23,24 but it cannot fully excite the platooning
error system (8). This is due to the fact that AV nc has no impact on its preceding HVs. Since the entire platoon is influenced
by the disturbance d (i.e., acceleration of AV 0), a small time-varying d is used as the excitation signal in the proposed
policy learning.

Define T as the number of data-points collected for each policy learning step and tl as the time instance that the lth
learning step is executed. The set of all the learning execution time instants is denoted as Tlearn = {t ∶ t = lT, l ∈ N}.
During the lth learning cycle, that is, within the time interval [tl−1 + 1, tl], the controller u(k) = Kl𝜉(k), k ∈ [tl−1 + 1, tl], is
applied to AV nc. The values of 𝜉(k), u(k) and d(k), k ∈ [tl−1 + 1, tl], are obtained through vehicle onboard sensors (e.g.,
radar) and V2V communications. At the learning execution time instance tl, the collected T historical data are used to
construct the datasets

Xl = {𝜉(k)}
tl
k=tl−1+1, X̃ l = {𝜉(k)}

tl
k=tl−1+1, Ul = {u(k)}tl

k=tl−1+1, Dl = {d(k)}tl
k=tl−1+1,

with 𝜉(k + 1) = 𝜉(k + 1) − Ēd(k). By using these datasets, the data-driven policy learning is formulated below.

4.1.1 Policy evaluation

Multiplying (20) from the left and right with 𝜉(k)⊤ and 𝜉(k), respectively, to get

̃ (k) = 𝜉(k + 1)⊤P𝜉(k + 1) − 𝜉(k)⊤P𝜉(k) + 𝜉(k)⊤Q𝜉(k) + u(k)⊤Ru(k), (22)

where u(k) = Kl𝜉(k) and 𝜉(k + 1) = (Ā + BKl)𝜉(k) are used.
By leveraging (19) and (22), the matrix Pl+1 is solved from the following optimization problem:

min 1
2

tl∑

k=tl−1+1
||̃ (k)||2 + 𝜎𝜌l+1,

subject to: 𝜉(k + 1)⊤Pl+1𝜉(k + 1) − 𝜆𝜉(k)⊤Pl+1𝜉(k) + 𝛼(d2
max − ||d(k)||2) < 0, k ∈ [tl−1 + 1, tl], (23a)

𝜉(k)⊤Pl+1𝜉(k) ≤ 𝜌l+1, k ∈ [tl−1 + 1, tl], (23b)

𝜌l+1(Hx +HuKl)⊤(Hx +HuKl) ≼ 2Pl+1, (23c)

𝜖1I ≼ Pl+1 ≼ 𝜖2I, 𝜌l+1 > 0, (23d)

where ̃ (k) is defined in (22), and the scalars 𝜎 > 0, 𝜆 ∈ (0, 1), 𝛼 > 0, 𝜖1 > 0, and 𝜖2 > 0 are user-specified.

4.1.2 Policy improvement and structure-enforcement

The policy improvement in (21a) can be equivalently accomplished via solving the following optimization problem:25

min 𝜉(t)⊤
[(

K∗
l+1

)⊤RK∗
l+1 +

(
Ā + BK∗

l+1
)⊤Pl+1

(
Ā + BK∗

l+1
)
+ Q

]

𝜉(t). (24)

By using the historical datasets, (24) is reformulated as

min 1
2

tl∑

k=tl−1+1
𝜉(k)⊤

[(
K∗

l+1
)⊤RK∗

l+1 +
(

Ā + BK∗
l+1

)⊤Pl+1
(

Ā + BK∗
l+1

)]

𝜉(k), (25)
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LAN et al. 4181

Algorithm 3. Proposed data-driven policy learning

Require: B̄, I, Q, R, 𝜎, 𝜆, 𝛼, 𝜖1, 𝜖2, 𝛿, K0.
Initialize: Q0 = Q, G0 = In, l = 0.
for t = 0, 1, 2,… do

Apply the controller u(t) = Kl𝜉(t).
Construct the datasets Xl, X̃l, Ul and Dl.
if t ∈ Tlearn then

Solve Pl+1 from (23).
Obtain K∗

l+1 using (26).
Compute Ks

l+1 using (21b).
Determine Kl+1 using Algorithm 2.

end if
if ‖Kl+1 − Kl‖∕‖Kl‖ ≤ 𝛿 then

Stop learning and fix the gain as K = Kl+1.
else

Ll+1 = K∗
l+1 − Kl+1.

Ql+1 = Q + L⊤l+1(R + B̄⊤Pl+1B̄)Ll+1.

end if
end for

where the constant term 1
2

∑tl
k=tl−1+1𝜉(k)

⊤Q𝜉(k) is removed because it does not affect the optimization results.
The optimization problem (25) is solved using the following recursive least squares method:39

Gk+1 = Gk + 𝜉(k)𝜉(k)⊤ ⊗ (R + B
⊤

Pl+1B), (26a)

𝜙k+1 = 𝜉(k)⊗
(

RFk𝜉(k) + B
⊤

Pl+1𝜉(k)
)

, (26b)

vec(Fk+1) = vec(Fk) − 𝓁G−1
k+1𝜙k+1, (26c)

where k ∈ [tl−1 + 1, tl], Ftl−1+1 = Kl, and Ftl+1 = K∗
l+1. The initial value G0 and the learning rate 𝓁 > 0 are user-specified.

After obtaining K∗
l+1, the policy structure-enforcement is performed as in (21b) and independent of historical data.

Combining (23), (26), (21b) and Algorithm 2 gives the proposed data-driven control policy learning strategy outlined
in Algorithm 3. The initial feasible gain K0 is obtained using Algorithm 1 based on the average HV model under the
constraint in (11).

The property of Algorithm 3 is stated in Theorem 1.

Theorem 1. The proposed data-driven control policy learning in Algorithm 3 establishes a safe and robust mixed platoon
when the inter-vehicular distance between each HV and its preceding vehicle lies within the interval [hs, hg].

Proof. According to Lemmas 1 and 2, the set (Pl, 𝜌l) = {𝜉 ∶ 𝜉⊤Pl𝜉 ≤ 𝜌l}, where Pl and 𝜌l are determined at the learning
time instant tl−1, is a RCIS for the system (8) in the lth learning cycle. Hence, for the time t ∈ [tl−1 + 1, tl], 𝜉(t) is upper
bounded as

||𝜉(t)||2 ≤ 𝜅l ⋅max{𝜉(0)⊤P0𝜉(0), 𝜌l} (27)

for all |d(t)| ≤ dmax with 𝜅l = 1∕𝜆min(Pl).
Denote lf as the final learning cycle. According to Algorithm 3, the control gain K is fixed as Klf+1. This implies that

the set (Plf+1, 𝜌lf+1) is a RCIS for the platooning error system (8) for all t > tlf . Hence, by using (27), for all t ≥ 0, the state
𝜉(t) is upper bounded as

||𝜉(t)||2 ≤ 𝜅 ⋅max{𝜉(0)⊤P0𝜉(0), 𝜌}, ∀|d(t)| ≤ dmax, (28)
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4182 LAN et al.

where 𝜅 = maxl∈[1,lf+1]{𝜅l} and 𝜌 = maxl∈[1,lf+1]{𝜌l}.
The relation in (28) is satisfied in both the transients and steady state. Therefore, the mixed platoon is internally stable

and robust against the disturbance d introduced by AV 0. Also, by using Algorithm 3, the conditions (23b) and (23c) are
satisfied, meaning that the controller satisfies the constraint in (11). Furthermore, since the platooning errors of the ego
AV nc are robustly stable against the leader disturbance d, the mixed platoon is head-to-tail string stable.21 ▪

The proof of Theorem 1 shows that applying the obtained control policy at each learning cycle results in a safe and
robust mixed platoon. Hence, if the initial controller gain K0 is chosen to ensure safety of the mixed platoon, then the
safety is guaranteed during learning. In this article, the initial controller gain K0 is the LQR gain computed based on an
average HV model as in the robust control design.21 It will be shown in the simulation results that the initial controller
gain K0 is only applied to the ego AV during the first learning cycle which is short (<2 s). Hence, in practice it is not
difficult to ensure safety of the mixed platoon when applying K0.

The proposed online data-driven policy learning strategy in Algorithm 3 is practically implementable with low com-
putational cost. The optimization problem (23) is convex and can be efficiently solved using off-the-shelf solver such as
MOSEK.40 The computation in all the other steps involves only matrix manipulations. For a fixed mixed platoon forma-
tion, the policy learning is terminated once it converges to the optimal control gain K. The low computational cost will
be shown in the simulations in Section 5.

4.2 Extensions of the proposed policy learning strategy

4.2.1 Mixed platoons with nonlinear AV models and inertial delays

The proposed policy learning strategy is developed using the linear model (4) for the AVs. It is shown below that the
proposed strategy is also applicable when the AVs are represented by nonlinear models and both the AVs and HVs have
inertial delays. The dynamics of AV 0 and AV nc are represented by the widely used nonlinear model:6

ṗi = vi, (29a)
𝜂T,i

rw,i
Ti = miv̇i + CA,iv2

i +migfi, (29b)

Ṫi =
1
𝜏i
(Tdes,i − Ti), (29c)

where i = 0,nc. pi is the vehicle position and vi is the longitudinal velocity. Ti and Tdes,i are the actual and desired torques,
respectively. 𝜂T,i is the mechanical efficiency of drivetrain and rw,i is the wheel radius. mi is the vehicle mass and g is the
gravity acceleration. CA,i is the lumped aerodynamic drag coefficient and fi is the coefficient of rolling resistance. 𝜏i is the
inertial delay.

By applying the exact feedback linearization law

Tdes,i =
𝜂T,i

rw,i

[
CA,ivi(2𝜏iv̇i + vi) +migfi +miui

]
,

where ui is the new control signal, (29) is converted into a linear model:

ṗi = vi, (30a)

v̇i = ai, (30b)

ȧi =
1
𝜏i
(ui − ai). (30c)

The OV model (1) with inertial delay is represented by

ḣi = vi−1 − vi, (31a)

 10991239, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6412 by T

est, W
iley O

nline L
ibrary on [01/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



LAN et al. 4183

v̇i = ai, (31b)

ȧi =
1
𝜏i

[
𝛼i(V(hi) − vi) + 𝛽i(vi−1 − vi) − ai

]
. (31c)

Introducing the response delay 𝜏i to the OV model helps to narrow the gap between the theoretic car-following model
and the field test data.41 The proposed policy learning strategy for mixed platoons where the HVs have response delays
will be demonstrated through simulations in Section 5.

Since the obtained models (30) and (31) are linear, the proposed policy learning strategy is applicable after some trivial
modifications. This has not been studied in the existing works on mixed vehicle platoons,15-24 or most existing literature
on platoons of pure AVs.6,7 Note that in this case, the policy learning needs the vehicle acceleration data.

4.2.2 Mixed platoons with more general formations

This article focuses on the platoon formation in Figure 1, which can represent general mixed vehicle platoons with differ-
ent penetration rates of AVs. First, it contains the “1 AV + n HVs,”15,18 “n HVs + 1 AV”23 and “1 AV + n HVs + 1 AV”19

mixed platoons as special cases. Second, it also covers the case when there are several successive AVs in the platoon. This
is because for the successive AVs, the following AVs are fully controllable and can track the first AV accurately by using a
well-established cooperative adaptive cruise controller, for example, the model predictive controller.30 In this sense, the
successive AVs in the mixed platoon can be regarded as a single “virtual AV” and only the controller of the first AV needs
to be designed. This will be demonstrated in the simulations in Section 5.

The proposed learning strategy works under different V2V communication topologies and the switching among them
(which will be shown in Section 5). Note that the topology changes may also result from the platoon formation changes
due to vehicle joining or leaving. Hence, the proposed strategy could be applied to mixed platoons with formation changes.

4.2.3 Mixed platoons under non-steady state

The proposed policy learning strategy is developed under the condition that the HVs are operated near the steady-state
(h∗, v∗), where hs < h∗ < hg. For completeness, it is worth discussing applicability of the strategy to the non-steady state
cases: hi ≤ hs and hi ≥ hg, i ∈h. Without loss of generality, only the cases when HV i is not the rear vehicle are discussed
below.

When hi ≤ hs holds for HV i, it follows from (2) that V(hi) = 0 and HV i will brake to avoid collision with the vehicle
ahead. The mixed platoon is then split into two sub-platoons: Sub-platoon 1 consists of all vehicles ahead of HV i, and
Sub-platoon 2 contains the rest (including HV i). If Sub-platoon 1 contains AVs (apart from AV 0), it is stabilizable by
applying the proposed policy learning strategy. If Sub-platoon 1 has no AV (except AV 0), then there is no controller to
design and it is out of the scope of this article. If Sub-platoon 2 has AVs and there is enough time to learn new control
policies, then Sub-platoon 2 will be steered to the new steady state with v∗ = 0 without collisions, where the inter-vehicular
distances across the sub-platoon may not be the same. If Sub-platoon 2 has no AVs, then all the HVs behind HV i will also
brake when hj ≤ hs holds for each HV j.

When hi ≥ hg holds for HV i, it follows from (2) that V(hi) = vmax and HV i will travel at the constant velocity vmax.
It is reasonable to assume that all the HVs on the mixed platoon have the same maximum velocity vmax. If there is
enough time for the AVs to learn new control policies by using the proposed strategy, then the mixed platoon will be
steered to the new steady state with v∗ = vmax, where the inter-vehicular distances across the platoon may not be the
same.

5 SIMULATION RESULTS

To evaluate performance of the proposed policy learning strategy, two sets of simulations are conducted for a seven-vehicle
mixed platoon: the first set demonstrates efficacy of the strategy using a non-aggressive leader (see Section 5.1), and
the second set further demonstrates the robustness by considering an aggressive leader and uncertainties in HVs (see
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4184 LAN et al.

Section 5.2). The simulations are conducted in MATLAB and the optimization problem (23) is solved using the toolbox
YALMIP42 with the solver MOSEK.40

5.1 Efficacy of the proposed policy learning strategy

This set of simulations consider the mixed platoon with a non-aggressive leader, whose velocity is 15 m/s in t ∈ [0, 60] s
and 20 m/s in t ∈ (60,120] s. The parameters of the HVs are: 𝛼1 = 0.1, 𝛽1 = 0.3, 𝛼2 = 0.2, 𝛽2 = 0.5, 𝛼3 = 0.15, 𝛽3 = 0.3,
𝛼5 = 0.3, 𝛽5 = 0.25, 𝛼6 = 0.3, 𝛽6 = 0.4. The other platoon parameters are: hg = 35 m, hs = 5 m, vmax = 30 m∕s, ts = 0.02 s,
umax = 4 m∕s2, Δhmax = 10 m, dmax = 3 m∕s2. The initial vehicle state (pi, vi) are randomly set as: (120, 15), (102, 13),
(80, 12), (59, 12), (40, 12), (21, 12), (0, 12). The initial controller gain K0 used in the learning algorithm is the LQR gain
computed by using an average model with 𝛼i = 0.2 and 𝛽i = 0.4 for all HVs.

To provide a comprehensive evaluation, three simulation cases are conducted: Case 1 considers four representative
V2V communication topologies and the random switching among them, Case 2 considers different penetration rates of
AVs, and Case 3 compares the proposed strategy with existing methods.

Case 1: This case considers the seven-vehicle mixed platoon with two AVs (vehicles 0 and 4). The proposed strategy
is used to learn the policy for AV 4 with the parameters: T = 70, 𝜎 = 10, 𝜆 = 10−10, 𝛼 = 10−10, 𝜖1 = 10−12, 𝜖2 = 1, 𝛿 = 0.01,
G0 = I13, 𝓁 = 1, 𝛾 = 0.5, Q = diag(0.01 × I6, 1.5 × I2, 0.5 × I4, 0.01), R = 0.1. This choice of the weighting matrix Q is to
penalize more on the 7-th to 12-th elements of the platooning error vector 𝜉(t), which corresponds to the platooning errors
of AV 4, HV 5, and HV 6. Since the control actions of AV 4 directly influence the behaviors of HV 5 and HV 6, choosing
this Q helps AV 4 learn a controller to better stabilize the vehicles AV 4, HV 5, and HV 6 and thus the entire mixed platoon.
The proposed strategy is implemented with the following four representative V2V communication topologies:

• Topology 1, I = 11×13, AV 4 uses full platooning errors.
• Topology 2, I = [01×4 11×9], AV 4 uses most platooning errors.
• Topology 3, I = [01×4 11×6 01×2 1], AV 4 uses platooning errors of itself, the HV ahead and the HV behind, as in the

bilateral cooperative control.18,20

• Topology 4, I = [01×6 11×2 01×4 1], AV 4 only uses its own platooning errors, as in the traditional adaptive cruise control
(ACC).43

It is seen from Figure 3 that the control gain Kl converges to the optimal value Kopt in 10 s for all the four topologies. By
implementing the obtained controller, all the seven vehicles reach the same longitudinal velocity after short transients,
as shown in Figure 4. The inter-vehicular distances between each pair of two successive vehicles all reach the desired
distance at steady state, as seen from Figure 5. During the transients, the inter-vehicular distance errors Δhi, i = 4, 5, 6,
always satisfy the imposed constraint |Δhi| ≤ Δhmax. After a sudden acceleration of AV 0 at 60 s, the errorsΔhi, i ∈ [2, 6],
are not larger than Δh1. This means that the disturbance from AV 0 is not amplified when propagating downstream the
platoon, confirming the platoon robustness and string stability.

F I G U R E 3 Convergence of policy learning under different V2V communication topologies: Case 1
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LAN et al. 4185

F I G U R E 4 Vehicle velocities under different V2V communication topologies: Case 1

F I G U R E 5 Inter-vehicular distances under different V2V communication topologies: Case 1

To compare the platooning performances under different topologies and the random switching among them, the
2-normed platooning error ||𝜉(t)|| is used. The value of ||𝜉(t)|| can quantify the overall deviations of (hi, vi) from the equi-
librium point (h∗, v∗) at time t under each topology. As shown in Figure 6, the values of ||𝜉(t)|| are the smallest under
Topology 1, the biggest under Topology 4, and similar under the other two topologies. Recalling here that the number of
platooning errors used by AV 4 is in decreasing order from Topologies 1 to 4. Hence, the results in Figure 6 demonstrate
that the platoon stability is enhanced by using information from more vehicles, which coincides with the observations in
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F I G U R E 6 Platooning errors under different V2V communication topologies: Case 1

F I G U R E 7 Platooning errors with different numbers of AVs: Case 2

References 18 and 20. The result of ||𝜉(t)|| under V2V communication topology switching (from 2 to 4 at 30 s, then to 3 at
60 s, and to 1 at 90 s) shows that the proposed strategy is effective in the presence of topology changes.

Case 2: This case considers the seven-vehicle mixed platoon with different numbers of AVs: 2 AVs (vehicles 0 and 4),
3 AVs (vehicles 0, 4, and 6), 4 AVs (vehicles 0, 2, 4, and 6), and 5 AVs (vehicles 0, 2, 3, 4, and 6). There are no consecutive
AVs on the platoons for the first three penetration rates. For these cases, the proposed learning strategy is applied to
each AV by using the platooning errors of itself, the HVs ahead, and the HVs behind (but ahead of the next AV). For the
highest penetration rate, there are three adjacent AVs (vehicles 2, 3, and 4). In this case, the learning strategy is applied to
vehicle 2, while vehicles 3 and 4 are equipped with the model predictive controller30 without considering communication
delays.

The platooning errors obtained under different penetration rates of AVs are reported in Figure 7. It is seen that the
platooning errors all reach zero after short transients, confirming efficacy of the proposed strategy in establishing stable
mixed platoons. The cases of 2 AVs and 3 AVs have similar platooning errors, because the additional AV (vehicle 6) is at
the rear and its control policy has no effect on the vehicles ahead of it. As the number of AVs increases to 4 (and to 5),
convergence of the platooning errors becomes faster. Hence, increasing the penetration rates of AVs makes the platoon
easier to stabilize.

Case 3: This case demonstrates advantages of the proposed learning strategy against the traditional ACC method43

and the data-driven ADP method.24 The three methods are applied to the seven-vehicle mixed platoon with two AVs
(vehicles 0 and 4). The proposed strategy is implemented as in Case 1 under Topology 1. The traditional ACC for AV 4
consists of a gap controller ugap(t) and a speed controller uspeed(t). It uses the time-varying safe inter-vehicular distance
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F I G U R E 8 Platooning errors by implementing different control methods: Case 3

dsafe(t) = dstill + tgvi(t), where dstill is the standstill distance and tg is the time headway. When the inter-vehicular distance
between HV 3 and AV 4 satisfies h4(t) < dsafe(t), the gap controller ugap(t) = kh(h4(t) − dsafe(t)) + kv(v3(t) − v4(t)) is acti-
vated to maintain a safe inter-vehicular distance, where kh and kv are constant gains. When h4(t) ≥ dsafe(t), the speed
controller uspeed(t) = min

(
ks(vset − v4(t)),ugap(t)

)
is activated to control AV 4 at the specified velocity vset, where ks is a con-

stant gain. In this simulation, the ACC parameters are set following the MATLAB example “Adaptive Cruise Control with
Sensor Fusion” as: kh = 0.2, kv = 0.4, ks = 0.5, dstill = 5 m, tg = 1.5 s, and vset = 24.5 m/s. The ADP method24 is adopted
to compute the constant gain KADP and the control law u(t) = −KADPx(t) for AV 4, by using platooning errors of all the
vehicles.

The platooning errors ||𝜉(t)|| by applying the three methods are shown in Figure 8. The proposed policy learning
strategy can steer the platooning errors to zero and establish a stable mixed platoon, while the traditional ACC cannot.
Although the ADP method stabilizes the platoon, it cannot steer the platooning errors to zero. This means that the ADP
method cannot steer the mixed platoon to the desired equilibrium, leading to larger inter-vehicular distances than the
proposed method.

5.2 Robustness of the proposed policy learning strategy

This set of simulations demonstrate robustness of the proposed strategy by considering the seven-vehicle mixed platoon
with two AVs (vehicles 0 and 4) in the presence of an aggressive leader velocity profile and uncertainties in human driving
behaviors. The leader follows the SFTP-US06 Drive Cycle (see top plot in Figure 9) that can represent the aggressive, high
speed and/or high acceleration driving behaviors with rapid speed fluctuations. To simulate the uncertainties in human
driving behaviors, the models of HVs (1, 2, 3, 5, and 6) are assumed to have the following reaction delays:41 𝜏1 = 0.12 s,
𝜏2 = 0.16 s, 𝜏3 = 0.15 s, 𝜏5 = 0.18 s, and 𝜏6 = 0.2 s, respectively. To capture the randomness of HVs, a white noise w(t) is
added to the HV model parameters 𝛼i and 𝛽i, i = 1, 2, 3, 5, 6, that are used in the first set of simulations. The white noise
satisfies |w(t)| < 0.1. All the other parameters are same as the first set of simulations, except that hg = 50 m, vmax = 36 m∕s,
and umax = 4 m∕s2. The proposed learning strategy is implemented using the communication Topology 1. As shown in
the bottom plot in Figure 9, the inter-vehicular distances across the platoon are larger than zero. This confirms that the
proposed policy learning strategy can ensure stability and safety of the mixed platoon under the aggressive leader and
HVs uncertainties.

The head-to-tail string stability is further verified based on the closed-loop transfer functions Ti from the leader accel-
eration a0 to the acceleration ai of the ith follower, i = 1, 2, 3, 4, 5, 6. If the magnitude of Ti is not larger than 1, then
the deviation of the leader velocity at each sampling step (i.e., a0) is not amplified when propagating to the ith fol-
lower.44 The magnitudes of all the transfer functions are reported in Figure 10. It can be seen that the magnitudes of
all the transfer functions do not exceed 1 (0 dB). Hence, the deviations of the leader velocity are not amplified when
propagating through the entire platoon, which means that the established mixed vehicle platoon is head-to-tail string
stable.

 10991239, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.6412 by T

est, W
iley O

nline L
ibrary on [01/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4188 LAN et al.

F I G U R E 9 The leader velocity v0 and the inter-vehicular distance

F I G U R E 10 Bode diagrams (magnitudes) of the transfer functions from a0 to ai, i = 1, 2, 3, 4, 5, 6

6 CONCLUSION

An online data-driven strategy is proposed to learn the control policies of the AVs in the mixed vehicle platoon with
unknown HV parameters. The proposed learning strategy incorporates constraints of control input, inter-vehicular dis-
tance errors, and V2V communication topology. The learned control policy can be implemented using a prescribed V2V
communication topology, and establish a safe, robust and stable mixed platoon. The simulation results demonstrate that
the proposed learning strategy is efficient under different communication topologies, and robust against the aggressive
leader and uncertainties in human driving behaviors. The proposed strategy will be further developed to guarantee pla-
toon safety and robustness in the presence of platoon formation/deformation and disturbances from surrounding vehicles.
Since platoons are known to be beneficial for fuel saving, it is also worth extending the proposed strategy for ecological
mixed vehicle platooning by reducing the fuel consumption of the platoon as a whole with the help of a high-level velocity
planner.
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