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Abstract—In resonator-coupled bandpass filter 3D design,
it is a routine that the filter optimization methods are
guided/supervised by designers’ experience to carry out an
iterative design optimization process. To realize automated or
unsupervised filter 3D design optimization, a new method,
called hybrid surrogate model-assisted evolutionary algorithm
for filter optimization (H-SMEAFO), is proposed. H-SMEAFO
aims to automatically obtain a highly optimal filter 3D design
without designers’ interaction (i.e., unsupervised) and is also not
restricted to certain kinds of filter structures. In H-SMEAFO,
the key innovations include a hybrid response feature-based
objective function and a hybrid surrogate model-assisted global
optimization algorithm; both are designed bespoke for filter de-
sign landscape characteristics. The performance of H-SMEAFO
is demonstrated by an 8th order dual-band waveguide filter with
4 transmission zeros and a 6th order waveguide filter with 2
transmission zeros, for which, unsupervised design optimization
does not appear to be possible using existing methods. Numerical
results show the effectiveness and advantages of H-SMEAFO.

Index Terms—Design optimization, Differential evolution, Fil-
ter response features, Microwave filters, Objective function,
Surrogate modeling

I. INTRODUCTION

Microwave filter 3D electromagnetic (EM) simulation-based
design optimization is attracting much attention [1]. Given a
filter structure and an initial design, filter design optimization
aims to obtain an optimal 3D design (i.e., geometric parameter
values) that satisfies a set of predefined performance specifi-
cations. Filter design landscapes are often highly multimodal
(i.e., have numerous local optima) [2] and are challenging
for most optimization algorithms. Therefore, filter 3D design
optimization research focuses on (1) methods to obtain a high-
quality initial design (e.g., the coupling matrix (CM) method
[3], [4]), and (2) methods to perform optimization from the
initial design. The paper focuses on the latter.

Thanks to the rich filter analysis and design methodology
research [5], effective experience-guided design procedures are
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proposed. In these procedures, off-the-shelf local optimizers
are iteratively employed. For example, in the step tuning
procedure, the filter is optimized by successively adding one
resonator at a time and carrying out a corresponding optimiza-
tion run in each iteration [6], [7]. In advanced port tuning
procedure [8], [9], auxiliary ports and tunable elements are
added for providing circuit-based surrogates in each step of
optimization. In these methods, because the designer’s tuning
procedure and experience play a major role, we call them
“supervised” design optimization, which is the current routine.

In recent years, novel successful intelligent filter design
optimization methods are proposed. For example, space map-
ping methods [1], [10], [11] use low-fidelity models (e.g.,
equivalent circuits) to reduce the necessary number of compu-
tationally expensive high-fidelity EM simulations. Cognition-
driven optimization methods [12], [13] integrate designers’
intuition of firstly optimizing the frequency features and then
optimizing the ripple heights. The homotopy method [14]
constructs a series of intermediate optimization problems from
the initial design to the optimal design and has strength when
the initial design is not of high quality. Machine learning
techniques are employed in the above methods for speed im-
provement. Compared to off-the-shelf local optimizers, these
methods obtain optimal filter designs with much higher quality
more efficiently. Hence, optimization is playing an equally
important role compared to designers’ guidance. However,
local optimizers are employed, and in many cases, designers’
interaction is still necessary to jump out of local optima. We
therefore call them “semi-supervised” design optimization.

This paper aims to propose “unsupervised” filter design
optimization. “Unsupervised” refers to two characteristics:
(1) It can satisfy stringent design specifications by pressing
one button, and designers’ interaction is not needed, and (2)
It is general enough and not restricted to certain kinds of
filter structures. The benefits include: (1) Much of designers’
time (i.e., cost) is saved because they are transformed into
computing time as no interaction is needed. This is especially
useful considering nowadays’s largely increased availability
and largely decreased financial cost of computing resources.
(2) Because designers’ experience does not play a role, unsu-
pervised design optimization applies to average engineers with
less design experience.

Although unsupervised design optimization has already
been realized for antennas, it is still very challenging for
filters due to their landscape characteristics [2]. To achieve
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this goal, the following elements are essential: (1) Global
optimization algorithms bespoke for filters. Unlike the above-
mentioned successful local optimizers for filters, a global
optimizer is essential considering the highly multimodal filter
design landscape in one-off optimization. To the best of
our knowledge, SMEAFO [2] is the only global optimizer
designed for filters. However, it targets not complex problems
and the convergence speed needs improvement. (2) Methods
seeking an initial design that is as close to the final optimal
design as possible. Several successful methods are available
[15] and the method in [16] is used in this work. (3) Proper
objective functions simplifying the filter design landscape.
Except objective functions based on the magnitude of S-
parameters (e.g., max(|S11|)), which is straightforward and
very widely used, several promising methods are proposed
[13], [14], [17], but this area is far from mature. Unsupervised
filter design optimization is still in its infancy.

One thing that must be mentioned is the optimization
time. For a single filter, unsupervised design is often slower
than supervised design due to the use of global optimization
(i.e., no-free-lunch). Hence, it is important to improve the
optimization speed for unsupervised design, which is one of
the goals of this research. However, due to no interaction
being needed, many filters can be optimized in parallel, which
alleviates this drawback. Hence, we assume a few days’ time
consumption for unsupervised design is reasonable compared
to the testing and tuning time, which could be months.

In this paper, a new method, called hybrid surrogate model
assisted evolutionary algorithm for filter optimization (H-
SMEAFO), is proposed. Two key innovations include: (1)
A new hybrid objective function that adaptively combines
various features of filter response is proposed. (2) A new
surrogate model-assisted hybrid optimization algorithm is pro-
posed, which iteratively carries out Gaussian process surrogate
model-assisted differential evolution and Nelder-Mead simplex
algorithms self-adaptively. Two typical filters, including an 8th
order symmetric dual-band waveguide filter with 4 transmis-
sion zeros and a 6th order waveguide filter with 2 transmis-
sion zeros, are used to test H-SMEAFO. Experiments and
comparisons verify the effectiveness of H-SMEAFO to realize
unsupervised filter design optimization reasonably efficiently
for the first time (to the best of our knowledge) as well as its
advantages compared to state-of-the-art methods.

The remainder of the paper is organized as follows. Section
II presents the background knowledge. Section III elaborates
on the H-SMEAFO method, including the algorithm struc-
ture, the new hybrid objective function, and the new hybrid
optimization algorithm. Section IV presents the performance
and advantages of H-SMEAFO using two real-world filter
examples, respectively. The concluding remarks are provided
in Section V.

II. BACKGROUND KNOWLEDGE

A. Filter Design Process and Unsupervised Design Optimiza-
tion

A typical filter design process is shown in Fig. 1. In this
paper, resonator-coupled bandpass filters are targeted. They

Figure 1. A typical filter design process

are most widely used in communication systems and are the
focus of most filter design optimization research works. From
the design specifications, the designer first needs to decide
on a viable fabrication technique and filter structure. Then,
the design and prototyping start. Note that unlike many other
microwave devices (e.g., antennas, couplers), the blessing of
filter design is that there are systematic ways to obtain an
initial design with reasonable quality, and the procedure is
called synthesis [18] and physical dimensioning [19].

Synthesis aims to generate element values corresponding to
particular filtering performance in the normalized frequency
domain, i.e., a CM [18] or lumped-element equivalent circuit
[20]. The obtained element values often have a one-to-one
correspondence to the geometrical dimensions of the physical
elements, e.g., resonators or coupling structures. Obtaining the
initial 3D design from the element values is called physical di-
mensioning. There are various physical dimensioning methods
with different qualities and simplicity.

Although the initial 3D design provides much information
and is often not very far from the optimal 3D design satisfying
the specifications, their response is often poor and a consecu-
tive 3D optimization using EM simulations is needed. This is
because the initial design is generated based on the CM, which
is the ideal condition and with much approximation. Also, due
to the highly multimodal filter design landscape characteristics,
the optimization problem is challenging for most optimization
methods. Hence, the supervised, semi-supervised and unsu-
pervised filter design optimization mentioned in Section I
are for this step. As described in Section I, in contrast with
supervised and semi-supervised design, unsupervised design
should not rely on designers’ experience-based decisions in
the design optimization process and can obtain the optimal
design satisfying the specifications on its own from the initial
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design. Then, using the obtained optimal design from this step,
the yield of the filter is optimized considering fabrication error
[21], which is out of the scope of this paper.

Note that supervised, semi-supervised, and unsupervised
filter design optimization complement each other and target
different kinds of users. Supervised design procedures mainly
target experienced designers, semi-supervised optimization
methods target both experienced designers and average engi-
neers, and unsupervised design optimization methods mainly
target average engineers, although experienced designers may
also use them for automated design.

As said in Section I, a global optimizer is essential for
unsupervised filter design optimization and the SMEAFO
algorithm [2] is a published global optimizer for filters. In this
paper, the proposed H-SMEAFO inherits the machine learning
method (i.e., Gaussian process (GP)) and the global search
technique (i.e., differential evolution (DE)) from SMEAFO,
which are briefly introduced as follows.

B. Gaussian Process

GP is a widely used machine learning method in engineer-
ing optimization, whose strengths include its strong learning
ability (i.e., high surrogate model quality) and the ability to
provide a statistically grounded prediction uncertainty for each
candidate design. Given a set of observations {x1,x2, ...,xn}
with the corresponding function values y = (y1, y2, ..., yn)T ,
GP model treats the values of y as samples of a multivariate
Gaussian distribution. Thus, the likelihood function can be
expressed in terms of samples y as:

Lh =
1

(2πσ2)
n/2 |R|1/2

exp

[
− (y − 1µ)TR−1(y − 1µ)

2σ2

]
(1)

where 1 is a n× 1 vector of ones, R is the covariance matrix
defined by the correlation function

Ri,j = Corr (xi,xj) = exp

(
−

d∑
l=1

θl
∣∣xli − xlj∣∣pl

)
,

θl > 0, 1 ≤ pl ≤ 2

(2)

where d is the dimension of x, θ and p are hyperparameters
describing how fast the correlation decreases on the l-th vari-
able and the corresponding function smoothness, respectively.
Assuming the hyperparameter values are known, the µ and σ
in (1) can be obtained in a closed form, where

µ̂ = 1TR−1y(1TR−11)−1

σ̂ = (y − 1µ̂)TR−1(y − 1µ̂)n−1
(3)

Substituting (3) into (1), the likelihood function can be
maximized numerically, obtaining the optimal hyperparameter
values. Given a new design x∗, the value of ŷ(x∗) and the
uncertainty ŝ(x∗) can be obtained by best linear unbiased
estimation and mean square error:

ŷ(x∗) = µ̂+ rTR(y − 1µ̂)

ŝ2 (x∗) = σ̂2

[
1− rTR−1r +

(
1− 1TR−1r

)2
(1TR−11)

]
(4)

where r = [Corr(x∗,x1),Corr(x∗,x2), ...,Corr(x∗,xn)]T

describing the correlation between x∗ and all sample designs.
The lower confidence bound prescreening [22] is employed

to balance exploration and exploitation when using GP in
optimization, which is defined by:

ylcb(x
∗) = ŷ(x∗)− ωŝ(x) (5)

where ω ∈ [0, 3] is a constant, which is set to 2 in our
algorithm. With this prescreening, the quality of x is consid-
ered from not only the predicted value but also the prediction
uncertainty when judging the fitness of a candidate design,
which enhances the ability to jump out of local optima. The
above GP model is implemented by the ooDACE toolbox [23].

C. Differential Evolution

DE algorithm is a popular method in engineering optimiza-
tion. In H-SMEAFO, DE is selected as the global search
engine and its mutation and crossover operators are used.
Considering a population denoted by P containing n candidate
designs, in which each design is xi ∈ Rd, i = 1, ..., n, the
mutation strategy (DE/current-to-best/1) is:

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (6)

where vi is the i-th solution after mutation, xbest is the best
candidate in the current population P , xr1 and xr2 are two
randomly selected exclusive candidate solutions, and F ∈
[0, 1] is the scaling factor. The DE/current-to-best/1 strategy
introduces an appropriate amount of population diversity to
avoid being trapped in local optima for filter design landscape
[2]. Then, the crossover operator is carried out with a given
crossover rate, CR. The offspring ui is generated by:

uli =

{
vli, if (rand(0,1) ≤ CR) | j = rand(0, d)

xli, otherwise
(7)

where l = 1, 2, ..., d indicates the l-th design variable.

D. Nelder-Mead Optimization

The Nelder-Mead (NM) simplex method is a widely used
derivative-free local optimization algorithm that is suitable for
non-smooth or even discontinuous landscapes. Hence, in H-
SMEAFO, it is selected as the local optimizer to collaborate
with DE.

NM starts from a set of d+ 1 points x0,x1, . . . ,xd that do
not lie in the same hyperplane (the so-called nondegenerate
working simplex). Given an initial solution x0, x1, . . . ,xd can
be generated by adding a small value εi to each component
of x0, that is

xi = x0 + εiδi, i = 1, 2, ..., d (8)

where δi is a d × 1 one-hot vector with only value one
on i-th component. By ordering the initial set according to
y(x) in ascending order, denoted by x0,x2, ...xd, reflection,
expansion, contraction, and shrinking are performed iteratively
according to different conditions. Reflection, expansion, and
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contraction are used to explore possible search directions for
improvement adaptively.

For example, the reflection generates the reflected point xr

by:

xr = 2

d−1∑
i=0

xi/d− xd (9)

Then, y(xr) is calculated to determine whether accept xr or
carry out expansion or contraction. At least a new solution
from expansion or contraction is calculated and accepted if
appropriate. In the worst case, the current simplex is shrunk
and calculated for the next iteration. More details of NM
simplex are in [24].

III. THE H-SMEAFO METHOD

A. The Structure of H-SMEAFO

As said in Section I, H-SMEAFO aims to realize unsuper-
vised filter design optimization and improve the optimization
speed under this condition. The reason why unsupervised
design optimization is challenging is the filter’s highly multi-
modal design landscape [2]. Therefore, the solution includes
two directions: (1) simplify the problem, and (2) improve the
optimizer.

To simplify the problem, a natural idea is to find a high-
quality initial design using filter theory. Quite a few research
works are focusing on this topic and there are several success-
ful methods. Although the employed initial design generation
method [16] is out of the scope of this paper, it also does
not need interactive decisions from the designer and can
co-work with H-SMEAFO. For example, CST Microwave
Studio already has such a one-button initial design generation
tool from the 2022 release, and [16] improves its solution
quality. Another way to simplify the problem is to study the
objective function because the design landscape characteristics
are affected by the objective function used. Hence, a new
objective function is proposed, so as to release pressure on
the global optimization algorithm. With the simplified design
landscape as the target, a new bespoke global optimization
method hybridizing DE (assisted by GP surrogate model) and
NM simplex algorithms adaptively is proposed, aiming to
improve the global optimization speed and success rate.

The framework of H-SMEAFO is shown in Fig. 2, which
works as follows.

Step 1: Sample n candidate designs and let them form
the initial database. (All the designs visited by H-
SMEAFO are considered candidate designs.)

Step 2: Judge whether the stopping criterion is met (e.g.,
reach the maximum allowed number of EM simu-
lations or satisfy all specifications. See Section IV
(A) and (B) for examples.). If yes, output the best
design; Otherwise, go to Step 3.

Step 3: Decide the objective function to be used (Section
III (B)).

Step 4: Select α best designs from the database based
on ranking the objective function values to form a
population P .

 

 

 

 

Initialize the 
database

Stopping
criterion?

Output

Yes

Select objective 
function

Select top ranked 
designs

DE mutation & 
crossover

Select training 
data

GP modeling & 
prescreening

Select the best 
estimated design

EM simulation

No

Update database

Local search?

Yes

NM-simplex 
optimizer

No
Select designs 
from simulated 

designs (if 
applicable)

 

Figure 2. The flow diagram of H-SMEAFO

Step 5: Apply the DE/current-to-best/1 mutation (6) and
the crossover operator (7) on P to generate α child
solutions.

Step 6: For each child solution, select τ training data points
and construct a local GP surrogate model.

Step 7: Prescreen the α child solutions generated in Step 5
using the lower confidence bound method (5), where
GP models from Step 6 are used. Estimate the best
child solution based on the lower confidence bound
values. Carry out an EM simulation to it.

Step 8: Judge if NM local optimization needs to be trig-
gered. If yes, carry out a complete NM simplex
optimization run until the stopping criterion is met.
The GP surrogate model is not used in this step.
The condition to trigger the local optimization and
its stopping criterion are explained in Section III (C).

Step 9: The candidate designs visited by NM local op-
timization in Step 8 are ranked and selected if it
improves the current best design. The method is in
Section III (C).

Step 10:Update the database by adding the estimated best
design in Step 7 and the selected designs in Step 9 (if
applicable) and its/their performance (EM simulation
results). Go back to Step 2.

It can be seen that GP modeling, DE search, and some
model management operators are inherited from SMEAFO.
The benefits of them for filter design landscapes are described
in [2]. The two main innovations include the hybrid objec-
tive function (Step 3) and the iterative adaptive optimization
method hybridizing DE and NM simplex in an unsupervised
filter optimization process (Step 8, 9 and the overall algorithm
structure). They are shown as red blocks and are detailed in
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the following subsections.
Besides the above innovations, a clear difference compared

to SMEAFO is the initialization (Step 1). SMEAFO does not
use an initial design and the advantage of employing filter
design knowledge through the initial design is lost. In H-
SMEAFO, with the initial design generated by the method
in [16], Gaussian distributed random numbers with zero mean
and variances of σf are added to it to form the initial samples.
(Note that unlike the initial design, which is a single design
obtained from the CM (Fig. 1), initial samples are a set of
designs obtained from the initial design for the optimization
algorithm to use.)

The value of σf is important to make use of the knowledge
in the initial design. When a large random number is added to
the initial design parameters, the pattern of the initial design
can be overwritten, and thus cannot provide much assistance
to the global optimizer. In contrast, a small random number
can keep the pattern of the initial design but may make the
initial samples clustered in a narrow region, preventing the
search from jumping out of local optima.

In H-SMAEFO, the design parameters are divided into
resonance-related and coupling-related, covering most of the
filter design parameters. Resonance-related design parame-
ters mainly control the center frequency and bandwidth and
directly influence the frequency features. Coupling-related
parameters, on the other hand, mainly control the ripple height
feature. Empirical analysis shows that for our hybrid objective
function in Section III (B), the former is more sensitive. Hence,
σf has a different value for each category.
σf can be considered as a perturbation of initial geometric

parameters. Given a resonator for which the physical length L
is proportional to the guided wavelength λg at the resonant
frequency f , the perturbation of L and the corresponding
frequency has the following relation:

∆L ∝ ∆f

f
λg (10)

Hence, ∆L is varied with FBW×λg , where FBW is the frac-
tional bandwidth of the filter. In H-SMEAFO, for resonating-
related design parameters, σfr = 0.25×FBW × λgc and for
coupling-related parameters, σc = FBW × λgc, where λgc is
the guided wavelength of the central frequency. This empirical
rule is also applicable to other global optimizers for filters.

B. The Hybrid Objective Function

Objective functions are representations of particular fea-
tures extracted from filter response. An appropriate objective
function for unsupervised design optimization should have
the following requirements: (1) It is in line with the design
specifications, i.e., a better objective function value refers to
a candidate design that better meets the specifications, and
(2) The design landscape resulted by the objective function is
as smooth as possible, so as to relieve the pressure on the
optimizer, i.e., avoiding being trapped in local optima and
failing to satisfy the specifications.

Various objective functions have been proposed. Directly
using the specifications, i.e., min(max(|S11|)), is straightfor-
ward and very widely used. This objective function satisfies

4.8 4.85 4.9 4.95 5 5.05 5.1 5.15 5.2
10-7

10-6

10-5

10-4

10-3

10-2

10-1

1
Ideal S11

Ideal S21

Sim. S11

Sim. S21

BW

fzmin

|S21(fz)|
2

S
-P

ar
am

et
er

s 
(|

S
|2

)

Frequency (GHz)

fzmax

|S11(fp)|
2

(|S11(feg)| - ϵ)
2

fp

fz

feg

Z(·)

Figure 3. Key features considered in F1

the former requirement but not the latter, and the resulted
design landscape is often complex [2]. A recent promising
objective function uses the difference between the extracted
CM of a candidate design and ideal CM [25]. This objective
function makes the design landscape very simple. However,
the drawback is that the CM extraction often fails for candidate
designs with poor responses [25], which often happens in
unsupervised filter 3D optimization.

Another recent promising objective function is the
cognition-driven objective function [12], [13]. It uses poles
and return loss as features, whose weights are adjusted at
different optimization stages, making the design landscape
much smoother. However, experiments in Section IV show
that for unsupervised design optimization of filters with higher
order and/or with transmission zeros, this objective function
may not be exactly in line with the design specifications (i.e.,
the former requirement).

Therefore, a new hybrid objective function for minimization
is proposed in H-SMEAFO targeting unsupervised design,
which has two phases. At the beginning phase, many points
around the initial design may have poor responses. Hence,
the goal of the first phase is to obtain the general shape of the
desired response with the highest speed. The objective function
is based on the zero, pole, and edge (ZPE) objective function
[26] with an added term Z to restrict the bandwidth, which is
as follows (Fig. 3).

F1(fz, fp, feg) =
∑
i

|S21(fzi)|2 +
∑
j

|S11(fpj
)|2

+
∑
k

(|S11(fegk)| − ε)2 + Z(BW )
(11)

where ε is the magnitude of S11 at the edge of the passband
in the ideal condition. By considering the magnitude of S-
parameters at the ideal frequencies of zeros, poles, and edges
(denoted by fz , fp and feg , and indexed by i, j and k,
respectively), the desired response shape can be formed ef-
ficiently. This ZPE objective function was originally proposed
for optimization-based filter CM synthesis and shows high
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efficiency [26]. Our pilot experiments show that it is much
more efficient to obtain the general shape of the desired
response than using min(max(|S11|)) in unsupervised 3D
optimization.

The added term Z(BW ) is defined as:

Z(BW ) = (fzmax
(S11)− fzmin

(S11)−BW )/BW (12)

where fzmax
(S11) and fzmin

(S11) are the maximum and
minimum frequency of extracted reflection zeros, which are
extracted by vector fitting [27], [28], [29]. Vector fitting
can identify reflection zeros for candidate designs with poor
responses, which is verified by existing research [13], [30].
The use of divided by BW is for normalization purpose. The
purpose of the Z term is to penalize a typical kind of wrong
response shape, for which, some of the reflection zeros are out
of the passband, despite that the max(|S11|) may even satisfy
the specification in the passband.

However, this objective function cannot be used throughout
the 3D optimization. The reason is the deviation between the
ideal response and the real response obtained from physical
design. In most cases, when the filter is fully optimized using
F1, the specifications are not met, i.e., F1 is not always in line
with the design specifications after the general response shape
is formed.

Therefore, after phase 1, a new objective function for phase
2 follows up. The goal is to consider all the necessary features
and satisfy the specifications. The phase 2 objective function
F2 include three terms, which are the inband ripple R(·),
stopband edge frequency E(·), and bandwidth restriction Z(·).
All of them are to be minimized.

The inband ripple term (Fig. 4) is defined as:

R(BW,Sr) =
1

SrBW

∫
BW

max(|S11(f)| − Sr, 0)df (13)

where BW is the bandwidth, Sr is the specification (e.g., −20
dB for inband |S11|). 1

SrBW is the normalization term. The
reason why using integration is that it calculates the average
violation of the S11 specification, making the design landscape
much smoother than using max(|S11|) in the passband, which

leads to a rugged landscape [2]. Our pilot experiments show
that by using the same optimizer, not only the success rate
is largely improved, but the convergence speed is also much
faster compared to using max(|S11|).

The stopband edge frequency term (Fig. 4) is defined as:

E(fs, Sr) =
∑
i

max(f(Sri)− fsi , 0)/BW (14)

where f(Sr) is the first frequency whose |S21| meets the given
stopband specification Sr (e.g., |S21| reaches −30 dB at the
frequency f(−30dB)), and fs is the frequency specification
(e.g., |S21| should be under −30 dB at fs and below, both
shown in Fig. 4), and i indicates the number of stopband
specifications. This applies to each stopband. The use of
divided by BW is for normalization purpose. Note that even
for some design cases without stopband specifications, this
term can be added using a reasonable estimation of fs. Our
pilot experiments show that using this term can improve the
optimization speed in collaboration with the previous term.

The passband reflection zero term (Fig. 4), Z(BW ), is the
same as that in F1 except that the small difference (∆B)
between the distance of the maximum and minimum frequency
of reflection zeros and the real bandwidth using −20 dB as
the threshold, is also considered as a term in the equation.
The value of ∆B can be estimated from the ideal response
with the optimal CM. The final objective function for phase
2 is F2 = R(BW,Sr) + E(fs, Sr) + Z(BW ). No weight is
needed because the terms are normalized.

In summary, the new objective function for unsupervised 3D
design optimization works as follows. F1 is firstly employed.
By targeting the responses at critical frequencies, the general
expected response shape is formed efficiently. When the av-
erage improvement of the F1 value is less than 2% in recent
consecutive 100 iterations, F2 is employed. 2% is an empirical
value and is not sensitive. F2 considers exactly satisfying
the specifications while at the same time, smoothening the
design landscape to relieve the pressure of the global optimizer
and promote the search speed. F2 is used till the end of the
unsupervised design optimization.

C. The Hybrid Surrogate Model-assisted Optimization Algo-
rithm

As said in Section I, a filter design landscape characteristics-
oriented global optimization algorithm is essential for unsu-
pervised design even with the objective function in Section III
(B). To the best of our knowledge, SMEAFO [2] is the only
published global optimizer targeting filter design landscape
characteristics, which shows good optimization ability for
filters and diplexers [2], [30]. However, the drawback is the
speed. It often needs a few thousand EM simulations to obtain
the optimal design for not simple structures. As said in Section
I, although the above time consumption is bearable considering
unsupervised design, improving it is important. Hence, the
goal of the hybrid surrogate model-assisted optimization algo-
rithm in this subsection is to improve the speed of SMEAFO
while maintaining its global optimization ability.

The flow diagram of the hybrid optimization algorithm is
shown in Fig. 5. It can be seen that the GP model-assisted
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Figure 5. The working principle of the hybrid optimization method

DE part is inherited from SMEAFO. SMEAFO mainly relies
on these operators to jump out of local optima for a filter
design landscape. The difference compared to SMEAFO are
as follows: (1) A Nelder-Mead local optimizer is introduced to
the current best design obtained by GP-assisted DE, and (2) An
iterative use of the global and local optimizers is introduced,
as well as the data exchange method between them.

The reason why SMEAFO has a relatively slow speed is its
exploration ability (i.e., a relatively large diversity of candidate
designs that are visited). Note that this ability must be kept to
jump out of local optima. However, due to no-free-lunch, the
cost is the lower convergence speed. Without compromising
the diversity of the population of candidate designs, a possible
way to improve the convergence speed is to improve the
current best design by a local search. For the current best
design, local search algorithms may improve the objective
function value much faster than GP-assisted DE although the
exploration ability is lost. Not only the current best design
is improved, but the useful candidate designs visited in local
search can also complement the global search. Particularly, the
updated current best design can benefit the whole population
according to DE/current-to-best/1 mutation (6) when using
GP-based DE again.

Hence, instead of using a Gaussian local search-based
exploitation phase (only run for a single time in the near
convergence space) as SMEAFO, the global and local opti-
mizers are iteratively used. Once GP-based DE cannot find
a better candidate design in 100 consecutive iterations, the
local optimizer is triggered. Once the local optimizer reaches
a local optimum and cannot improve, the population of GP-
based DE is updated by introducing selected useful visited
candidate designs from the local optimizer and restarted. The
two optimizers complement each other using the above way
to combine their strength.

NM simplex method is selected as the local optimizer. NM
simplex is a derivative-free search method and is suitable
for rugged highly multimodal landscape [24], while filter
design landscape shares similar properties. NM simplex is
carried out from the current best design from GP-based DE.
In the local optimization process, no surrogate model is used.
This is because local search requires a sufficiently accurate
surrogate model, but building it using a limited number of
EM simulations is often difficult for filter design landscape,
while an inaccurate surrogate model may misguide the local
search. Our pilot experiments using real-world filters show

that without using a surrogate model converges even faster
than using a GP model in NM simplex-based optimization.

A critical problem is the data feedback from the NM
simplex optimization to the GP-based DE optimization. The
candidate designs visited by NM simplex must be carefully
selected for inclusion in the database considering both per-
formance and the introduced diversity to avoid GP-based DE
being trapped in local optima, i.e., the current best α solutions
in the database lack diversity (Step 4 in Section III (A)). The
scoring strategy in [31] is used to rank and select α simulated
candidate designs to be included in the database when the
current best design is improved by NM simplex. When NM
simplex does not improve the current best design, it will be
terminated when using more than 200 EM simulations or
the objective function does not decrease for 20 consecutive
iterations.

D. Parameter Settings

Compared to SMEAFO, H-SMEAFO does not introduce
new algorithm parameters although there are a few empirical
parameters for initialization in Section III (A), and those to
switch the objective functions and optimizers in Section III
(B) and (C), respectively. These parameters are based on
experiments using various kinds of filters. Once set, they
do not change. For the common algorithm parameters of
SMEAFO and H-SMEAFO, the SMEAFO parameter setting
rules are still applicable to H-SMEAFO. More details are in
[2]. For simplicity, n = 5×d, α = 5×d, τ = 5×d, F = 0.8,
and CR = 0.8, which are used in Section IV.

IV. NUMERICAL RESULTS AND COMPARISONS

In this section, the performance of H-SMEAFO is verified
by two real-world examples, including an 8th order dual-band
waveguide filter with 4 transmission zeros [32] and a 6th
order waveguide filter with 2 transmission zeros [33]. For both
filters, the initial design is obtained by the method in [16]. As
verified by experiments in the following subsections, several
popular existing filter optimization methods are not able to
achieve unsupervised design for them starting from the given
initial designs. All the experiments are run on a workstation
with Intel 3.2 GHz Core (TM) i7 CPU and 8 GB RAM under
Windows operating system. CST Microwave Studio is used as
the simulation tool. No parallel computing is considered and
the time consumption is wall clock time.

To demonstrate the advantages of the proposed hybrid
objective function, using the same hybrid surrogate model-
assisted optimization algorithm in Section III (C) and the
same initial design, the reference objective functions include
the ZPE objective function [26], only F2 in Section III (B),
the objective function based on the difference between the
extracted CM of a candidate design and ideal CM (it is
called the CM difference method in the following) [25], the
cognition-driven multi-feature objective function [13], and
the widely used magnitude of S-parameters-based objective
function (e.g., max(|S11|) in the passband).

For each objective function, 5 independent runs are carried
out, and the results are compared statistically. Due to the
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Figure 6. The structure of the X-band filter

computationally expensive EM simulations, more runs are not
affordable. In all the comparisons, we consider a run to be
successful when its obtained optimal design has a less than
0.1 overall specification violation (i.e., sum together) within
2500 EM simulations, although H-SMEAFO costs much fewer
EM simulations than this budget.

To demonstrate the advantages of the proposed hybrid
surrogate model-assisted optimization algorithm, using the
same hybrid objective function in Section III (B), the reference
method is SMEAFO because it is the only published global
optimizer for filters to the best of our knowledge. Local
optimizers are not included because they are not suitable for
unsupervised design.

Since SMEAFO and H-SMEAFO are stochastic algorithms,
random seeds affect the necessary number of EM simulations
to satisfy the specifications. To avoid this effect and to focus
the comparison on different search mechanisms, we divide the
comparison into 5 groups. 5 sets of initial populations are thus
randomly generated from the initial design (Step 1 in Section
III (A)) and each group use one of them. In each group, the
same initial population and the same random seed are used
for 5 independent runs using SMEAFO and H-SMEAFO, and
the convergence speed is compared statistically. The 5 groups
show the same conclusion. Hence, the results from a typical
initial population are displayed in the following subsections.

A. Example 1

The first example is an X-band symmetric 8th order dual-
band filter with 4 transmission zeros, which is shown in Fig.
6. This filter is designed to operate at the center frequency
of 10 GHz with two passbands symmetrically located at
9.35-9.70 GHz and 10.30-10.65 GHz. Four of eight cavity
resonators are independent, and the corresponding ones have
the same dimensions. The four resonators (i.e., resonators 1-
4 or 5-8) form a cascaded quadruplet which generates two
transmission zeros at 9.88 GHz and 10.12 GHz, respectively.
Since the dual-band filter has a symmetric structure, there
are four transmission zeros in total. With the transmission
zeros, a higher stopband rejection between two passbands
is realized. This filter has 10 design variables, in which,
[L1, L2, L4] (L2 = L3) target the resonant frequency, and
[W12,W34,W14,W45,We,H23, L23] target the coupling
between resonators. The filter is modeled in CST Microwave
Studio with about 12000 meshes, and each EM simulation
costs 1 to 1.5 minutes.

The design specifications are shown Table I and Fig. 7. Note
that the central stopband is formed by 4 transmission zeros: 2

Table I
DESIGN SPECIFICATIONS FOR EXAMPLE 1

Notation Item Frequency
Range (GHz)

Specification
(dB)

PB1
Passband 1 Reflection

Coefficient (S11) 9.35 - 9.70 −20

PB2
Passband 2 Reflection

Coefficient (S11) 10.30 - 10.65 −20

SB
Stopband Transmission

Coefficient (S21) 9.85 - 10.15 −40

SBl

Stopband Left Edge
Transmission

Coefficient (S21)
≤ 8.8 −20

SBr

Stopband Right Edge
Transmission

Coefficient (S21)
≥ 11.2 −20
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Figure 7. Response of the X-band filter: (a) The initial design. (b) An
optimized design by H-SMEAFO. (The dotted lines show the specifications)

transmission zeros at 9.88 and the other 2 at 10.12 GHz are
introduced considering higher stopband rejection.

In all 5 runs, H-SMEAFO satisfies the specifications. The
initial design, a typical optimal design and its response are
shown in Table II and Fig. 7. For the 5 runs, an average of
678 EM simulations are used, costing 13 hours. It can be seen
that the time consumption is reasonable, especially considering
unsupervised design.

The 6 reference objective functions are firstly compared.

Table II
THE INITIAL DESIGN AND A TYPICAL OPTIMIZED DESIGN (ALL SIZES IN

MM) (EXAMPLE 1)

Variable names W12 W34 W14 W45 We
Initial values 4.504 3.464 5.210 3.417 6.186
Optimized values 4.234 3.489 4.192 2.713 6.894
Variable names H23 L23 L1 L2 L4
Initial values 7.645 9.940 46.374 20.983 24.193
Optimized values 6.766 8.962 46.035 20.673 23.359
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Figure 8. Response of the dual-band filter. (a) A typical response using the
ZPE objective function. (b) A typical response using the cognition-driven
multi-feature objective function. (c) A typical group delay comparison using
the CM difference-based objective function.

In all 5 runs, the ZPE objective function, the CM difference
objective function, and the cognition-driven multi-feature ob-
jective function do not succeed for this example. A typical
response of the optimal design obtained by the ZPE objective
function is shown in Fig. 8(a). This result verifies the statement
in Section III (B): The ZPE objective function is not in line
with the design specifications after the general response shape
is formed. For a similar reason, the cognition-driven multi-
feature objective function concentrates on the appropriate
positions for the zeros and poles and the ripple height of the
passband, as shown in Fig. 8(b). Therefore, it does not satisfy
the specifications of the central stopband and the bandwidth
requirement of the passbands, although the response shape is
formed correctly.

For the CM difference-based objective function, the result
verifies the statements in Section III (B). The main challenge
is that the CM extraction (in this case, by group delay)
is difficult to be accurate as shown in Fig. 8(c) for many
candidate designs, which misleads the optimization. Note that
unsupervised design is considered, while the effectiveness of
the above three functions for semi-supervised design has been
shown in the literature.

The magnitude of S-parameters, F2, and the hybrid objec-
tive functions show success in the 5 runs but have different per-
formances. For the magnitude of S-parameters-based objective

Table III
STATISTICAL RESULTS FOR DIFFERENT OBJECTIVE FUNCTIONS

max(|S11|) only F2 Hybrid
Min. number of EM simulations 1179 526 646
Max. number of EM simulations 1430 1298 740
Ave. number of EM simulations 1286 955 678
Standard deviation 129 390 36
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Figure 9. Typical convergence trends of the hybrid optimizer and the
SMEAFO optimizer (example 1)

function (simplified as max(|S11|) in the following although
S21 is also considered), 3 out of 5 runs obtain successful
results. For F2 and the hybrid objective function, all 5 runs are
successful. The comparison result is shown in Table III. Only
successful runs using max(|S11|) are considered in Table III.

It can be observed from Table III that the hybrid objective
function improves the efficiency significantly (30% to 50%
compared to the reference methods using average values).
Moreover, the standard deviation is much smaller than the
reference methods, showing its more stable performance.

Then, the comparisons between different optimizers using
the same hybrid objective function are carried out. As said
above, using the same initial population and random seed, the
convergence trends of the hybrid optimization algorithm and
SMEAFO differ when NM simplex is triggered. At this point,
the two algorithms have the same current best design and
training data points. After that, the two search mechanisms are
carried out separately. The results of a typical initial population
out of the 5 are as follows considering all the runs show the
same conclusion.

Using the overall constraint violation threshold of 0.1 as
mentioned before, H-SMEAFO takes 654 EM simulations
on average to converge using this typical initial population,
while SMEAFO takes an average of 1015 EM simulations
over 5 runs. Therefore, the new hybrid optimizer reduces
about 30% of the total EM simulations. The corresponding
convergence trend is shown in Fig. 9. The effectiveness of NM
simplex optimization and the iterative global and local search
mechanism for filter design landscape can be observed.

B. Example 2

The second example is a C-band 6th order waveguide filter
with 2 transmission zeros, which is shown in Fig. 10. The
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Figure 10. The structure of the C-band filter

Table IV
DESIGN SPECIFICATIONS FOR EXAMPLE 2

Notation Item Frequency
Range (GHz)

Specification
(dB)

PB
Passband Reflection

Coefficient (S11) 4.9 - 5.1 −20

SBl

Stopband Left Edge
Transmission

Coefficient (S21)
≤ 4.87 −30

SBr

Stopband Right Edge
Transmission

Coefficient (S21)
≥ 5.15 −30

working frequency is 4.9 to 5.1 GHz. Resonators 2-5 form a
cascaded quadruplet. In this filter, two transmission zeros are
generated at the upper and lower stopbands, obtaining higher
stopband rejections. The resonators are coupled via inductive
posts or coupling irises. This is because the frequency range
of the passband is too narrow to be realized by capacitive cou-
pling irises. Therefore, the filter is designed using an E-plane
cut structure. Resonator 4 uses a TE102 mode to realize a neg-
ative coupling between resonators 2 and 5. There are 14 design
variables, in which [L1, L2, L3, L4, L5, L6] target resonant
frequency and [D12, D23, D34, D45, D56, D25, De1, De2]
target the coupling between resonators. The filter is modeled
in CST Microwave Studio with about 12000 meshes, and
each EM simulation costs about 1 to 1.5 minutes. The design
specifications are shown in Table IV and Fig. 11 (b).

In all 5 runs, H-SMEAFO satisfies the specifications. The
initial design and a typical optimal design are shown in
Table V, with the response in Fig. 11. For the 5 runs, an
average of 776 EM simulations are used, costing 16 hours.
The time consumption is reasonable, especially considering
unsupervised design.

As for the comparison with 6 reference objective functions,
the ZPE objective function, the CM difference objective func-
tion, and the cognition-driven multi-feature objective functions
do not succeed due to the same reason mentioned in example
1. The max(|S11|) objective function also fails to find a design
that satisfies all specifications. It is shown that the optimization
is trapped in a local optimum with a maximum passband |S11|
of −17.9 dB. A potential reason is that, with the increasing
number of orders of the filter, the edges of the passband

Table V
THE INITIAL DESIGN AND A TYPICAL OPTIMIZED DESIGN (ALL SIZES IN

MM) (EXAMPLE 2)

D12 D23 D34 D45 D56
Initial value 2.616 3.233 18.830 3.233 2.616
Optimized value 2.509 3.246 21.230 2.919 2.325

D25 L1 L2 L3 L4
Initial value 12.484 50.004 43.615 41.343 86.963
Optimized value 12.101 50.006 43.310 41.320 86.568

L5 L6 De1 De2
Initial value 42.976 49.971 2.918 2.919
Optimized value 43.023 50 2.481 2.492
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Figure 11. Response of the C-band filter: (a) The initial design. (b) An
optimized design by H-SMEAFO. (The dotted lines show the specifications)

response become steeper and the max(|S11|)-based objective
function leads to a more complex design landscape [2], which
causes the search to fail.

3 out of 5 runs succeed using only the F2 objective function.
The comparison result is shown in Table VI, in which only
successful runs are considered. It can be observed that the
hybrid objective function improves the efficiency significantly
(60% compared to only using F2). Moreover, the standard
deviation is much smaller than only using F2, showing the
advantages of F1 and the hybrid work of F1 and F2.

The comparisons between different optimizers show the
same observation as example 1. Again, all 5 initial populations
show similar comparison results. Using a typical population
among the 5 initial populations, the new hybrid optimizer
reduces about 30% of the total EM simulations compared to

Table VI
STATISTICAL RESULTS FOR DIFFERENT OBJECTIVE FUNCTIONS

only F2 Hybrid
Min. number of EM simulations 1460 511
Max. number of EM simulations 2350 925
Ave. number of EM simulations 1916 776
Standard deviation 445 168
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Figure 12. Typical convergence trends of the hybrid optimizer and the
SMEAFO optimizer (example 2)

SMEAFO (average of 5 runs). The corresponding convergence
trend is shown in Fig. 12, in which H-SMEAFO takes 712 EM
simulations, whereas SMEAFO takes 1211 EM simulations. In
this case, NM simplex optimization in H-SMEAFO directly
converges to the final optimal design when it is triggered. The
effectiveness of NM simplex optimization and the iterative
global and local search mechanism for filter design landscape
is demonstrated again.

V. CONCLUSIONS

In this paper, the hybrid surrogate model-assisted evolution-
ary algorithm for filter optimization (H-SMEAFO) has been
proposed. Real-world filters, for which, unsupervised design
does not appear to be possible using existing filter optimiza-
tion methods, show that H-SMEAFO realizes unsupervised
filter design optimization with reasonably good efficiency
(e.g., about half a day using a normal desktop computer).
The significant benefits mentioned in Section I are therefore
realized. The effectiveness of H-SMEAFO comes from the
new hybrid objective function and the hybrid optimization
method bespoke for filter design landscapes. Both techniques
are applicable to research works aiming at unsupervised filter
design or filter global optimization. Moreover, due to its
unsupervised nature, the designer’s guidance or decision is not
needed when using H-SMEAFO. Hence, H-SMEAFO can be
programmed into a software tool, and the users only need to
press a button and let H-SMEAFO obtain the optimal design
satisfying the specifications on its own. Future works include
continuously improving the speed for H-SMEAFO, aiming to
realize unsupervised design with an experienced designer’s
speed.
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