
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/281503/

Deposited on: 30 September 2022
Radiation Optimization for Phased Arrays of Antennas Incorporating the Constraints of Active Reflection Coefficients

Hsi-Tseng Chou, IEEE Fellow, Rui-Zhe Wu, Mobayode O. Akinsolu, IEEE Senior Member, Yushi Liu, Bo Liu, IEEE Senior Member

Abstract—High-power radiations from active antenna arrays may result in strong reflected power to cause RF device breakdown by the strong inter-element mutual coupling. An excitation weighting synthesis of antenna arrays incorporating the constraint of active reflection/transmission coefficients between antenna elements is presented to optimize the radiation. It may enhance inter-element isolation, reducing the effort of using sophisticated hardware-based structures that have difficulty in broad-angle beam steering. In the synthesis, the cost functions incorporate the difference between the optimized and the predefined excitation weightings of radiation patterns with limited reflected power or active reflection coefficients as a constraint. This paper first introduces the basic concept to show the operational mechanisms. Practical definitions of cost functions are described to synthesize the radiation pattern considering the mutual coupling effects. The case without setting an initial desired radiation pattern is also examined for comparison. Numerical full-wave simulations are presented to validate the synthesis concepts by examining the characteristics of gain, sidelobe level (SLL), and port reflection coefficients.

Index Terms—Antenna array, array synthesis, antenna coupling, active pattern, embedded pattern, differential evolution.

I. INTRODUCTION

Active phased arrays of antennas are popularly used in radar and wireless communication systems to produce high antenna gains and beam-steering functionality for adequate wide-angle radio coverage. The high-power radiation may result in severe problems when the unavoidable electromagnetic (EM) mutual couplings between antenna elements are vital. In addition to the well-known behavior of impedance mismatches, causing scan blindness and signal cross-talks, the high reflected power in the transmitting modes may cause system breakdown, particularly severe at wide-angle beam scans. In such cases, the radiation patterns may also cause gain losses, cross-polarization level (XPL) excess, and sidelobe levels (SLLs) degradation.

Active reflection coefficients (ARCs) were introduced [1], [2] for RF-device-fed arrays to justify such irregular behaviors and impacts on the system, where the active element pattern (AEP) concept was also introduced in [3] and further investigated by [4] and [5] to explore the radiation characteristics. AEP is the antenna element’s radiation in the array environment with only its port excited with the others terminated, which is also referred to as the embedded element patterns (EEPs) [6]-[14] in the radiation pattern optimization. AEP incorporates the mutual coupling effects, in contrast to the standing-alone antenna’s radiation (referred to as the isolated element pattern, IEP). The EEP provides an explicit expression to describe the AEPs’ behaviors in the pattern optimization for the ARC improvement.

To suppress the array’s ARC or reflected power, it is intuitive to reduce the inter-element EM mutual couplings. Increasing the inter-element’s separation distance is most straightforward but will increase the array’s physical size and raise the risk of producing grating lobes to limit the scan range. Orthogonal or diagonal placement of antenna distribution is another solution, which can create isolation larger than 15 dB [15]-[16]. Still, this design takes a large substrate area and complicates the array beamforming network (BFN). Placing isolating hardware structures between antenna elements was also popularly studied [17]-[20]. An intensive comparison of these hardware-based techniques for MIMO and SAR applications was performed in [21],[22] from different aspects of performances. Popular techniques include decoupling networks [23],[24], neutralization line decoupling approaches [25], and pin-diode, varactor, and feeding line structure decoupling methods [26],[27]. Some works also implemented periodic EM Band-Gap (EBG) structures [18],[28] to produce bandgap isolations at specific frequencies. It is also effective to design Defected Bandgap Ground Structures (DBGs) [17]-[20], primarily consisting of different single-shaped parasitic structures with a resonance effect to catch the coupling energy.

The common principle of these hardware-based techniques is to increase the mutual impedances to prevent power coupling. However, most have to sacrifice the operational frequency bandwidth and lack the generality to treat different situations as most are case-dependent and may have a physical limitation. The insufficiencies of the hardware-based isolation approaches can be improved by antenna radiation synthesis, owing to varying the array excitations. For example, [29] has used a Differential evolution (DE) algorithm to alter the excitation waveforms and optimize the EEP of a time-modulated antenna array (TMAA).

Most past antenna array optimizations focused on radiation
pattern synthesis in various application formats. They assumed identical antenna elements’ patterns using IEPs and ignored the degradation of impedance matching by mutual coupling at the antenna elements’ excitation ports. Even though the system degradation after synthesis can be estimated by multiplying the synthesized excitations with the inverse scattering matrix between the antenna elements, this procedure lacks the capability to assure proper system operation. Furthermore, the previous works have not considered the limits of reflected power to avoid RF device breakdowns for high-power radiation.

In this paper, the radiation pattern synthesis incorporating the constraints of reflected power is proposed and examined. The novelty of this work is that the tradeoff of system performance and radiation patterns is performed during the synthesis. This software-based technique can relax the limitations of hardware-based methods to achieve broadband and wide-angle beam steering at a minimum cost. In this technique, the excitations of the antenna arrays, ignoring the mutual coupling effects, are first built to produce the desired radiation patterns, which serve as the target of radiation synthesis. Afterward, the cost functions of radiation targets incorporating the constraints of ARCs are defined and optimized by minimizing the difference between the desired antenna excitation weightings or gain patterns. The resulting radiation characteristics in gain, SLLs, and ARCs indicate a trade-off between radiations and reflected power for system protection and interference avoidance.

The rest of this paper is organized as follows. Sec. II describes the theoretical foundations of antenna radiations in the presence of mutual coupling influences. Sec. III describes the basic ARC concept and its roles in array radiations. The cost functions of different system considerations are discussed with optimization algorithms. Numerical examples based on HFSS simulations are shown in Sec. IV to validate the feasibility. Finally, a short remark and future works are discussed in Sec. V as a conclusion.

II. THEORETIC FOUNDATION FOR ANTENNA ARRAY RADIATION UNDER MUTUAL COUPLING INFLUENCES

A. Basic Concept of Mutual Coupling between Array Elements

Consider an active antenna array, as illustrated in Fig. 1, to radiate directional or contoured beams. For compact inter-element spacing and avoiding grating lobes in wide-angle beam steering, strong mutual coupling between antennas may exist and degrade the radiation performance to cause scan blindness or RF device breakdown. Let the array of \(N \) antenna elements have excitations, \(A_{n,n} = [a_n (n = 1 \sim N)] \), and let the scattering matrix (or called cross-coupling coefficients [5]) of mutual coupling between antenna elements be represented by \(S \) as

\[
S_{N,N} = \begin{bmatrix}
S_{11} & S_{12} & \cdots & S_{1N} \\
S_{21} & S_{22} & \cdots & S_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
S_{(N-1)1} & S_{(N-1)2} & \cdots & S_{(N-1)N} \\
S_{N1} & S_{N2} & \cdots & S_{NN}
\end{bmatrix}. \tag{1}
\]

Assume the BFNs consist of RF power splitters/combiners to produce single-port excitations by active RF feeding devices of phase shifters, power/low-noise amplifiers, and attenuators to control the excitation amplitudes and phases for the system operations, as shown by the system diagram in Fig. 2. The radiation from the array can be expressed as

\[
E_n(\mathbf{r}) = \sum_{n=1}^{N} a_n E_{n,EIP}(\mathbf{r}).
\]

where \(E_n(\mathbf{r}) \) is the \(n^\text{th} \) element’s radiation with its excitation amplitude and phase being \(|a_n| \) and \(\phi_n = \angle a_n \), respectively. Under a perfect impedance matching at the antenna ports and without mutual coupling effects, these weightings excite the antenna ports, where \((V_n, I_n) = 0\) in Fig. 2 at the transmitting mode. In this case, \(E_n(\mathbf{r}) \) is the IEP, \(E_{n,EIP}(\mathbf{r}) \), of a standing-alone antenna element, obtained from a full-wave simulation. It is noted that the radiation power density of the \(n^\text{th} \) element has the following relationship:

\[
P_{\text{rad},n}(\mathbf{r}) \propto |a_n E_n(\mathbf{r})|^2.
\]

When the mutual coupling and the scattering matrix in (1) exists due to imperfect impedance matching, the radiation becomes

\[
E_n(\mathbf{r}) = \sum_{n=1}^{N} a_n E_{n,EIP}(\mathbf{r})
\]

where \(E_{n,EIP}(\mathbf{r}) \) are the EEPs obtained from the IEP by [4]

\[
E_{n,EIP}(\mathbf{r}) = (1 + \Gamma_n) E_{n,EIP}(\mathbf{r}).
\]

In (5), \(\Gamma_n \) is the ARC at the \(n^\text{th} \) antenna’s port defined by

\[
\Gamma_n \triangleq \frac{V_n^-}{V_n^+} = \frac{1}{a_n} \sum_{m=1}^{N} s_{mn} a_m = \frac{1}{V_n} \sum_{m=1}^{N} s_{mn} V_m.
\]

Note that (6) can be simplified for the directional beam from a periodic array excited by uniform amplitudes. The excitations for a one-dimensional array to radiate the \(q^\text{th} \) beam are
\[a_{n,q} = e^{i\frac{2\pi}{N}(n-1)(q-1)} \]

In this case, the ARC can be expressed as
\[\Gamma_{n,q} = e^{-i\frac{2\pi}{N}(n-1)(q-1)} \sum_{n=1}^{N} S_{nm} e^{i\frac{2\pi}{N}(n-1)(q-1)} \]

which is the discrete Fourier transform of the scattering matrix.

B. Mutual Coupling Influence on the Array Radiation by Examining the Behaviors of EEP Compositions

In this section, the behaviors of EEPs using them to form the array radiations are compared to the HFSS simulations. To produce strong EM mutual-couplings, we consider arrays of 4×4 and 8×8 λ/2 dipoles with the dipoles’ orientations in the y-direction on the x-y plane, as shown by the inset in Fig. 2 and 3. The inter-element separations are 0.75λ at 2.4GHz. The single dipole’s reflection coefficients and gain pattern on the y-z plane are shown in Fig. 3(a) and (b), respectively, where the \(S_{11} \) at the center frequency, 2.4 GHz, is -35.32 dB, and the bandwidth is 0.53 GHz from 2.16 to 2.68 GHz. The peak gain is 2.22 dBi. Note that using EEPs to resemble the radiation with EM mutual coupling removes the need of sophisticated and time-cumbersome full-wave simulations. It is valid for small antennas operating at a single fundamental mode, where the current distributions on the antenna bodies are not significantly altered. The discrepancy will be very slight and limited.

The radiation patterns of these two arrays are shown in Fig. 4 and 5, respectively, where three solutions are shown for comparison. Denoted by “IEP” is the case using IEPs and array factor to find the array radiation pattern. The second is numerically exact (denoted by “sim”), obtained from the HFSS full-wave simulation on the entire dipole array. On the other hand, the third (indicated by “EEP”) is the radiation pattern using the EEPs in Sec. II-A, which corrects the array radiations by incorporating the scattering matrix. It is seen that the EEP-based radiation patterns have excellent agreement with the exact patterns in the main lobe and the first few sidelobes. The discrepancy appears at wide-angle beams. These behaviors happen to most antenna array cases because the antenna elements have smaller sizes of less than \(\lambda / 2 \) to produce an exemplary array configuration.

III. INTEGRATION OF ARCS INTO THE COST FUNCTIONS OF RADIATION OPTIMIZATION

In this section, the radiation pattern synthesis incorporating the constraints of ARCs is presented with a focus on describing the implementation procedure and effective buildups of cost functions. Note that the radiation characteristics of an antenna array can be specified by examining the radiation patterns or the excitation weightings by defining a cost function that correlates the EM coupling interferences with the deviation of excitation weightings by

\[\Omega_1 = \left| A_{1,n} - A_{1,n} \right|^2 + \alpha \left(A_{1,n} S_{n,n} A_{1,n}^T \right) \left. \right| \right| \right|^2 . \]

The minimization target intends to make \(P_{\text{refl}} \to 0 \), while retaining the radiation performance in (2) without causing severe degradation. A quasi-analytic solution is searched by defining a cost function that correlates the EM coupling interferences with the deviation of excitation weightings by

\[\Omega_1 = \left| A_{1,n} - A_{1,n} \right|^2 + \alpha \left(A_{1,n} S_{n,n} A_{1,n}^T \right) + \alpha^* \left(A_{1,n} S_{n,n} A_{1,n}^T \right) \]

where \(A_{1,n} \) and \(A_{1,n} \) are the desired and varying ones for optimization to minimize the cost function. In (11), the complex weighting factor, \(\alpha \), is introduced to compromise the weight between \(P_{\text{refl}} \) and the excitation coefficients’ deviations, which benefits the search for the quasi-analytic solution. One can vary \(\alpha \) to minimize the cost function in (11). This quasi-analytic procedure is not automatic iterations but provides closed-form
formulations in the optimization. One may conveniently plot the cost function to α. In (11), the first term is related to minimizing radiation pattern deviation from the desired one by reducing the excitation deviation. The second and third terms are associated with the B-ARC minimization in the field strength scale. The goal is to minimize the B-ARCs at minimum radiation deviations. One can specify a constraint of maximum gain drop and then employ (11) to search for the solutions that reduce the B-ARC. It is clear that a larger $|\alpha|$ will cause a more significant beam deviation and performance degradation. It is desirable to keep $|\alpha|$ as small as possible.

With each $|\alpha|$ being a constant, (11) is minimized by taking the derivatives of (11) to A_{xx}, where the solution can be found by solving the zero derivatives, given as

$$A_{xx} = (\tilde{A}_{xx} - \alpha^* \tilde{A}_{xx} (S_{xx}^u + S_{xx}^s))$$

$$\left(I_{xx} - |\alpha|^2 (S_{xx}^u + S_{xx}^s) (S_{xx}^u + S_{xx}^s)^{-1}\right)^{-1},$$

(12)

where $^{-*}$ is the complex conjugate. Equation (12) consists of two terms. The ones associated with α arise from the mutual couplings between antenna elements and are related to the excitations of the influencing antennas and the scattering matrix. As mentioned earlier, one varies α and employs (12) to find the minimum Ω in (11) in a trade-off fashion. In the meantime, one also plots the radiation patterns and B-ARCs as indicators to select the optimum excitations until the trade-off results are found. Note that minimizing (11) may not be the optimum solution to minimize (9) within the constraint of radiation performance. When $|\alpha|$ in (12) is too large, A_{xx} will reduce to \tilde{A}_{xx} after the unit-power normalization, resulting in an imaged radiation pattern to the original one. Thus, observing the variation of (9) within the radiation degradation constraint, one may pick the desired array excitations at a small $|\alpha|$.

B. The Constraint of ARCs at the Individual Antenna Ports

The ARCs at the individual antenna ports, P_n ($n=1$ to N), (referred to as the A-ARCs, hereafter) are shown in (6), which serve as the constraints in the cost function to avoid RF devices breakdowns in the BFN. It is noted that (6) can be alternatively expressed in a matrix form, $\tilde{\Gamma}_n = \Gamma_n$, by

$$\tilde{\Gamma} = A_{xx} S_{xx}^{-1} A_{xx}^{-1},$$

(13)

where "./" denotes the elemental division commend provided in Matlab software. One extends the basic concept in (11) to define the cost function by

$$\Omega_2 = \left| A_{xx} - \tilde{A}_{xx} \tilde{\Gamma} - |\alpha|^2 \right| + \alpha \max \{ |abs(A_{xx} S_{xx}^{-1} A_{xx}^{-1})| \},$$

(14)

where the "abs" finds the absolute value of each element. This cost function is minimized to achieve the desired radiation based on the desired excitations. Again, the first term in (14) reduces the radiation deviation while the second term picks the maximum A-ARC among the antenna ports first and then minimizes it. The α is a positive real number used to balance the weightings between these two terms. Similar to Sec. III-A, one intends to obtain a trade-off solution to achieve good radiation patterns and A-ARCs at the antenna ports. Methods, such as the quasi-Newton method [30] and the relative interpretation, can be used to solve it. The function code "fminunc" in Matlab Tool Box [31] can be used to optimize this cost function.

C. Optimization of Antenna Gain, SLLs, and ARCs at the Antenna Ports

The optimization of radiation patterns and A-ARCs in Sec. III-B can also be applied to incorporate the antenna radiation pattern directly. Thus, the cost function, Ω, in (14) is alternatively expressed in the following form:

$$\Omega_3 = \max \left\{ \left|G_{db} - \tilde{G}_{db}\right|, 0 \right\} + \max \left\{ |\max(\tilde{\Gamma}_{db}) - \Gamma_{spec}|, 0 \right\},$$

(15)

where Γ_{spec} and SLL_{spec} denote the system specified allowable levels of A-ARCs and SLLs in the dB scales. Here the SLLs are computed relative to the peak gain, G_{db}. The values of G_{db} and \tilde{G}_{db} are the calculated and desired peak gains along the desired beam direction in the dB scales. Both G_{db} and SLL$_{db}$ are computed in the presence of mutual coupling, i.e., from the EEPs to form the beams. The comparison with "0" is set intentionally for a convenient coding purpose to do the justification of optimization. It is noted that each term in (15) takes the largest value between it and 0, making $\Omega_3 = 0$ when the optimized results fulfill all the specifications. Appropriate specifications are needed to avoid over-optimization in some extreme cases. For example, an unreasonably large beam width can also reduce SLL.

The optimization of (15) does not have closed-form solutions to perform the iterations. Moreover, a reasonably high-quality initial solution cannot be easily specified as the starting point for performing the optimization algorithms. It is noted that local optimization techniques like that addressing (14) may easily get trapped in the local optima and fail to satisfy the multiple specifications of peak gains, A-ARCs, and SLLs in (15). In this work, we propose to employ the differential evolution (DE) algorithm [32],[33], which is a global optimization method widely used for antenna design optimization [34]. Its operators have also been employed to develop state-of-the-art AI-driven antenna design algorithms (e.g., [35] and [36]).

The implementation of DE first specifies a population P of Q decision variables (i.e., the array excitations) to iteratively search for optimum solutions. Let $\pi = (x_1, \cdots, x_Q) \in \mathbb{R}^Q$ be an individual solution of excitations in P. The DE procedure generates child solutions from P by mutation and crossover operations. In particular, the mutation produces a donor vector, $\tilde{\pi}$, from individuals in P, which is one-to-one correspondence to π. Several mutation strategies, trading off between the population diversities (i.e., the ability to avoid being trapped in local optima) and convergence speed, have been examined in the past [33]. In this paper, the DE/rand-to-best/1 mutation strategy [32] is employed, which gives

$$\tilde{\pi} = \pi + F(\tilde{\pi} - \pi) + F(\tilde{\pi} - \pi'),$$

(16)

where $\tilde{\pi}'$ is the i^{th} individual solution of P (the current population), and $\tilde{\pi}'_{best}$ is the individual in P with the best cost.
the achieved minimum B-ARCs follow the increase of gain drop constraint even though they are not linear.

Fig. 6 shows the behaviors of the B-ARCs and gain drops to the gain drop constraints and \(\alpha \) variations. The curves were plotted to the phase variations of \(\alpha \), where the blue curves are the B-ARC variations while the orange curves are the actual gain drops. Comparing the curves of these two colors shows the relationship between gain drops and B-ARC reductions. One can pick proper values of B-ARCs and gain drops fulfilling the system requirements, which allows one to determine the value of \(\alpha \), which is afterward substituted into (12) to find the optimum excitation \(A_{\text{opt}} \). Numerical results show that there is a limit of minimum B-ARC. In practical applications, one may select trade-off results of gain drop and ARCs from Fig. 6(a) to fulfill the system requirement.

On the other hand, the resulting A-ARCs at the antenna feeding ports are shown in Fig. 7(b). The red star symbols are the reference results of uniform excitations. All excitations were normalized to a unit power. It is seen that the gain drops are similar to the applied constraints. The SLLs are slightly reduced on the first few sidelobes, which do not get worse by these gain degradations.

Fig. 6: The variations of B-ARCs and gain drops to the gain drop constraints and \(\alpha \) variations.
They are alternatively improved and worsened. Some of them may degrade to -3dB at the antenna ports for the case of a 1.5 dB gain drop constraint (or -27.91dB B-ARC at the BFN port).

One next considers a 150° beam-steering case. Fig. 8(a) shows the B-ARC and gain drop variations to α, where $|\alpha| = 0.32$ was obtained for the cases of gain drop constraints smaller than 1.5dB. The beam steering has reduced the B-ARC compared to the previous case in Fig. 6 when the original uniform excitations are employed. In this synthesis, the gain drop is less than 0.16dB, which can produce a B-ARC by -64dB, more than 45 dB improvement. The resulting radiation patterns are shown in Fig. 8(b), where the two patterns almost overlap, showing negligible radiation degradation.

On the other hand, the antenna ports’ A-ARCs are demonstrated in Fig. 8(c). It is first seen that the A-ARCs become worse in comparison to the broadside beam case in Fig. 7(b), even when one uses the original uniform excitations. The A-ARCs can be as large as -5.5dB. It is also seen that when the optimization is applied, the variation of A-ARC becomes larger. Most of them are improved compared to the broadside beam case in Fig. 7 due to the insignificant gain drop or pattern distortion. It is seen that the A-ARCs always get worse when the mutual coupling effects are considered. These poor A-ARC performances may cause RF component breakdowns when the RF devices are installed directly behind the antennas.

B. The Constraint of A-ARCs at the Individual Antenna Ports

The examination considers the array of 8×8 dipoles in Sec. II-B and Fig. 2, where the periods are 0.5λ at 2.4GHz.

Compared to (11), (14) selects the worst A-ARC (maximum) to minimize the cost function, where α is set by a positive value for simplification. One first considers a broadside beam and optimizes the A-ARCs via (14), where A_{cheb} is the Dolph-Chebyshev distribution. Fig. 9 (a)-(d) show the achieved gain drops, SLLs, beam deviations, and the maximum A-ARCs, respectively for $0 < \alpha < 40^\circ$, where $\alpha = 0$ is the case of uniform excitations without optimization. The worst A-ARCs are larger than -8dB. After optimization, the cases of gain drop also reduce SLLs, where the gain drops are less than 0.03 dB while the SLLs have improvements of almost 0.8dB. In these cases, the beam directions remain stably unaltered. However, the maximum A-ARCs are improved by more than 2 dB to make them smaller than -10dB.

One next considers the $(\theta, \phi) = (30^\circ, 60^\circ)$ beam scan case. The radiation behaviors are shown in Fig. 10 (a)-(d) with respect to Fig. 9(a)-(d). In this case, the maximum A-ARCs...
for a broadside beam. Only one target "Dol" SLL of beam direction.

OPTIMIZED RESULT.

For the Antenna Ports C.

complex, but the improved values are larger. 25s CPU time, while the "Opt" cases need about 700-750s. In Table I, the broadside beams consider two target SLLs of -20 and -15dB. Before the optimizations, the resulting maximum A-ARCs are -9.03 and -7.67 dB, respectively, larger than the popular -10 dB threshold. The SLLs are -18.56 and -13.56 dB for the two reference excitations. One first applies (14) to optimize the maximum A-ARCs, which do not involve the SLL

<table>
<thead>
<tr>
<th>Case</th>
<th>Input Parameter and Result (Unit: dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fmi. 1</td>
<td>Specification: SLL = -20</td>
</tr>
<tr>
<td>Fmi. 2</td>
<td>Specification: SLL = -15</td>
</tr>
<tr>
<td>Opt. 1</td>
<td>(G, SLL, ARC) = [19.5, -20, -10]</td>
</tr>
<tr>
<td>Opt. 4</td>
<td>(G, SLL, ARC) = [19.5, -15, -10]</td>
</tr>
<tr>
<td>Opt. 7</td>
<td>(G, SLL, ARC) = [18.5, -15, -10]</td>
</tr>
</tbody>
</table>

The results obtained using (14) as the cost function in Sec. IV-B are denoted by “Fmi.”

Tables I and II summarize the achieved gains, SLLs, and maximum A-ARCs for the broadside and (θ, φ) = (30°, 60°) beams, respectively. The “Fmi” cases usually take about 20s to 25s CPU time, while the “Opt” cases need about 700-750s. In Table I, the broadside beams consider two target SLLs of -20 and -15dB. Before the optimizations, the resulting maximum A-ARCs are -9.03 and -7.67 dB, respectively, larger than the popular -10 dB threshold. The SLLs are -18.56 and -13.56 dB suppression. Table I shows that the gains remain similar to the non-synthesized ones while the SLLs have some improvements. The maximum A-ARCs are -10.31 and -10.05 dB, respectively, smaller than the -10 dB threshold and representing 1.3 and 2.38dB improvements. In applying (15), various design goals are pursued. As shown in Table I, most cases can achieve the desired gains, where the achieved SLLs are also very close to the specified ones with less than 0.25 dB differences. The maximum A-ARCs are also very close to the specified ones with less than 0.25 dB differences. The maximum A-ARCs of all cases are smaller than -10 dB. On the other hand, Table II summarizes the results for the (θ, φ) = (30°, 60°) beam. Only one target “Dol” SLL of -15dB is considered because beam steering may result in considerable A-ARC degradation. In this case, the achieved SLL is -13.13 dB, similar to the broadside beam case. However, the maximum A-ARC is -6.10 dB, which may incur strong reflected power for high-power radiations. It is seen that using (14) improves the SLL by 1.5dB. The maximum A-ARC is -8.67dB, a 2.57dB improvement. In Table II, the optimization using (15) examines three cases. It is seen that the SLL performances are further improved. The A-ARC performances are also enhanced with values much closer to the -10 dB threshold. However, these slightly sacrifice the gain performance to achieve these results.

maximum A-ARCs are enhanced by more than 2dB. Compared to Fig. 9(d), the improvement of maximum A-ARCs is more complex, but the improved values are larger.

C. Optimization of Antenna Gain, SLLs, and A-ARCs at the Antenna Ports

One employs (15) to optimize the radiation patterns and A-ARCs, compared with those using (14) in Sec. IV-B. In these examinations, various goals of gains, SLLs, and A-ARCs are set, where the antenna array fed by the Dolph-Chebyshev distributions (denoted by “Dol” in the numerical results and figures) for the target SLLs is used as comparison references. The results obtained using (14) as the cost function in Sec. IV-B are denoted by “Fmi.”

Fig. 9: The resulting radiation characteristics and maximum A-ARCs after optimization by altering α for a broadside beam.

Fig. 10: The resulting radiation characteristics and maximum A-ARCs after optimization by various α for the (θ, φ) = (30°, 60°) beam direction.
The resulting A-ARCs are shown in Fig. 11 and 12. In particular, Fig. 11 (a)-(c) correspond to “Dol. 2”, “Fmi. 1,” and “Opt. 5” cases in Table I, while Fig. (a)-(c) correspond to “Dol. 1”, “Fmi. 1” and “Opt. 1” in Table II. It is seen that without optimization, many A-ARCs are larger than -10dB, especially in the beam steering case. After optimizations, they significantly improved, with most smaller than -10 dB. The resulting radiation patterns are shown in Fig. 13 and 14 in the u-v space, corresponding to Fig. 11 and 12, respectively. It is seen that using (14) may better retain the radiation patterns much closer to the original ones before optimizations. Using (15) may re-distribute the sidelobes away from the two orthogonal x-z and y-z planes. These sidelobe redistributions do not cause any problems because, in these non-principal planes, their SLL values are very low in the original cases. The redistributions do not significantly impact the overall SLLs.

Finally, one compares the frequency responses of radiations and the maximum A-ARCs for the two beams’ synthesis, where the responses were synthesized at the sampled frequencies. The results are shown in Fig. 15 and 16 for the cases “Doi. 1”, “Fmi. 1”, “Opt. 1” and “Doi. 1”, “Fmi. 1”, and “Opt. 1” in Table I and II, respectively. The “Dol. 1” has a better gain performance for
the achieved gain variations in the broadside beam. The “Fmi. 1” has a slight gain offset of 0.2-0.3 dB, almost constant in the frequency band. The “Opt. 1” has the same gain as the “Fmi. 1” at 2.5 GHz, but the gain degradation increases when the frequency is away from 2.5 GHz. The reason is the incorporation of SLLs in the optimization of using (15). Thus, the SLL responses in Fig. 15 show a better performance for “Opt. 1,” which has the smallest except for the frequency at 2.2 GHz. Both “Fmi. 1” and “Opt. 1” have better improvements in the frequency band. Fig. 15 also shows good performance of very small beam deviations, less than 2.5°, by synthesizing (15). On the other hand, the maximum A-ARCs are all improved by the proposed synthesis using (14) and (15). The improvements are maximum at frequencies near 2.5 GHz.

The advantage of using (15) as the cost function becomes apparent for the steered beam, as shown in Fig. 16. It is seen that the proposed synthesis using (15) provides better frequency responses in gain and SLL, where the variations are minor, even though it results in more significant beam deviations when the frequencies are away from 2.5 GHz. The SLLs are almost constant within the frequency band by using (15). The SLL results of “Fmi. 1” have more deviations at high frequencies because (14) does not incorporate the control of SLL in the optimization. In all cases of Fig. 15 and 16, the behaviors of A-ARCs have very narrow frequency bands, indicating that the synthesis should be performed at various desired frequencies.

V. Conclusion

Antenna array radiation synthesis incorporating the ARC constraints has been investigated, which reduces considerable reflected power, avoiding signal interferences and reducing the risk of system breakdown and scan blindness. Three scenarios and cost functions have been examined to study their behaviors and optimization mechanisms. Numerical results show that the ARCs can be reduced to a certain level in practical applications under a slight gain sacrifice. A proper setup of gain, SLL, and ARC goals can optimize the radiation characteristics. Various approaches to numerical optimizations have been implemented in these examinations, with different advantages. The quasi-analytical solutions are applicable to reduce the ARCs at the BFN and antenna ports, which are computationally efficient but do not warrant a global optimization.

Moreover, when multiple objects of radiation optimization are desired, it is not easy to find a closed-form formulation. DE can be effective. It is seen that a suitable cost function can result in different degrees of optimization. Future works will attempt to improve the efficiency and effectiveness of radiation synthesis. Physical limitations will also be pursued.

ACKNOWLEDGMENT

Financial support on this work in parts from Qualcomm Tech. and the Ministry of Science and Technology (MOST), Taiwan, are acknowledged.

REFERENCES

Loading Condition Transformations for Phased Array Modeling,” IEEE

coupling of antennas with prescribed radiation pattern,” Proc. IEEE

[14] D. M. Pozar, Microwave Engineering. 4th ed., New York, NY, USA:

MIMO antenna system for WLAN and WiMAX application,” J.

[17] I. Chang and B. Lee, "Design of defected ground structures for harmonic
control of active microstrip antenna," Proc. IEEE Antennas and

review on different techniques of mutual coupling reduction between
elements of any MIMO Antenna. Part 1: DGSs and parasitic structures",

[21] M. Alibakshikenari et al., "A comprehensive survey on 'various
decoupling mechanisms with focus on metamaterial and metasurface
principles applicable to SAR and MIMO antenna systems," IEEE Access,

[22] H. T. Hui, "Decoupling Methods for the Mutual Coupling Effect in

[23] . Andersen and H. Rasmussen, "Decoupling and descattering networks for
Nov. 1976.

[24] K.-L. Wong, C.-Y. Tsai and J.-Y. Lu, "Two asymmetrically mirrored gap-
coupled loop antennas as a compact building block for eight-antenna

using neutralization-line technique for wireless USB-dongle

Synthesis for Time Modulated Antenna Arrays Including Mutual
Coupling by Differential Evolution Integrated With FFT via Least-Square

1996.

[34] A. Zocca, G. Oliveri, and A. Massa, “Differential evolution as applied to
electromagnetics,” IEEE Antennas Propag. Mag., Vol. 53, no. 1, pp. 38–

Method for Antenna Design Optimization Based on Evolutionary

design based on a self adaptive surrogate model assisted optimization
technique,” IEEE Trans. Antennas Propag., Vol. 69, No. 4, pp. 2302-
2315, Apr. 2021