
RESEARCH ARTICLE

Insights into the intracellular localization,

protein associations and artemisinin

resistance properties of Plasmodium

falciparum K13
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Abstract

The emergence of artemisinin (ART) resistance in Plasmodium falciparum intra-erythrocytic

parasites has led to increasing treatment failure rates with first-line ART-based combination

therapies in Southeast Asia. Decreased parasite susceptibility is caused by K13 mutations,

which are associated clinically with delayed parasite clearance in patients and in vitro with

an enhanced ability of ring-stage parasites to survive brief exposure to the active ART

metabolite dihydroartemisinin. Herein, we describe a panel of K13-specific monoclonal anti-

bodies and gene-edited parasite lines co-expressing epitope-tagged versions of K13 in

trans. By applying an analytical quantitative imaging pipeline, we localize K13 to the parasite

endoplasmic reticulum, Rab-positive vesicles, and sites adjacent to cytostomes. These lat-

ter structures form at the parasite plasma membrane and traffic hemoglobin to the digestive

vacuole wherein artemisinin-activating heme moieties are released. We also provide evi-

dence of K13 partially localizing near the parasite mitochondria upon treatment with dihy-

droartemisinin. Immunoprecipitation data generated with K13-specific monoclonal

antibodies identify multiple putative K13-associated proteins, including endoplasmic reticu-

lum-resident molecules, mitochondrial proteins, and Rab GTPases, in both K13 mutant and

wild-type isogenic lines. We also find that mutant K13-mediated resistance is reversed upon

co-expression of wild-type or mutant K13. These data help define the biological properties

of K13 and its role in mediating P. falciparum resistance to ART treatment.
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Author summary

The development of drug resistance in Plasmodium falciparum parasites presents a signifi-

cant impediment to the global fight against malaria. Partial resistance to artemisinin

(ART), the core component of current first-line drugs, has swept across Southeast Asia. In

P. falciparum-infected patients, ART-resistant parasites show slow rates of clearance fol-

lowing treatment with an ART derivative or ART-based combination therapy. Resistance

to partner drugs has also emerged in Southeast Asia, leading to frequent treatment fail-

ures. Single amino acid mutations in the P. falciparum K13 protein constitute the primary

genetic cause of ART resistance and predict an increased risk of treatment failure. By gen-

erating monoclonal antibodies, we have investigated the subcellular localization of K13 in

dihydroartemisinin-treated or untreated parasites. Analytical microscopy data localize

K13 to or near the endoplasmic reticulum and vesicles that mediate intracellular traffick-

ing, including plasma membrane-associated cytostomes that import host hemoglobin into

the parasite. Co-immunoprecipitation experiments with K13-specific monoclonal anti-

bodies identified multiple proteins associated with the endoplasmic reticulum, vesicular

trafficking, the cytosol, or the mitochondria, with no apparent differences between K13

mutant and wild-type parasites. We also observed that overexpression of mutant or wild-

type K13 in K13 mutant parasites could restore susceptibility, supporting the hypothesis

that K13 mutations cause loss of function.

Introduction

Worldwide, malaria results in an estimated 400,000 or more fatalities each year, afflicting

mostly infants and young children in sub-Saharan Africa [1]. Treatment of asexual blood-

stage infections caused by Plasmodium falciparum, the most virulent human malaria parasite,

relies on the efficacy of artemisinin (ART)-based combination therapies (ACTs). These first-

line treatments pair a derivative of ART, an exceptionally fast-acting and potent antimalarial,

with a longer-lived partner drug [2]. Commonly used partners include the arylaminoalcohol

lumefantrine, used primarily in Africa, and piperaquine, a bisquinoline used predominantly in

Southeast Asia [3].

In parasites, activation of ART or its derivatives requires iron-mediated reductive scission

of the compound’s central endoperoxide bridge. The activator is thought to be primarily Fe2+

heme, a byproduct of parasite-mediated catabolism of host hemoglobin [4]. This cleavage

event generates carbon-centered free radicals that can target proteins, lipids, nucleic acids, and

heme itself, resulting in rapid cellular damage and parasite death [5–8]. ART is characterized

by its ability to eliminate parasites from all stages of the intra-erythrocytic developmental cycle

(IDC), including the young ring stages that form shortly after parasites invade host red blood

cells (RBCs) [9,10]. This drug is highly potent against trophozoites that undergo maximal

endocytosis and degradation of host hemoglobin, thus providing an abundant source of free

heme.

Emerging resistance to ACTs threatens to reverse recent progress in reducing the global

burden of malaria. Having first appeared in western Cambodia over a decade ago, resistance to

ART is now nearly at fixation across Southeast Asia [11–15]. Clinically, ART resistance is

defined as delayed parasite clearance after artesunate monotherapy or treatment with an ACT.

As resistance to ART has become more widespread, selection pressure on partner drugs has

increased. In some cases, delayed parasite clearance has escalated to treatment failure as

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 2 / 35

in part by the NIH-supported Columbia University

Graduate Program in Microbiology, Immunology

and Infection (T32 AI106711; 637 PI DAF). AOJ is

supported by R01 AI103280, R21 AI123808, and

R21 AI130584, the St. Louis Children’s Foundation,

and an Investigator in Pathogenesis of Infectious

Diseases Award from the Burroughs Wellcome

Fund. MCSL is supported by a core grant from

Wellcome [206194]. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.ppat.1008482


partner drugs have succumbed to resistance [16]. In northeastern Thailand, a recent report

documented 87% treatment failure rates with dihydroartemisinin (DHA) plus piperaquine

[15].

In vitro, ART resistance is restricted to early ring-stage parasites, and is quantified as

increased survival in the ring-stage survival assay (RSA0-3h), wherein parasites are exposed to a

brief pulse (700 nM for 6h) of DHA. This assay distinguishes resistant parasites, which exhibit

�1% survival after three days, from sensitive parasites that do not survive the pulse [17]. This

resistance phenotype does not extend to the later trophozoite stage, presumably because para-

sites cannot counter the substantial toxicity arising from ART-mediated alkylation of the

abundant heme moieties generated at this stage.

ART resistance is attributed primarily to individual point mutations in the parasite Kelch

protein K13 [18]. Select mutations in K13 associate with delayed parasite clearance in P. falcip-
arum-infected patients and with elevated survival in the RSA0-3h [18,19]. These mutations all

map to the protein’s carboxy-terminal six-bladed beta-propeller domain, a characteristic com-

ponent of Kelch proteins that often serves as a scaffold for protein-protein interactions.

Among the mutations examined in vitro, R539T and I543T confer the highest levels of ART

resistance [20]. In contrast, the C580Y mutation confers only a modest degree of resistance,

yet is the most prevalent in Southeast Asia [20,21]. This finding has been attributed to the rela-

tively minimal fitness cost conferred by the C580Y mutation in Southeast Asian parasites [22].

In addition to its propeller domain, K13 comprises an apicomplexan-specific domain of

unknown function and a BTB/POZ dimerization domain. The latter is found in a subset of

Kelch proteins that commonly mediate ubiquitin-dependent protein degradation via the pro-

teasome by serving as substrate adaptors for E3 ubiquitin ligases [18,23]. K13 shows homology

with the mammalian BTB-Kelch protein Keap1, which controls the cell’s adaptive response to

oxidative stress [18,24]. In P. falciparum, the K13 gene appears to be essential based on condi-

tional knockout experiments showing that K13-deficient parasites do not progress past the

ring stage and transition into non-viable condensed forms, and by a large-scale saturation

mutagenesis study that observed no disruptions in the K13 coding region [25,26].

Mechanistic studies have led to several proposals for how mutant K13 might counter ART-

mediated cellular toxicity. These proposals include lowering the levels of the heme activator of

ART including via reduced hemoglobin endocytosis in rings [27–30], upregulating endoplas-

mic reticulum (ER) stress-response pathways [31], reducing the levels of ubiquitinated pro-

teins [32], promoting translational arrest via differential phosphorylation of the translation

initiation factor eIF2α [33], or increasing levels of the phospholipid phosphatidylinositol-3-

phosphate (PI3P) [34,35]. To gain additional insight into the biology of this protein, we raised

K13-specific monoclonal antibodies (mAbs) and used these to interrogate this protein’s sub-

cellular localization in DHA-exposed or vehicle-treated asexual blood-stage parasites. Using

co-immunoprecipitation (co-IP), we also identified potential interactions with other parasite

proteins and examined their predicted roles in P. falciparum metabolism and development.

Results presented herein implicate K13 in multiple cellular functions, including vesicular traf-

ficking and ER homeostasis, and suggest an unexpected association with the mitochondria

upon DHA treatment.

Results

K13 localizes to the endoplasmic reticulum and to vesicular structures

To probe the subcellular localization of K13, we raised monoclonal antibodies (mAbs) by

immunizing mice with recombinant protein fragments consisting of either the K13 propeller

domain alone or the propeller domain plus the upstream BTB/POZ domain, and cloning
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K13-specific hybridoma populations. Western blot screening identified the E9 clone that rec-

ognized the two recombinant K13 immunogens (bands at ~25 kDa and ~35kDa for the propel-

ler domain alone or propeller plus BTB/POZ domains, respectively) (Fig 1A). In parallel, we

generated recombinant NF54WTattB parasite lines that express endogenous wild-type (WT)

K13 and co-express stably-integrated transgenic copies of WT or C580Y K13, which were N-

terminally tagged with GFP or 3HA, respectively. These lines are referred to herein as

NF54WTattB-GFP-K13WT or NF54WTattB-3HA-K13C580Y (Table 1 and S1A–S1C Fig).

We tested our E9 mAb by Western blot against asynchronous parasite extracts from the

contemporary Cambodian isolate Cam3.II that carries the K13 R539T mutation (referred to

herein as Cam3.IIR539T) and its isogenic, gene-edited K13 WT counterpart Cam3.IIWT [20].

This K13 mAb clearly labeled WT and mutant K13 (both at ~85 kDa), with evidence of

reduced K13 labeling in Cam3.IIR539T parasites (Fig 1A and S1D Fig). Quantification provided

evidence of a slight reduction in K13 protein levels in the Cam3.IIC580Y and Cam3.IIR539T syn-

chronized ring-stage parasites (these decreases were estimated at ~24% and ~34%, respec-

tively) compared to WT levels (S1E Fig). We also tested the GFP- or HA-tagged NF54WTattB

lines expressing K13 in trans, revealing bands at ~110 kDa for GFP-K13WT and ~86 kDa for

3HA-K13C580Y (Fig 1A and S1D Fig) that were also recognized by anti-GFP- or anti-HA anti-

bodies respectively.

Our K13-specific E9 mAb was found to be suitable only for Western blots and to not pro-

vide a robust signal by immunofluorescence assay (IFA). Further screening led us to identify a

second K13-specific mAb, clone E3, which was suitable for IFAs (but not Western blots). This

mAb was tested against the parasite lines NF54WTattB-GFP-K13WT and NF54WTattB-

3HA-K13C580Y. These assays allowed us to calculate the overlap coefficient (termed the Pear-

son correlation coefficient, PCC) between the signal from our K13 E3 mAb and that from

anti-GFP or anti-HA antibodies tested against epitope-tagged K13 proteins. PCC values range

from +1 (indicating complete overlap) to 0 (random association) to -1 (mutually exclusive sig-

nals with zero overlap). In both the GFP and HA tagged lines we observed a very high degree

of correlation between the signals from the anti-K13 mAb E3 and anti-GFP or anti-HA anti-

bodies, with PCC values of 0.96 and 0.83, respectively (Fig 1B). These Western blot and IFA

results with native and epitope or fluorescent protein-tagged lines validated the specificity of

our K13-specific mAbs.

Using our E3 mAb, we next examined the subcellular localization of K13 throughout the

IDC by IFA. These assays were performed on tightly synchronized parasites and used the

Cam3.IIWT and Cam3.IIR539T isogenic lines. Samples were collected every 12h beginning with

early rings (0-3h post invasion (hpi)). Early rings showed a single K13-positive focus within

the parasite cytosol in both lines. As parasites progressed into schizonts, the number of

K13-positive foci increased. Whereas the majority of these foci appeared to be evenly distrib-

uted throughout the parasite cytosol, others appeared to be proximal to specific organelles

including the parasite plasma membrane, the ER, and the digestive vacuole (DV). No differ-

ences in K13 localization were evident between WT and mutant parasites (Fig 1C). Super-res-

olution microscopy clearly showed multiple K13 foci in trophozoites of both K13 mutant and

WT parasites (Fig 1D; S2A and S2B Fig). Three-dimensional rotations suggested elongated,

tunnel-like shapes that might link subcellular compartments (S1 Video). Quantification of the

number of visualized K13 foci estimated a 48% reduction in Cam3.IIR539T trophozoites com-

pared with Cam3.IIWT trophozoites (S2C Fig).

We also examined K13 localization using immunoelectron microscopy (IEM; Fig 1D).

These studies were conducted with NF54WTattB-GFP-K13WT and NF54WTattB-

3HA-K13C580Y parasites, with K13 detected via anti-GFP or anti-HA colloidal gold-conjugated

primary antibodies. In trophozoites, K13 appeared to localize to the parasite cytosol, often
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within small vesicles, vesicular clusters, or tubulovesicular networks that likely belong to the

ER or the Golgi apparatus. K13 was also frequently associated with the ER itself, as well as with

the plasma and nuclear membranes and the DV. We also saw evidence of K13 associating with

cytostomes that traffic host-endocytosed hemoglobin from the parasitophorous vacuolar space

to the DV (Fig 1E).

K13 overexpression restores artemisinin sensitivity to K13-mutant

parasites

Our epitope-tagged lines made it possible to further explore the relationship between co-

expression of mutant or WT K13 in trans and endogenous mutated or wild-type K13. The

impact of co-expression on in vitro resistance was measured using the RSA0-3h. As sensitive

and resistant benchmarks, NF54WT and NF54C580Y parasites (expressing K13 WT or C580Y

respectively) yielded mean RSA survival values of 1.0% and 4.8% respectively (Fig 1F). Co-

Fig 1. The P. falciparum artemisinin resistance determinant K13 localizes to the parasite ER and intracellular vesicles. (A) Western blots

probed with the E9 monoclonal antibody (mAb) raised against the K13 propeller domain. Left to right: recombinant K13 protein fragments

used as immunogens; Cam3.IIWT and Cam3.IIR539T asexual blood-stage parasite extracts; and NF54WTattB-GFP-K13WT and NF54WTattB-

3HA-K13C580Y extracts. ERD2 was used as a loading control for the Cam3.II lines. The NF54WTattB-GFP-K13WT and NF54WTattB-

3HA-K13C580Y blots were also probed with anti-GFP or anti-HA antibodies, respectively. (B) Immunofluorescence assay (IFA) images

showing K13 localization in NF54WTattB-GFP-K13WT (top) and NF54WTattB-3HA-K13C580Y (bottom) trophozoites. Parasites were co-

stained with the K13 E3 mAb and antibodies specific to GFP or HA. Pearson correlation coefficient (PCC) values indicate the degree of spatial

co-localization between the two signals and were calculated by determining the fluorescence intensity correlations of Alexa Fluor 488 (anti-

GFP or anti-HA) and 594 (K13 mAb). Nuclei were stained with DAPI (blue). Scale bars: 2 μm. (C) IFA images depicting K13 localization in

Cam3.IIWT (top) and Cam3.IIR539T (bottom) parasites throughout asexual blood-stage development. Parasites were stained with the K13 E3

mAb. Sampling was performed every 12h, beginning with tightly synchronized 0–3 hpi ring-stage parasites. Scale bars: 2 μm. (D) Super

resolution microscopy of mature parasites labeled with antibodies to K13 (green), the cytosolic marker HAD1 (red) and the nuclear stain

DAPI (blue), showing K13-positive punctate foci. Scale bars: 2 μm. A video representation is shown in S1 Video. (E) Representative

immunoelectron microscopy (IEM) images depicting K13 localization in NF54WTattB-GFP-K13WT or NF54WTattB-3HA-K13C580Y parasites

stained with 18 nm colloidal gold-conjugated anti-GFP or anti-HA antibodies. Arrowheads highlight locations of interest. ER, endoplasmic

reticulum; Hz, hemozoin; N, nucleus; PVM, parasitophorous vacuolar membrane. Scale bars: 100 nm. (F) Ring-stage survival assay (RSA0-3h)

results from NF54WTattB-GFP-K13WT, NF54C580YattB-GFP-K13C580Y, NF54WTattB-3HA-K13WT and NF54WTattB-3HA-K13C580Y transgenic

lines, compared to the sensitive and resistant benchmarks NF54WT and NF54C580Y, respectively. Data show mean ± SEM percent survival of

700 nM dihydroartemisinin (DHA)-treated early ring-stage parasites (0–3 hpi) compared with control dimethyl sulfoxide (DMSO)-treated

parasites processed in parallel. Experiments were performed on 2–6 independent occasions with technical duplicates.

https://doi.org/10.1371/journal.ppat.1008482.g001

Table 1. Plasmodium falciparum lines employed in this study.

Name Strain Endogenous K13 locus Transgene Transgene 5’ UTR

NF54WT NF54 WT – –

NF54C580Y NF54 C580Y – –

NF54WTattB-GFP-K13WT NF54attB WT GFP-K13WT (integrated into cg6 attB) K13
NF54C580YattB-GFP-K13C580Y NF54attB C580Y GFP-K13C580Y (integrated into cg6 attB) K13
NF54WTattB-3HA-K13WT NF54attB WT 3HA-K13WT (integrated into cg6 attB) pbef1α
NF54WTattB-3HA-K13C580Y NF54attB WT 3HA-K13C580Y (integrated into cg6 attB) pbef1α
Cam3.IIR539T Cam3.II R539T – –

Cam3.IIWT Cam3.II WT – –

Cam3.IIC580Y Cam3.II C580Y –

CamWT CamWT WT – –

CamWTC580Y CamWT C580Y – –

Dd2WT GFP-Rab6 Dd2 WT Rab6-GFP (episome) pfsec12
Dd2R539T GFP-Rab6 Dd2 R539T Rab6-GFP (episome) pfsec12
Dd2WT Sec24A-GFP Dd2 WT Sec24A-GFP (episome) pfsyntaxin17
3D7WT Mito-hGrx1-roGFP2 3D7 WT Mito-hGrx1-roGFP2 pfcrt

https://doi.org/10.1371/journal.ppat.1008482.t001

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 6 / 35

https://doi.org/10.1371/journal.ppat.1008482.g001
https://doi.org/10.1371/journal.ppat.1008482.t001
https://doi.org/10.1371/journal.ppat.1008482


expression of GFP-K13WT or 3HA-K13C580Y in our NF54WTattB epitope-tagged lines (see

above) led to ART sensitivity, with RSA values of 0.8% and 0.7% in the NF54WTattB-GFP-

K13WT and NF54WTattB-3HA-K13C580Y lines, respectively. As comparators, we also engi-

neered an NF54C580YattB line co-expressing GFP-K13C580Y as well as an NF54WTattB line

co-expressing 3HA-K13WT (Table 1). The former line expresses mutant K13 in both the

endogenous and transgene loci and demonstrated a nominally less sensitive phenotype (with

1.6% mean RSA survival), relative to the fully sensitive NF54WT line. The latter line expresses

WT K13 in both loci and was fully sensitive (mean RSA survival 1.0%). These data confirm

that mutant K13 does not confer resistance in a dominant-negative manner and suggest that

overexpression of the mutant protein mostly reverts K13 mutant parasites to DHA sensitivity.

Our results agree with recently published evidence that the RSA0-3h phenotype inversely corre-

lates with K13 abundance and that K13 levels are reduced in mutant parasites relative to WT

[27,28].

K13 co-immunoprecipitates with vesicular transport, ER, and

mitochondrial proteins

To identify putative K13-interacting partners, we performed six independent HPLC/MS-MS-

based co-IP experiments using two K13 mAbs (E3 and D9, which both yielded robust IFA sig-

nals). These experiments comprised 13 test samples from parasite cultures enriched in 0–12

hpi rings. These samples were prepared from Cam3.II lines expressing WT, C580Y or R539T

K13, as well as from CamWT lines expressing WT or C580Y K13 (Table 1 and S1 Table). For

a given sample, we retained only proteins that were identified by�3 peptide spectra. We then

filtered results across all samples by retaining only proteins that were present in�3 of the 6

independent experiments and�5 of the 13 test samples, and absent in all of the 10 negative

control samples (i.e. that used an unrelated antibody, or used affinity columns without the

addition of anti-K13 antibodies). Results showed that K13 was by far the most abundant pro-

tein detected, representing 22% of the total number of spectra detected in our filtered list of 83

high-confidence immunoprecipitated proteins (Table 2). In a secondary analysis, we relaxed

the criteria to allow for proteins that appeared in 1 to 3 negative control samples (out of 10),

while retaining the positive criteria listed above. This yielded an additional 90 proteins as puta-

tive interactors (S2 Table).

After K13, the most abundant protein in our co-IPs was S-adenosylmethionine (SAM) syn-

thetase (also known as methionine adenosyltransferase), a redox-regulated enzyme that pro-

duces the methyl donor S-adenosylmethionine used in methylation reactions of multiple

substrates including nucleic acids, proteins, phospholipids and amines [36]. Adenosylhomo-

cysteinase (also known as adenosylhomocysteine hydrolase), another enzyme involved in the

methionine metabolism pathway that produces SAM, was also in the top six most abundant

proteins. Phosphoglycerate mutase 1 (PGM1) was the second most abundant protein, with

phosphoglucomutase 2 (PGM2) being less abundant. Intriguingly PGM5, the mammalian

homolog of PGM2, tethers the K13 ortholog Keap1 to the mitochondria [37,38]). PGM1 is

annotated as being involved in parasite glycolysis, a pathway implicated with several other

immunoprecipitated proteins. The receptor for activated c kinase (RACK), a cytosolic multi-

functional scaffolding protein, was also abundant.

Consistent with our data that localized K13 to intracellular foci, we reproducibly co-immu-

noprecipitated K13 with several proteins involved in vesicular trafficking (Table 2 and S2

Table). These included multiple members of the Rab family of GTPases, namely Rab1A,

Rab1B, Rab5C, Rab6, Rab7, Rab11B, and Rab18B, which function as regulators of vesicular

trafficking and endocytosis in eukaryotes [39]. By applying an overrepresentation test in the
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Table 2. Putative K13-interacting protein partners identified by co-immunoprecipitation and LC/MS-MS.

PlasmoDB

Gene ID

Gene Name Abbreviation Cellular component and/or

functional features

Mean % total

spectral counts,

normalized

Number of

experiments

present (of 6)1

Number of

samples present

(of 13 total, 6

WT, 7 mutant)2

PF3D7_1343700 Kelch protein K13 K13 Putative CUL3 ubiquitin ligase

adaptor protein

22.19% 6 13 (6,7)

PF3D7_0922200 S-adenosylmethionine synthetase SAMS Methionine metabolism 5.19% 3 6 (3,3)

PF3D7_1120100 Phosphoglycerate mutase 1, putative PGM1 Glycolysis 3.58% 4 8 (4,4)

PF3D7_0826700 Receptor for activated c kinase RACK Cytosolic multi-functional

scaffolding protein

2.47% 5 9 (3,6)

PF3D7_1437900 Heat shock protein 40 HSP40 Cytosolic chaperone 2.33% 5 11 (5,6)

PF3D7_1010700 Dolichyl-phosphate-mannose-

protein mannosyltransferase,

putative

ALG2 CUL3 ubiquitin ligase adaptor

protein, with role in dolichol

metabolism

2.32% 6 11 (5,6)

PF3D7_0520900 Adenosylhomocysteinase SAHH Methionine metabolism 2.15% 3 6 (3,3)

PF3D7_1026800 40S ribosomal protein S2 RPS2 Small ribosomal subunit 1.76% 6 12 (5,7)

PF3D7_1444800 Fructose-bisphosphate aldolase FBPA Glycolysis 1.72% 3 6 (3,3)

PF3D7_0105200 RAP domain-containing protein – Altered transcription following

inhibition of polyamine and

methionine metabolism enzymes

1.51% 5 12 (5,7)

PF3D7_0915400 ATP-dependent

6-phosphofructokinase

PFK9 Cytoplasm 1.50% 3 5 (2,3)

PF3D7_0822600 Protein transport protein Sec23 SEC23 COPII mediated vesicular

transport

1.50% 4 7 (3,4)

PF3D7_0934500 V-type proton ATPase subunit E,

putative

– Ca2+ homeostasis 1.49% 5 11 (5,6)

PF3D7_0626800 Pyruvate kinase PyrK Glycolysis / Interaction with

HDAC1

1.49% 4 6 (3,3)

PF3D7_1008700 Tubulin beta chain – Microtubules 1.40% 4 8 (4,4)

PF3D7_1412500 Actin II ACT2 Actin filaments 1.38% 4 9 (4,5)

PF3D7_0929200 RNA-binding protein, putative – RNA-binding protein 1.27% 3 6 (2,4)

PF3D7_0927300 Fumarate hydratase, putative FH Mitochondrial TCA cycle 1.24% 6 9 (4,5)

PF3D7_0623500 Superoxide dismutase [Fe] SOD2 Mitochondrial antioxidant system 1.21% 4 8 (4,4)

PF3D7_0820700 2-oxoglutarate dehydrogenase E1

component

KDH Mitochondrial TCA cycle 1.20% 3 7 (3,4)

PF3D7_1037100 Pyruvate kinase 2 PyKII Apicoplast / Isoprenoid

metobolismmetabolism

1.19% 4 8 (4,4)

PF3D7_0608800 Ornithine aminotransferase OAT Ornithine metabolism 1.18% 3 5 (2,3)

PF3D7_1302100 Gamete antigen 27/25 Pfs27/25 Early marker of gametocyte

development

1.13% 4 8 (3,5)

PF3D7_1327800 Ribose-phosphate

pyrophosphokinase, putative

– Pentose phosphate cycle 1.12% 5 7 (2,5)

PF3D7_0823900 Dicarboxylate/tricarboxylate carrier DTC Mitochondrial antioxidant system,

TCA cycle

1.07% 4 9 (4,5)

PF3D7_1215000 Thioredoxin peroxidase 2 Trx-Px2 Mitochondrial antioxidant system 1.06% 4 7 (2,5)

PF3D7_1472600 Protein disulfide-isomerase PDI-14 Oxidative protein folding in the

ER, component of chaperone

complexes that interact with BiP

1.06% 4 7 (3,4)

PF3D7_0720400 Ferrodoxin NADP+ reductase – Mitochondrial iron-sulfur protein

biogenesis

1.05% 3 5 (2,3)

PF3D7_1468700 Eukaryotic initiation factor 4A eIF4A Eukaryotic translation initiation

factor 4F complex

1.02% 4 7 (3,4)

(Continued)
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Table 2. (Continued)

PlasmoDB

Gene ID

Gene Name Abbreviation Cellular component and/or

functional features

Mean % total

spectral counts,

normalized

Number of

experiments

present (of 6)1

Number of

samples present

(of 13 total, 6

WT, 7 mutant)2

PF3D7_0722200 Rhoptry-associated leucine zipper-

like protein 1

RALP1 Rhoptry neck protein 0.99% 4 6 (4,2)

PF3D7_1410600 Eukaryotic translation initiation

factor 2 subunit gamma, putative

eIF2g Eukaryotic translation initiation

factor 2 complex

0.92% 3 7 (3,4)

PF3D7_1338200 60S ribosomal protein L6-2, putative – Large ribosomal subunit 0.92% 4 9 (4,5)

PF3D7_1320000 Golgi protein 1 GP1 ER-Golgi translocation and quality

control

0.89% 3 6 (3,3)

PF3D7_1437700 Succinyl-CoA ligase, putative – Mitochondrial TCA cycle 0.86% 4 6 (1,5)

PF3D7_0829200 Prohibitin, putative PHB1 Mitochondrial protein

degradation

0.83% 4 9 (4,5)

PF3D7_0621200 Pyridoxine biosynthesis protein

PDX1

PDX1 Vitamin B6 synthesis 0.83% 3 6 (3,3)

PF3D7_1330600 Elongation factor Tu, putative – Mitochondrial protein translation 0.83% 4 8 (3,5)

PF3D7_0616800 Malate:quinone oxidoreductase,

putative

MQO Mitochondrial TCA cycle, ETC 0.81% 4 7 (2,5)

PF3D7_0624000 Hexokinase HK Glycolysis 0.79% 3 6 (3,3)

PF3D7_0920800 Inosine-5’-monophosphate

dehydrogenase

IMPDH Purine metabolism 0.78% 3 5 (2,3)

PF3D7_0511800 Inositol-3-phosphate synthase INO1 Inositol phosphate metabolism 0.73% 3 5 (3,2)

PF3D7_0727200 Cysteine desulfurase, putative NFS Mitochondrial iron-sulfur protein

biogenesis

0.72% 3 5 (1,4)

PF3D7_0813900 40S ribosomal protein S16, putative – Ribosome 0.70% 3 9 (3,6)

PF3D7_1108400 Casein kinase 2, alpha subunit CK2a Cytoplasm, nucleus, calcium

dependent protein kinase (CK2

complex)

0.69% 4 9 (4,5)

PF3D7_1115600 Peptidyl-prolyl cis-trans isomerase CYP19B Oxidative protein folding in the

ER, component of chaperone

complexes that interact with BiP

0.69% 3 5 (2,3)

PF3D7_1320800 Dihydrolipoyllysine-residue

succinyltransferase component of

2-oxoglutarate dehydrogenase

complex

– Mitochondrial TCA cycle 0.68% 4 7 (3,4)

PF3D7_1408600 40S ribosomal protein S8e, putative – Ribosome 0.68% 3 6 (2,4)

PF3D7_0816600 Chaperone protein ClpB ClpB Chaperone-assisted protein

folding (apicoplast and/or

mitochondrion)

0.68% 4 8 (3,5)

PF3D7_1133400 Apical membrane antigen 1 AMA1 Invasion molecule 0.67% 3 6 (2,4)

PF3D7_0709700 Prodrug activation and resistance

esterase

PARE Cytosolic esterase, putative lipase 0.65% 5 9 (4,5)

PF3D7_0401800 Plasmodium exported protein

(PHISTb), unknown function

PfD80 Maurer’s cleft exported protein 0.64% 4 8 (4,4)

PF3D7_0316800 40S ribosomal protein S15A, putative – Ribosome 0.63% 5 9 (5,4)

PF3D7_1465900 40S ribosomal protein S3 – Ribosome 0.62% 3 6 (2,4)

PF3D7_0106800 Ras-related protein Rab5C RAB5C Intracellular traffic / Endocytosis 0.61% 3 6 (3,3)

PF3D7_1025300 Conserved Plasmodium protein,

unknown function

– No known or predicted function 0.60% 3 6 (2,4)

PF3D7_1136300 Tudor staphylococcal nuclease TSN mRNA splicing 0.60% 4 7 (2,5)

PF3D7_1361100 Protein transport protein Sec24A SEC24A COPII mediated vesicular

transport

0.59% 4 6 (2,4)

(Continued)
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PANTHER classification system for biological processes, we observed an 18-fold enrichment

in Rab proteins, with a p value of 1×10−6 (S3 Table; http://pantherdb.org; [40,41]). K13-spe-

cific mAbs also co-immunoprecipitated Sar1, which assists in COPII coat assembly, and Sec23

and Sec24a, which form a heterodimer associated with the COPII vesicle coat that surrounds

Table 2. (Continued)

PlasmoDB

Gene ID

Gene Name Abbreviation Cellular component and/or

functional features

Mean % total

spectral counts,

normalized

Number of

experiments

present (of 6)1

Number of

samples present

(of 13 total, 6

WT, 7 mutant)2

PF3D7_1439400 Cytochrome bc1 complex subunit

Rieske, putative

– Mitochondrial cytochrome bc1

complex (ETC)

0.55% 4 7 (3,4)

PF3D7_1452000 Rhoptry neck protein 2 RON2 Invasion molecule 0.54% 3 5 (2,3)

PF3D7_1212500 Glycerol-3-phosphate 1-O-

acyltransferase

GAT ER membrane protein /

Glycerolipid synthesis

0.54% 4 8 (3,5)

PF3D7_0922500 Phosphoglycerate kinase PGK Glycolysis 0.50% 4 5 (2,3)

PF3D7_1008400 26S proteasome AAA-ATPase

subunit RPT2, putative

RPT2 Proteasome 0.49% 4 6 (3,3)

PF3D7_0416800 Small GTP-binding protein Sar1 SAR1 COPII mediated vesicular

transport

0.49% 4 7 (4,3)

PF3D7_0810600 ATP-dependent RNA helicase DBP1,

putative

DBP1 Helicase 0.48% 3 6 (2,4)

PF3D7_1145400 Dynamin-like protein DYN1 Clathrin-mediated vesicular

transport

0.45% 3 6 (3,3)

PF3D7_0309600 60S acidic ribosomal protein P2 PfP2 Ribosome 0.43% 4 5 (3,2)

PF3D7_0112200 Multidrug resistance-associated

protein 1

MRP1 Plasma membrane component /

glutathione and redox metabolism

0.41% 3 6 (3,3)

PF3D7_0504600 2-oxoisovalerate dehydrogenase

subunit beta, mitochondrial, putative

BCKDHB Mitochondrial TCA cycle 0.41% 3 6 (3,3)

PF3D7_1306400 26S proteasome AAA-ATPase

subunit RPT4, putative

RPT4 Proteasome 0.36% 3 5 (2,3)

PF3D7_0524000 Karyopherin beta KASb Import and export through the

nuclear pore

0.35% 4 6 (3,3)

PF3D7_0702500 Plasmodium exported protein,

unknown function

– Maurer’s cleft exported protein 0.33% 3 7 (3,4)

PF3D7_1361900 Proliferating cell nuclear antigen 1 PCNA1 DNA replication and repair 0.32% 3 6 (2,4)

PF3D7_0507100 60S ribosomal protein L4 RPL4 Ribosome 0.30% 3 6 (3,3)

PF3D7_1247400 Peptidyl-prolyl cis-trans isomerase

FKBP35

FKBP35 Cytoplasm, nucleus, centrosome 0.30% 3 5 (1,4)

PF3D7_0213700 Conserved Plasmodium protein,

unknown function

– No known or predicted function 0.30% 3 5 (3,2)

PF3D7_0217900 Conserved Plasmodium protein,

unknown function

– Putative thioesterase 0.29% 3 5 (1,4)

PF3D7_0205900 26S proteasome regulatory subunit

RPN1, putative

RPN1 Proteasome 0.29% 3 5 (3,2)

PF3D7_0719700 40S ribosomal protein S10, putative – Ribosome 0.28% 3 5 (1,4)

PF3D7_1105000 Histone H4 H4 Nucleus 0.27% 4 5 (3,2)

PF3D7_0413500 Phosphoglucomutase 2, putative PGM2 Glycolysis 0.25% 3 6 (3,3)

PF3D7_0520000 40S ribosomal protein S9, putative – Ribosome 0.23% 3 7 (4,3)

PF3D7_1129200 26S proteasome regulatory subunit

RPN7, putative

RPN7 Proteasome 0.22% 3 5 (3,2)

1A summary of these experiments can be found in S2 Table.
2The 13 samples were derived from Cam3.IIWT (4), Cam3.IIR539T (4), Cam3.IIC580Y (2), CamWTWT (2), and CamWTC580Y (1).

https://doi.org/10.1371/journal.ppat.1008482.t002
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transport vesicles budding from the ER. In P. falciparum, Sec24a has been localized to transi-

tional ER sites where it mediates the capture of COPII vesicle cargo [42]. Our co-IP studies

also identified other ER-associated proteins, including Sec61, part of the ER-Sec61 translocon

complex [43,44], the luminal protein disulfide isomerase (PDI-14), and two peptidyl-prolyl

cis-trans isomerases (CYP19B and FKBP35) that catalyze protein folding in the ER.

Multiple members of the eukaryotic translation machinery were also identified, including pro-

tein components of the 40S and 60S ribosomes and several translation initiation or elongation fac-

tors (EIF1α, eEF2, eIF2α, eIF4A), as well as several nucleic acid-binding proteins (including SR1

and SR4). Multiple components of the 19S regulatory particle of the 26S proteasome were

observed, notably RPT2, RPT4, RPN1, and RPN7. The 26S proteasome likely has a role in degrad-

ing ART-damaged proteins, supporting a potential role for K13 as a ubiquitin ligase adaptor pro-

tein that could help deliver polyubiquinated proteins for proteasome-mediated degradation [45].

We also identified several proteins that localize to the DV, wherein host hemoglobin is

degraded leading to the release of reactive heme. These include the hemoglobin-processing

enzyme plasmepsin II, and the membrane proteins PfCRT and falcilysin, with the latter also

being involved in transit peptide degradation in the apicoplast and mitochondria [46].

Unexpectedly, several proteins were also detected that are known or predicted to localize to

mitochondria. These include the Rieske protein that is part of the cytochrome bc1 complex, as

well as prohibitin 1 that is implicated in mitochondrial morphogenesis and that is a possible regu-

lator of mitochondrial membrane potential [47]. Components of the TCA cycle (including fuma-

rate hydratase, the 2-oxoglutarate dehydrogenase E1 component, a dicarboxylate/tricarboxylate

carrier, succinyl-CoA ligase, malate:quinone oxidoreductase, and the 2-oxoisovalerate dehydroge-

nase beta subunit) were also observed. We also identified factors thought to be involved in mito-

chondrial translation (elongation factor Tu), protein degradation (the ATP-dependent protease

subunit ClpQ, the ATP-dependent zinc metalloprotease FTSH 1, and the mitochondrial-process-

ing peptidase alpha subunit), iron-sulfur protein biogenesis (ferrodoxin NADP+ reductase and

cysteine desulfurase), as well as two putative mitochondrial chaperones (HPS40 and CPN20).

Other potential K13-interacting proteins associated with the mitochondria included the

ATP synthase F1 alpha subunit (involved in mitochondrial energy metabolism), mitochondrial

matrix protein 33, and a putative dynamin (involved in mitochondrial fission). Finally, several

proteins were associated with the mitochondrial antioxidant system, including superoxide dis-

mutase, thioredoxin peroxidase 2, isocitrate dehydrogenase, the succinyl-CoA synthetase

alpha subunit, a lipoamide acyltransferase, and the glutathione peroxidase-like thioredoxin

peroxidase. PANTHER overrepresentation analysis focusing on cellular components revealed

a 15-fold enrichment in mitochondrial proteins, with a p value of 4×10−4 (S4 Table).

In reviewing putative functional features of proteins in our K13 co-IP list (Table 2 and S2

Table), we observed an apparent enrichment of proteins known to undergo post-translational

modifications, specifically palmitoylation (73 proteins), glutathionylation (59 proteins), and S-

nitrosylation (53 proteins). In comparison, 409, 493 and 319 proteins with these respective

modifications were identified from the total asexual blood stage proteome (comprising over

4,800 proteins based on detected expression ([48–51]; http://mpmp.huji.ac.il)). This corre-

sponds to an estimated three to five-fold enrichment in these proteins among putative

K13-interacting partners.

K13 partially co-localizes with proteins involved in vesicular trafficking

and cytostomes

To further interrogate the putative interactors identified by our co-IP studies, we performed

quantitative co-localization studies using our K13 mAbs or K13 tagged lines combined with
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other epitope-tagged lines or primary antibodies to proteins of interest. Initial experiments

focused on the Rab GTPase family and the Sec23/24 heterodimer. For these studies, we pre-

pared highly synchronized early ring-stage parasites (0–3 hpi) and pulsed these for 6h with 700

nM DHA. Control cultures were mock-treated with DMSO vehicle. Parasites were harvested

at various time points post drug pulse and subsequently fixed and stained for microscopic

analysis (S3 Fig). To increase throughput and reproducibility we developed a quantitative

analysis pipeline in collaboration with Nikon software engineers for image processing and

determination of PCC values (listed in S5 Table).

We first assayed the Cam3.IIWT and Cam3.IIR539T lines with antibodies to Rab5A, 5B, or

5C, along with our K13-specific E3 mAb. Samples were collected immediately post drug treat-

ment (0h time point, ~6 hpi), and, in the case of Rab5A, also at 12h post pulse (~18 hpi). IFAs

with anti-K13 and anti-Rab5A antibodies showed an intermediate degree of spatial association

between the two proteins immediately (0h) post pulse in Cam3.IIWT and Cam3.IIR539T, with

median PCC values for both lines centering around 0.5 (Fig 2A and S4A Fig). At this time

point, we observed no effect of DHA treatment on PCC values in either line. At 12h post pulse,

however, we observed a statistically significant increase in PCC values for both mutant and

WT parasites in DHA-treated cultures as compared to mock (DMSO) treatment (Fig 2B and

S4B Fig). At this 12h time point with DHA-treated parasites, the PCC values for K13 and

Rab5A were significantly higher for K13 WT parasites compared with their mutant counter-

parts (median 0.65 vs 0.43; p<0.001; Fig 2B and S5 Table).

The putative K13 associations with Rab5B or Rab5C were also examined immediately post

DHA or DMSO treatment. Median PCC values for K13 and Rab5B or Rab5C were slightly

lower than for Rab5A in both Cam3.IIWT and Cam3.IIR539T parasites (Fig 2C and 2D and S4A

Fig). For both Rab5B and 5C, a slightly stronger association with K13 was observed in WT par-

asites compared with the mutants, a trend that became statistically significant upon DHA

treatment (p<0.05 and p<0.01, respectively). With all three Rab proteins, there was a trend

towards slightly lower PCC values immediately post DHA treatment (0h time point) in the

K13 mutant line and slightly increased PCC values in the K13 WT line. These data suggest

decreased levels of endocytosis in K13 mutant parasites following DHA exposure.

We subsequently assessed the spatial association between K13 and Rab6, a trans-Golgi

marker known to direct exocytic vesicles to the plasma membrane in mammalian cells [52].

These experiments were conducted using Dd2 K13 WT or R539T parasites expressing

Rab6-GFP episomally. PCC values were moderately high in both DMSO-treated lines, and

were significantly increased in both lines directly post DHA pulse, with the highest levels of

association (median 0.73) observed in DHA-treated K13 WT parasites (Fig 2E, S4C Fig and

S5 Table).

We continued our IFA analyses with the late endosome marker Rab7 and the post Golgi

marker Rab11A, using the Cam3.IIWT and Cam3.IIR539T lines and antibodies to K13 and the

two Rab proteins. For Rab7 we observed relatively high median PCC values, centering around

0.6, regardless of K13 allele status. These remained unchanged immediately post DHA treat-

ment (0h time point; Fig 2F and S4D Fig). For Rab11A we measured high PCC values for co-

localization with K13 in Cam3.IIR539T parasites for all time points and conditions examined,

including 0h and 12h post DHA and DMSO treatments (median 0.70–0.84; Fig 2G and 2H,

S4D and S4E Fig, and S5 Table). In contrast, median PCC values for K13 and Rab11A were

significantly lower in WT parasites than in mutant parasites at both time points, in particular

for DMSO-treated cultures (0.60–0.61; S5 Table). A slight but nonetheless significant increase

was observed in K13 and Rab11A association in WT parasites immediately after DHA treat-

ment (0h time point; p<0.01), bringing PCC values to the level of K13 mutant parasites, but

these values dropped again at 12h post treatment (Fig 2G and 2H).
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To extend these co-localization studies, we also performed ultrastructural analyses via IEM.

These studies used the NF54WTattB-GFP-K13WT and NF54WTattB-3HA-K13C580Y lines, which

were stained with anti-GFP or anti-HA colloidal gold-conjugated primary antibodies. Co-

staining with antibodies specific for Rab proteins localized K13 (black arrowheads) to sites

Fig 2. K13 partially co-localizes with vesicular transport proteins and sites adjacent to cytostomes. (A-H) PCC values quantifying the degree of spatial co-

localization between K13 and (A, B) Rab5A, (C) Rab5B, (D) Rab5C, (E) Rab6, (F) Rab7, and (G, H) Rab11A, with accompanying representative 3D volume

reconstructions of IFA images. Assays were conducted using Cam3.IIR539T or Cam3.IIWT parasites, except in the case of Rab6, where Dd2R539T or Dd2WT parasite lines

expressing GFP-Rab6 were employed. Samples were collected either directly following a 6h 700 nM pulse of DHA (A, C-G; denoted 0h) or 12h post pulse (B, H). DMSO

was used as a vehicle control. K13 was labeled using the E3 mAb (green). Rab proteins were labeled with specific antibodies (red) or, in the case of Rab6, anti-GFP

(green, with K13 this time in red). PCC values were calculated from the fluorescence intensity correlations of Alexa Fluor 488 and either Alexa Fluor 594 or Alexa Fluor

647. For PCC plots, each dot represents an individual parasitized RBC. Horizontal lines represent the median with interquartile range. Two-tailed unpaired t tests were

used to calculate p values. �p<0.05; ��p<0.01; ���p<0.001; ����p<0.0001. Scale bars: 1 μm. (I) IEM images of trophozoite-stage NF54WTattB-GFP-K13WT (left) or

NF54WTattB-3HA-K13C580Y (right) parasites co-stained with anti-GFP or anti-HA, respectively, and anti-Rab5A (two upper panels), anti-Rab7 (bottom left) or anti-

Rab5B plus anti-PDI (bottom right). Secondary antibodies were conjugated to colloidal gold particles of different sizes. Arrowheads highlight locations of interest. ER,

endoplasmic reticulum; N, nucleus. Scale bars: 100 nm. (J) IEM images of NF54WTattB-GFP-K13WT (left) or NF54WTattB-3HA-K13C580Y (right) trophozoites stained

with anti-GFP or anti-HA, respectively. Arrowheads highlight locations of interest. Hz, hemozoin; N, nucleus; PM, plasma membrane. Scale bars: 100 nm unless

otherwise indicated.

https://doi.org/10.1371/journal.ppat.1008482.g002
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either within or adjacent to vesicles containing Rab5A, Rab5B or Rab7 (white arrowheads; Fig

2I and S4F Fig). In some IEM images we also observed K13 near cytostomes (Fig 2J).

Our co-IP data suggested that K13 might also partially associate with the transitional ER

marker Sec24a, involved in vesicle budding from the ER. To examine this further, we tested

our anti-K13 E3 mAb on a Sec24a-GFP expressing parasite line that harbors WT K13 [42].

Quantitative IFA analyses revealed intermediate to high median PCC values (0.60–0.67) for

Sec24a and K13, with no significant changes upon DHA treatment (S4G and S4H Fig).

K13 partially co-localizes with the ER chaperone BiP but not with the cis-

Golgi marker ERD2

Given that K13 also co-immunoprecipitated a number of ER-associated proteins (Table 2 and

S2 Table), we performed imaging analyses using markers for the ER and cis-Golgi, namely

BiP and ERD2, respectively. To test for K13 and BiP spatial association, we applied high-reso-

lution 3D structured illumination microscopy to ring- and schizont-stage parasites. These

assays employed the Cam3.II K13 WT and R539T mutant lines, which were stained with anti-

K13 and anti-BiP antibodies (Fig 3A). In the ring stages, both mutant and WT K13 proteins

localized to foci associated with the BiP-labeled ER, whereas in the schizont stages only R539T

K13 showed evidence of a close spatial association with BiP. This association was supported

via widefield immunofluorescence microscopy with trophozoites (S5A Fig). Close proximity

between K13 and the ER was also observed by IEM studies with NF54WTattB-GFP-K13WT par-

asites labeled with anti-BiP and anti-GFP antibodies (S5B Fig), as well as our previous IEM

studies with triple labeling of K13, Rab5B and the ER chaperone PDI (white arrowheads; Fig

2I and S4F Fig).

We next assessed the degree of co-localization between K13 and BiP in DMSO- and DHA-

treated Cam3.IIWT or Cam3.IIR539T samples throughout the first half of the IDC, with time

points taken at 0h, 3h, 12h and 24h post treatment (S3 Fig). In DMSO-treated samples we

observed a non-significant trend towards lower PCC values in K13 WT samples as compared

to mutant samples across all time points tested (Fig 3B–3E and S5C Fig). At the 0h time point,

for example, PCC values for K13 and BiP averaged 0.72 and 0.64 for Cam3.IIR539T and Cam3.

IIWT respectively (S5 Table). By comparison, a very recent study using K13-specfic polyclonal

antiserum reported a PCC value of 0.58 between WT K13 and BiP [53]. Interestingly, following

DHA treatment, mutant and WT parasites showed significant differences at 12h post drug

pulse (Fig 3E and S5C Fig). Whereas PCC values for WT parasites dropped significantly post

DHA treatment, PCC values for K13 and BiP in R539T parasites were highest post DHA treat-

ment at this time point (median 0.82; S5 Table).

In light of the proximity between the cis-Golgi and sites of vesicle budding from the ER, we

compared association coefficients obtained with BiP to those measured using ERD2, a marker

of the cis-Golgi, using the same lines. In contrast to the high PCC values observed for K13 and

BiP in Cam3.IIWT or Cam3.IIR539T, for K13 and ERD2 we measured moderate to low PCC val-

ues regardless of the condition and parasite line tested (median 0.39–0.4; Fig 3F and 3G, S5D

Fig and S5 Table). These data argue against K13 being present in the cis-Golgi.

To assess whether K13 localization was affected by blocking ER-to-Golgi transport, we

exposed parasites to the fungal metabolite brefeldin A (BFA). This agent perturbs secretory

traffic in parasites, resulting in retention of secreted proteins within the ER [54]. In these

experiments, we treated Cam3.II K13 WT and mutant ring-stage parasites (0–3 hpi) with BFA

or vehicle control (EtOH) for 1h before harvesting and co-staining with anti-K13 and antibod-

ies to either BiP or ERD2. After the BFA pulse we observed a significantly higher association

between K13 and BiP in K13 mutant parasites, as compared with the ethanol (EtOH) mock-
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treated population (median 0.85 vs 0.64, respectively; S5 Table). By comparison, we measured

significantly lower PCC values for K13 and BiP in BFA-pulsed vs mock-treated K13 WT para-

sites (median 0.68 vs 0.56; Fig 3F and S5 Table). In contrast, PCC values for K13 and ERD2

remained moderate regardless of the treatment (BFA or mock; Fig 3J) and were equivalent to

those observed in the DHA and DMSO treatments in both lines (Fig 3F). The increased associ-

ation between BiP and mutant K13 upon BFA treatment was further illustrated for Cam3.

IIR539T in 3D volume reconstructions of K13- and BiP-labeled ring-stage parasites (Fig 3I).

K13 shows an elevated association with mitochondria post

dihydroartemisinin pulse

To explore the link between K13 and the mitochondrial proteins observed in our co-IP studies

(Table 2 and S2 Table), we quantified the degree of co-localization between K13 and mito-

chondria using our anti-K13 antibodies together with the live mitochondrial dye MitoTracker

Deep Red. PCC values were determined either immediately (0h) or 12h post drug pulse (i.e. 6h

of DHA or DMSO vehicle). These assays used the NF54WTattB-GFP-K13WT and NF54WTattB-

3HA-K13C580Y lines, as well as the isogenic Cam3.II K13 WT and R539T pair. Median PCC

values for mock-treated parasites were low (ranging from -0.03 to 0.25), as shown in represen-

tative images (Fig 4A–4E and S6 Table). After DHA treatment we observed significantly

increased associations between the mitochondria and K13 at both time points in all parasite

lines tested, particularly at the 12h time point in NF54WTattB-GFP-K13WT parasites (median

PCC value 0.84 in DHA-treated parasites vs. 0.44 in mock-treated; S6A Fig and S6 Table). For

the isogenic Cam3.IIR539T and Cam3.IIWT lines, a greater increase was observed in the mutant

parasites as compared to their K13 WT counterparts, especially 12h post drug treatment (Fig

4D). The increased co-localization observed between parasite mitochondria and K13 following

DHA treatment was not detected when MitoTracker-labeled parasites were co-stained with

Rab5A, Rabb11A, TRiC or ERD2 (S6B–S6E Fig).

IEM studies of NF54WTattB-3HA-K13C580Y parasites stained with colloidal gold-labeled

anti-HA antibodies revealed some K13 labeling within parasite mitochondria (Fig 4F).

Because mitochondria associate with the ER at specialized membrane contact sites [55], we

also investigated whether K13 might be present near these signaling hubs (Fig 4G and S6F

Fig). For these studies, untreated Cam3.IIR539T or Cam3.IIWT trophozoites were incubated

with MitoTracker prior to formaldehyde fixation and co-staining with anti-BiP and anti-K13

antibodies. Interestingly, we frequently observed an overlap of all three labels in both mutant

and WT K13 parasites, as indicated in the white dotted outlines (Fig 4G and S6F Fig).

Fig 3. K13 shows substantial co-localization with the ER chaperone BiP but not with the cis-Golgi marker ERD2.

(A) 3D SIM microscopy images showing Cam3.IIR539T or Cam3.IIWT parasites co-stained with the K13 E3 mAb

(green) and antibodies to the ER chaperone BiP (red). SIM: structured illumination microscopy. Scale bars: 1 μm. (B,

C) PCC values quantifying co-localization between K13 and BiP at 0h post DHA (6h, 700 nM) pulse, alongside

representative IFA images. DMSO was used as a vehicle control. Assays were conducted using the Cam3.IIR539T and

Cam3.IIWT lines. Parasites were co-stained with the K13 E3 mAb and antibodies to BiP. PCC values were calculated

and statistics performed as in Fig 2. Scale bars: 2 μm. (D, E) PCC values for co-localization of K13 and BiP at (D) 3h or

(E) 12h post drug pulse. Assays were conducted and PCC values were calculated as in (B). (F, G) PCC values

quantifying co-localization between K13 and ERD2 at 0h post DHA pulse, alongside representative IFA images.

Parasites were co-stained with the K13 E3 mAb and antibodies to ERD2. Assays were otherwise conducted as in (B).

Scale bars: 2 μm. (H-J) PCC values for co-localization of K13 and BiP or ERD2 following a 1h treatment with Brefeldin

A (BFA; 5 μg/ml). EtOH was used as a vehicle control. Assays were conducted using the Cam3.IIR539T and Cam3.IIWT

lines. (I) 3D volume reconstruction of deconvolved Z-stacks (15 image stacks, step size of 0.2 μm) of Cam3.IIR539T

ring-stage parasites treated with BFA and co-stained with anti-K13 mAb E3 and anti-BiP (top) or anti-ERD2 (bottom).

Scale bars: 1 μm.

https://doi.org/10.1371/journal.ppat.1008482.g003
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Fig 4. K13 shows an increased association with the mitochondria post DHA pulse. (A) PCC values for the association of K13 with parasite mitochondria in NF54
WTattB-GFP-K13WT or NF54WTattB-3HA-K13C580Y ring-stage parasites co-stained with MitoTracker Deep Red and anti-GFP antibodies. Samples were collected

directly post DHA pulse (6h, 700 nM). DMSO was used as a vehicle control. (B) Representative fluorescence microscopy images and 3D reconstructions of NF54WT-
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We next examined whether atovaquone (ATQ), an inhibitor of the Plasmodium mitochon-

drial cytochrome bc1 complex, might affect K13 co-localization with the mitochondria. These

studies assayed Cam3.IIR539T and Cam3.IIWT rings treated for 4h with 60 nM DHA and/or

ATQ tested at 100 nM or 1,200 nM concentrations. 60 nM DHA produced no change in PCC

values for K13 and MitoTracker compared to DMSO (Fig 4H and 4I). 100 nM or 1,200 nM

ATQ also generated no change in PCC values between Cam3.IIR539T and Cam3.IIWT parasites.

In contrast, PCC values increased significantly in Cam3.IIR539T parasites exposed to a combi-

nation of 60 nM DHA and 100 or 1,200 nM ATQ (Fig 4H and 4I). This result was observed to

a lesser extent in Cam3.IIWT parasites but only at the higher ATQ concentration. Elevated

ring-stage survival was observed for Cam3.IIR539T but not Cam3.IIWT parasites following a 6h

exposure to 60 nM DHA ± 100 nM ATQ (S6G Fig).

DHA leads to an oxidizing effect in the mitochondria

To further investigate a possible role for parasite mitochondria in the response to DHA, poten-

tially as sensors of DHA-induced oxidative stress, we tested whether DHA treatment results in

mitochondrial oxidation. For these experiments, we used the ratiometric redox-sensor

hGrx1-roGFP2, consisting of human glutaredoxin 1 fused to an oxidation-reduction sensitive

GFP and an N-terminal leader sequence that targets this reporter protein to parasite mito-

chondria. Assays used P. falciparum 3D7 parasites episomally transfected with pARL1a-Mito-

hGrx1-roGFP2 (referred to herein as 3D7WT Mito-hGrx1-roGFP2) [56] for confocal live-cell

imaging. For these studies, we tested DHA, ATQ, and the β-hematin binding drug chloroquine

(CQ). Results were compared to mock-treated control parasites. DIA and DTT were included

as separate treatments to achieve complete oxidation and reduction, respectively. Results

showed that young trophozoites exposed to DHA for 4h underwent a very high degree of mito-

chondrial oxidation, more than twice the levels observed with ATQ or CQ with similar expo-

sure times and drug concentrations. Increased mitochondrial oxidation with DHA was also

observed after 24h. Mitochondrial oxidation was not observed after 30 minutes of parasite

exposure to DHA, ATQ or CQ (Fig 4J).

Discussion

With the rise of ART-resistant P. falciparum parasites in Southeast Asia [11,12], the identifica-

tion of K13 as the molecular marker of ART resistance represented a key breakthrough in

tracking their spread and examining the underlying biological basis of resistance [18]. Here,

we have explored the biological role of K13 in DHA- and vehicle-treated asexual blood stage

parasites with the use of K13-specific mAbs and recombinant lines expressing epitope-tagged

attB-GFP-K13WT (left) or NF54WTattB-3HA-K13C580Y (right) ring-stage parasites treated and stained as in (A). Scale bars: 1 μm unless otherwise indicated. (C, D) PCC

values for the association of K13 with the mitochondria in Cam3.IIR539T or Cam3.IIWT ring-stage parasites co-stained with MitoTracker and the K13 mAb E3. Samples

were collected either (C) immediately post DHA pulse (6h, 700 nM) or DMSO mock treatment or (D) 12h post pulse. (E) Representative fluorescence microscopy

images and 3D reconstructions of Cam3.IIR539T ring-stage parasites 12h post DHA pulse or DMSO mock treatment. Scale bars: 1 μm. (F) Representative IEM images of

NF54WTattB-3HA-K13C580Y trophozoites treated with DHA (9 nM for 3h) or a DMSO vehicle control and stained with anti-HA antibodies to detect K13. Arrowhead

highlights location of interest. M, mitochondria; N, nucleus. Scale bar: 100 nm. (G) 3D volume reconstruction of untreated late Cam3.IIR539T and Cam3.IIWT

trophozoites triply stained with MitoTracker, anti-BIP (ER, green) and anti-K13 E3 (purple). White dotted outlines indicate spatial overlap between the three labels.

Scale bars: 1 μm. (H, I) PCC values for the association of K13 with mitochondria in (H) Cam3.IIR539T or (I) Cam3.IIWT ring-stage parasites treated for 4h with 60 nM

DHA, or 100 nM or 1200 nM ATQ, or combinations thereof. Samples were co-stained with MitoTracker and the K13 mAb E3. (J) Percent mitochondrial oxidation

(OxD; see Methods) measured in the 3D7WT Mito-hGrx1-roGFP2 reporter line. Parasites were treated with DHA, ATQ, CQ, a known oxidizing agent (DIA), a known

reducing agent (DTT), or vehicle control (denoted CTL). Parasites were exposed for 30 min to 100 μM drug concentrations, for 4h to 5 μM drug, or for 24h to 50 nM

drug. Experiments were performed on three independent occasions, with 10 parasites per experiment examined using confocal laser scanning microscopy. Results are

presented as means ± SEM. Significance was calculated using two-tailed, unpaired t tests comparing drug-treated with mock-treated parasites. �p<0.05; ��p<0.01;
���p<0.001; ����p<0.0001. ATQ, atovaquone; CQ, chloroquine; DHA, dihydroartemisinin; DIA, diamide; DTT, 1,4-dithiothreitol.

https://doi.org/10.1371/journal.ppat.1008482.g004
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WT or mutant K13. These tools were used in immunofluorescence and IEM-based co-localiza-

tion studies, and in co-IP experiments to identify putative K13-associated proteins. Our find-

ings suggest an association between K13 and the ER, as well as a role for K13 in vesicular

trafficking processes, including cytostomes that transport endocytosed host hemoglobin. We

also provide evidence of an association between K13 and mitochondrial proteins and their res-

ident organelle post DHA treatment.

Our IFA results localized K13 to punctate foci that increase in number throughout the para-

site IDC. K13 appears to segregate with daughter merozoites, suggesting that the protein is

ready to function within very young ring-stage parasites. This observation is consistent with

K13-mediated ART resistance occurring in early rings, despite the peak of K13 protein expres-

sion occurring in mid trophozoites [17,31,57,58]. Using IEM, we partially co-localized K13 to

vesicles in close proximity to the perinuclear ER, the DV and the plasma membrane. We also

obtained evidence of K13 localizing near cytostomes, sites where the plasma membrane invagi-

nates to deliver endocytosed hemoglobin to the parasite DV. These results extend prior obser-

vations of K13 associating with the ER or vesicular structures as well as sites of cytostomal

formation, as defined using GFP-tagged endogenous K13 or polyclonal K13-specific antibod-

ies [25,27,28,35]. Evidence of K13 localizing to cytostomes was also obtained recently using

correlative light and electron microscopy [27], a highly-specialized technique that was unavail-

able for our study. K13 localization patterns were consistent between isogenic WT and mutant

Cam3.II lines, as assessed using both K13-specific mAbs and our 3HA- or GFP-tagged

NF54WTattB lines, indicating that K13 mutations did not affect subcellular localization.

Of note, the NF54WTattB-3HA-K13C580Y line, which expresses an integrated mutant K13

allele expressed in trans, did not show elevated RSA0-3h survival, suggesting that the endoge-

nous WT isoform is dominant and that K13 polymorphisms might be loss-of-function muta-

tions. RSA data also showed that gene-edited NF54C580YattB-GFP-K13C580Y parasites

harboring an integrated second K13 C580Y allele (that results in resistance) reverted to a

nearly sensitive phenotype (Fig 1F). These findings are consistent with data recently published

using episomally transformed K13 mutant parasites [27].

We also observed less labeling of K13 R539T relative to the WT form both by Western blot

and by microscopic quantification of K13-positive foci (S1E and S2C Figs), consistent with

quantitative proteomic analyses showing a ~2-fold decrease in K13 protein abundance in

Cam3.IIR539T rings as compared to isogenic WT rings [59]. These data suggest that the R539T

mutation in this Cam3.II background might reduce K13 protein levels and that this might con-

stitute one causal aspect of mutant K13-mediated ART resistance. Increased overall expression

of mutant K13 via co-expression of the endogenous protein and second mutant copy in trans
thus presumably ablates resistance by compensating for a loss of function in the endogenous

locus (Fig 1F). In broad agreement with these results, a recent study using K13 conditional

knock-sideways parasites showed that mislocalization of K13 can lead to resistance [28]. Fur-

ther studies will be required to assess whether K13 mutations can differ in their impact on pro-

tein stability and activity, how this varies between strains, and to what extent these effects

correlate with ART resistance.

Our co-IP experiments resulted in an array of putative K13-associated proteins (Table 2

and S2 Table), suggesting that K13 may interact with multiple proteins across several core

pathways including vesicular trafficking, redox regulation and unexpectedly, mitochondrial

metabolism and physiology, as discussed below. Our results suggested that few if any interac-

tions were specific to either the WT or mutant K13 isoforms. Many of our candidate K13-asso-

ciated proteins were also observed in a recent study that used GFP-Trap beads to affinity

purify GFP-K13 followed by LC/MS-MS [53]. These proteins included S-adenosylmethionine

synthetase (the most abundant protein in our dataset), elongation factor 2, and plasmepsin II.
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Our list, however, is distinct from the proteins identified in the recent study by Birnbaum et al.

[27] that used a quantitative dimerization-induced bio-ID approach (DiQ-BioID) in which

GFP-tagged K13 forms a complex with RFP-tagged biotin ligase using dimerization domains

regulated by the addition of rapalog. That system enabled biotinylation of K13-proximal pro-

teins, which were then affinity-purified on a streptavidin Sepharose column prior to mass

spectrometry and protein identification. One of the proteins identified using this approach,

Eps15, was also shown to identify K13 in a reciprocal DiQ-BioID experiment. These proteins

were localized to a clathrin-independent AP-2 adaptor complex-labeled compartment

involved in hemoglobin endocytosis. Of note, K13 colocalized with AP-2μ, although this pro-

tein was not identified by affinity purification of K13 in either the Birnbaum study or our own.

A separate study also did not identify K13 upon affinity purification of HA-tagged AP-2μ pro-

tein [60]. We cannot yet explain the discrepancy between the data we obtained by co-IP with

our K13 mAb and that generated using the DiQ-BioID method, although we note that DiQ-

BioID will preferentially identify proteins in the same compartment as K13 rather than pro-

teins physically bound to K13. Our list may have preferentially identified the latter. We also

note differences in the protein detergent-based extraction protocols. Further work is clearly

required to resolve these differences.

Our list of potential interacting partners for K13, based on co-IP and co-localization data,

includes multiple Rab GTPases (Fig 5). These included Rabs associated in other eukaryotes

with early (Rab5A, 5B, 5C), late (Rab7) or recycling endosomes (Rab 11A, 11B) or the trans-

Golgi (Rab6). These and other observed Rabs (e.g. 1A, 1B and 18B) help regulate intracellular

cargo trafficking via their association with effector proteins [61,62]. In the case of Rab11A, the

consistently high PCC co-localization values with K13 in Cam3.IIR539T parasites (Fig 5) sug-

gest the possibility of increased export and recycling functions in mutant parasites, which may

help eliminate damaged and aggregated proteins during the post-drug recovery phase.

DHA treatment differentially impacted certain correlation values obtained for K13 WT and

mutant parasites, as evidenced with Rab5A, B and C. For these, we observed significantly

higher PCC values for K13 WT parasites post DHA treatment as compared with K13 R539T

mutant parasites. Rab5 proteins have been implicated in hemoglobin import processes, sug-

gesting that the differential associations might impact hemoglobin uptake [63–66]. These find-

ings recall the recent report of reduced heme and heme-DHA adducts in K13 mutant parasites

[29,30]. Birnbaum et al. also recently showed reduced endocytosis of host cytoplasm, which

consists mainly of hemoglobin, in ring-stage parasites expressing mutant K13 (compared to an

isogenic WT control) or WT K13 parasites in which this protein was conditionally knocked

sideways to cause loss of function [27]. The same study also identified several proteins (includ-

ing K13, Eps15, UBP1 and AP-2μ) required for hemoglobin endocytosis, of which only K13

was required for rings. This conditional knock sideways system was also recently used by Yang

et al. to show reduced hemoglobin processing in ring-stage parasites with mislocalized K13

[28]. Stalling of hemoglobin import could have two positive outcomes: less availability of Fe2

+-heme to activate ART [27,28], and fewer hemoglobin-derived peptides that could trigger a

starvation response and entry into a temporary dormant state [67]. Both effects could enable

K13 mutant ring stages to survive ART exposure [27,28,68–71].

In mammalian cells, several Rab effector proteins can regulate phosphoinositide metabo-

lism. One of these effectors, a partner of Rab5 and Rab7, is the heterodimeric phosphatidylino-

sitol-3-kinase (PI3K) Vps34/Vps15 complex, which catalyzes the phosphorylation of

phosphatidylinositol to phosphatidylinositol-3-phosphate (PI3P) [72–75]. A prior report asso-

ciated ART resistance with elevated PI3P levels, mediated by an interaction between K13 and

PI3K. The rise in PI3P levels in mutant parasites was attributed to reduced binding of K13 to

PI3K, resulting in attenuated ubiquitin-mediated degradation of the kinase [34]. PI3K itself
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was not observed in our co-IP experiments. Nonetheless, there may be a link between PI3P lev-

els and the association we observed between K13 and Rab5 and Rab7, as Rab GTPase activa-

tion contributes to the stimulation of PI3K enzymatic activity, leading to localized synthesis of

PI3P and regulation of endocytic trafficking [72–75].

The co-localization we observe between the ER chaperone BiP and K13, notably the R539T

variant, supports a link between K13 and protein homeostasis and damage response pathways

(Fig 3E). IEM studies also frequently detected K13 close to the perinuclear parasite ER. These

results suggest that mutant K13 might act in part by enhancing ER-associated stress responses

to damaged proteins [31,53]. Although BiP co-immunoprecipitated with K13 in all samples

across all experiments, it was excluded from our list of putative K13-interacting partners

(Table 2 and S2 Table) due to its abundant presence in the negative control samples. Nonethe-

less, we observed several other ER proteins including PDI-14, Sec61, SEY1 and p97 in our co-

IP data, corroborating the IFA and IEM data that partially localized K13 to the ER. We note

that interactions with ER-lumenal proteins may arise after detergent-mediated cell lysis, given

that K13 lacks a known signal sequence to access the ER lumen.

Fig 5. Summary of PCC values for K13 and selected markers upon DHA or DMSO treatment. Schematic showing the

subcellular localization of markers used for IFA co-localization studies with K13. The gradient squares illustrate the

median PCC values for the spatial association between a given marker and WT or mutant K13. PCC values are shown for

DHA- or DMSO-treated parasites and were calculated immediately (0h) post treatment. The Cam3.IIR539T and Cam3.

IIWT lines were employed for all assays, with the exception of those testing the association between K13 and Rab6 that

employed the Dd2R539T Rab6-GFP and Dd2WT Rab6-GFP lines. PCC values are also presented in Figs 2–4, S5 Table and

S6 Table. A, apicoplast; DHA, dihydroartemisinin; DMSO, dimethyl sulfoxide; DV, digestive vacuole; EE, early

endosome; ER, endoplasmic reticulum; G, Golgi apparatus; LE, late endosome; M, mitochondria; MUT, mutant; N,

nucleus; PCC, Pearson correlation coefficient; R, ribosome; RE, recycling endosome; WT, wild-type.

https://doi.org/10.1371/journal.ppat.1008482.g005
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The ER is not the sole organelle responsible for sensing and combatting cellular stress.

Mitochondria likewise regulate an array of cellular functions including ATP production, intra-

cellular calcium buffering, redox homeostasis, and apoptosis [76,77]. There is increasing evi-

dence that the unfolded protein response, generally viewed as a signaling pathway to overcome

proteotoxic ER stress, also regulates mitochondrial proteostasis and function [78]. Communi-

cation between these two organelles is achieved via specialized mitochondria-associated mem-

brane contact sites (MAMs), where Ca2+ transfer, lipid synthesis and autophagosome

assembly take place. In times of stress, Ca2+ flow into the mitochondria can augment mito-

chondrial respiratory chain activity, increasing energy resources to mount an adaptive stress

response [78]. Our co-IP data revealed multiple putative K13-interacting mitochondrial pro-

teins whose functions span oxidative stress responses, the electron transport chain, and mito-

chondrial protein synthesis (Table 2 and S2 Table). Without DHA, an association between

K13 and the mitochondria was essentially nonexistent, but PCC values for K13 and Mito-

Tracker increased significantly post DHA treatment, especially for the K13 R539T mutant.

This putative association was not tested in the Birnbaum et al. study, which did not examine

whether treatment with an ART derivative would alter their set of K13-interacting candidates

[27]. We caution that our co-IP data associating K13 with mitochondrial proteins might be

adversely affected by detergent-based extraction conditions that could lead to false associations

with this organelle. Nonetheless, we observed partial colocalization of K13 with MitoTracker-

stained mitochondria upon DHA treatment, and note a recent study with Toxoplasma gondii
parasites that provided evidence of ART targeting the mitochondria, where it affected mem-

brane potential and organelle morphology [79].

The association between K13 and the mitochondria that we observed recalls earlier evi-

dence of ART accumulating in this organelle, as well as in the DV, causing mitochondrial

swelling as early as 2h post drug exposure [80]. The mode of action of ART and other endoper-

oxides has also been linked to the rapid depolarization of the mitochondrial membrane poten-

tial, with surviving cells maintaining mitochondrial polarization and activity despite

widespread cellular damage [81,82]. Mitochondrial membrane depolarization was attributed

to the formation of reactive oxygen species, most likely originating from iron-mediated bioac-

tivation of the ART endoperoxide bridge. Using a genetically-encoded, mitochondria-targeted

GFP-fusion redox probe, we found substantial oxidation following 4h or 24h of DHA treat-

ment, which greatly exceeded any oxidative effect of the cytochrome bc1 inhibitor ATQ or the

hemozoin inhibitor CQ. These results agree with earlier studies that also showed an impact of

ART derivatives on redox potential in the parasite cytosol [56,83,84]. Further studies are mer-

ited to elucidate the role of the mitochondria in both DHA action and K13-mediated resis-

tance. One possibility is that this organelle might act as an initial sensor of ART action, with

mutant K13 altering mitochondrial functionalities in ways that have downstream impacts

across an array of pathways, including reversible entry into quiescence during ART exposure

or subsequent recovery of resistant parasites. Further studies into the connection between K13

function and the mitochondria could substantially advance our understanding of parasite

physiology and its capacity to counter ART-mediated proteotoxic and oxidative stress.

Materials and methods

Production of monoclonal antibodies to K13

Antibodies were raised against K13 by injecting mice intraperitoneally with two types of

immunogens: recombinant BTB plus propeller domain (~40 kDa) or recombinant propeller

domain alone (~32 kDa) (Fig 1A). Immunogens were kindly provided by Dr. Raymond Hui

(University of Toronto). Mice were immunized five times at three-week intervals. Sera were
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collected 9–10 days after the last immunization, and titers of anti-K13 IgG were measured by

ELISA using His-tagged versions of the recombinant K13 proteins bound to Ni2+-coated

ELISA plates. Mice with the highest antibody titers were selected for anti-K13 hybridoma pop-

ulations, which were generated via polyethylene glycol (PEG)-induced fusion of the MEP-2S

fusion partner cell line with murine splenic B cells. Hybridoma cell lines were maintained in

RPMI-1640 medium supplemented with 10% FBS, L-glutamine, non-essential amino acids,

sodium pyruvate and vitamins. Stable clones were selected in the presence of hypoxanthine-

aminopterine-thymidine (HAT) medium. Hybridoma populations producing K13-specific

antibodies, as determined by ELISA, were expanded and cloned to assure the monoclonal

nature of antibodies. Clones selected via ELISA were further screened for their K13 specificity

by IFAs with the NF54WTattB-GFP-K13WT line. Clones were also tested by Western blot

against the immunogens. Purified clonal mAbs were generated from K13-positive

hybridomas.

Plasmid construction

For GFP-K13 expression studies, the K13 WT coding sequence (PlasmoDB ID

PF3D7_1343700) was amplified from genomic DNA using p3947 and p3948 (S7 Table) and

cloned into a pDC2-based expression system downstream of GFP using the BglII and XhoI

restriction sites [42]. The K13 5’ untranslated region (UTR) was amplified as a 2000 bp frag-

ment using p4376 and p4377 (S7 Table) and cloned into the ApaI and AvrII restriction sites.

We then fused the full-length K13 coding sequence to an N-terminal GFP tag and placed this

sequence under the regulatory control of the endogenous promoter. This plasmid was named

pDC-2000-GFP-K13WT-bsd-attP. For 3HA-K13 expression studies, the K13 C580Y coding

sequence was used instead, and the P. berghei ef1α promotor (PBANKA_1133400) was used as

a 5’ regulatory element. The N-terminal GFP tag was replaced with an N-terminal 3HA tag at

the AvrII and BglII sites. The 3HA sequence was synthetically engineered with the correspond-

ing restriction sites in a pUC57-Amp vector (Genewiz). The resulting plasmid was named

pDC2-EF1α-3HA-K13C580Y-bsd-attP. In both plasmids hsp86 3’UTR was used as a terminator

sequence for the K13 expression cassette and a bsd (blasticidin S-deaminase) cassette was used

as a selectable marker [85].

To episomally express the GFP-Rab6 transgene we amplified the Rab6 coding sequence

(PlasmoDB ID PF3D7_1144900) from genomic DNA using poML214 and poML204 (S7

Table) and cloned this fragment into the pDC2-based expression system downstream of GFP

using the BglII and XhoI restriction sites [42]. Using p1144 and p1263 (S7 Table), about 1.3 kb

of the Sec12 (PlasmoDB ID PF3D7_1116400) 5’ UTR was amplified as the promoter and

cloned into the ApaI and AvrII restriction sites. The hsp86 3’UTR served as a terminator

sequence for the expression cassette and human dhfr (dihydrofolate reductase) was used as the

selectable marker. The plasmid was named pDC2-sec12-GFP-PfRab6-hDHFR.

Parasite culture and transfection

P. falciparum asexual blood-stage parasites were cultured in human erythrocytes (3% hemato-

crit) and RPMI-1640 medium supplemented with 2 mM L-glutamine, 50 mg/L hypoxanthine,

25 mM HEPES, 0.225% NaHCO3, 10 mg/L gentamycin and 0.5% w/v Albumax II (Invitrogen).

Parasites were maintained at 37˚C in 5% O2, 5% CO2, and 90% N2. Cultures were stained with

Giemsa, and monitored by blood smears fixed in methanol and viewed by light microscopy.

NF54WTattB-GFP-K13WT and NF54WTattB-3HA-K13C580Y parasite lines were generated by

attB×attP crossover-mediated integration of either the pDC-2000-GFP-K13WT-bsd-attP or the

pDC2-EF1α-3HA-K13C580Y-bsd-attP plasmid into the cg6 locus in the NF54WTattB parasite
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line [86] (S1 Fig). Crossover events were mediated by Bxb1 serine integrase, which was

expressed on the pINT plasmid that contains the neomycin selectable marker and that was co-

electroporated with either pDC2 plasmid. The NF54C580YattB-GFP-K13C580Y line was gener-

ated using a K13-specific CRISPR/Cas9 system that enabled us to edit both the endogenous

and transgene copies of K13 in the NF54WTattB-GFP-K13WT line (Stokes et al., manuscript in

preparation). This system was also used to generate the NF54WTattB-3HA-K13WT line by

CRISPR/Cas9-editing the K13 C580Y transgene locus in the NF54WTattB-3HA-K13C580Y line.

Dd2WT or Dd2R539T GFP-Rab6 parasite lines were generated via transfection of the

pDC2-sec12-GFP-PfRab6-hDHFR plasmid and episomal selection using 2.5 nM WR99210

(Jacobus Pharmaceuticals, Princeton, NJ).

Transfections were performed by electroporating ring-stage parasites at 5–10% parasitemia

with 50 μg of purified circular plasmid DNA in resuspended in Cytomix [87]. Transfected par-

asites were maintained under 2.5 μg/mL blasticidin (Thermo Fisher) or 2.5 nM WR99210

drug pressure to select for maintenance of the pDC2-based bsd or hdhfr plasmids respectively,

and 125 μg/mL G418 (Fisher) to select for pINT. Blasticidin or WR99210 pressure was main-

tained until parasites were detected microscopically, whereas G148 pressure was applied for

only the first six days post electroporation. Parasite cultures were monitored by microscopy

for up to six weeks post electroporation. To test for successful integration of the attP plasmids,

trophozoite-infected erythrocytes were harvested and saponin-lysed, and genomic DNA was

isolated using QIAamp DNA Blood Mini kit (Qiagen). PCR-based screening for integration is

shown in S1 Fig, with primers listed in S7 Table. Integrated parasites were cloned via limiting

dilution, and flow cytometry was used to screen for positive wells after 17–20 days. Parasites

were stained with 1×SYBR Green (Thermo Fisher) and 100 nM MitoTracker Deep Red (Invi-

trogen) and detected using an Accuri C6 flow cytometer (Becton Dickinson; [88]). Expression

of the tagged proteins in the clonal lines was verified via Western blot and IFA with anti-GFP

or anti-HA primary antibodies, as described below.

Western blotting

Parasite lysates for Western blotting were prepared on ice. Infected erythrocytes were washed

twice in cold 1× phosphate-buffered saline (PBS), and parasites were isolated from RBCs by

treatment with 0.05% saponin in PBS. Released parasites were resuspended in cold lysis buffer

(0.15 M NH4Cl, 1 mM NaHCO3, 0.1 mM Na2EDTA, pH 7.4) supplemented with 1× protease

inhibitors (Halt Protease Inhibitors Cocktail, Thermo Fisher) and incubated on ice for 30 min.

RBC membranes were lysed with 0.1% Triton X100 in PBS supplemented with protease inhibi-

tors for 10 min, with frequent vortexing and trituration. Samples were centrifuged at 14,000

rpm for 10 min at 4˚C to pellet cellular debris. Supernatants were collected and protein con-

centrations were determined using the DC protein assay kit (Bio-Rad). Laemmli Sample Buffer

(Bio-Rad) was added to lysates and samples were denatured at 90˚C for 10 min. Proteins were

electrophoresed on 10% Bis-Tris gels (Bio-Rad) and transferred onto a nitrocellulose mem-

brane. Western blots were probed with primary antibodies to K13 or to GFP or 3×HA epitope

tags (1:1,000 dilutions for all) and incubated with HRP-conjugated secondary antibodies

(1:10,000 dilution). Western blots were revealed using ECL Western Blotting Substrate

(Thermo Fisher). For primary antibodies, we used Living Colors full-length anti-GFP poly-

clonal antiserum (Takara (Clontech)), anti-HA antibodies produced in rabbit (Sigma), rabbit

anti-ERD2 antibodies (BEI Resources) and mouse anti-β actin antibodies (clone AC-15, Invi-

trogen). As secondary antibodies, we used goat anti-rabbit IgG H&L (HRP) (Abcam) or goat

anti-mouse IgG H&L (HRP) (Abcam).
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Immunofluorescence assays

Parasites were synchronized with 5% D-sorbitol treatment and harvested either every 12h

throughout the 48h life cycle, or were pulsed with DHA (6h, 700 nM) or Brefeldin A (1h, 5 μg/

mL) (Sigma Aldrich) and then harvested post treatment. DMSO was used as vehicle control in

the case of DHA treatments and EtOH in the case of BFA (S3 Fig). DHA-treated parasites

were harvested either immediately (0h) post treatment, or 3, 12, or 24h post treatment. BFA-

treated parasites were harvested 1h post treatment.

IFAs were performed with cells in suspension. Harvested cells were washed twice in 1×PBS

and fixed in 4% v/v formaldehyde (Fisher) supplemented with 0.0075% v/v glutaraldehyde

(Sigma) in PBS for 30 min at room temperature. Cell membranes were permeabilized in 0.1%

Triton X-100 in PBS for 30 min. Autofluorescence was quenched using 0.1 M glycine in PBS

for 15 min. Blocking was performed with 3% w/v bovine serum albumin (BSA) for at least 1h

at room temperature, or overnight at 4˚C. Cells were incubated with primary antibodies for 90

min at room temperature or overnight at 4˚C, with dilutions ranging from 1:50–1:200, fol-

lowed by incubation with a species-specific fluorophore-conjugated secondary antibody

(Alexa Fluor 488-, 594- or 647-conjugated goat anti-mouse, -rabbit or -rat antibody, Thermo

Fisher) diluted 1:2,000 to 1:4,000 in 3% BSA and 0.1% Tween in PBS. As primary antibodies,

we used rabbit anti-BiP (kindly provided by Min Zhang), rabbit anti-ERD2 (BEI Resources),

rabbit anti-Rab5A, -Rab5C, or -Rab11A, rat anti-Rab5B or -Rab7 (kindly provided by Dr. Gor-

don Langsley), rabbit anti-TRiC (kindly provided by Zbynek Bozdech), rabbit anti-HAD1

(kindly provided by Dr. Audrey Odom John), rabbit anti-GFP ((Takara (Clontech)), or rabbit

anti-HA (Sigma). MitoTracker Red CMXRos (Thermo Fisher) was used to stain

mitochondria.

Thin blood smears of stained RBCs were prepared on microscope slides and mounted with

cover slips using Prolong Diamond Antifade Mountant with DAPI (Thermo Fisher). Slides

were imaged using a Nikon Eclipse Ti-E wide-field microscope equipped with a sCMOS cam-

era (Andor) and a Plan-apochromate oil immersion objective with 100× magnification (1.4

numerical aperture). A minimum of 15 Z-stacks (0.2 μm step size) were taken for each parasit-

ized RBC. NIS-Elements imaging software (Version 5.02, Nikon) was used to control the

microscope and camera as well as to deconvolve images and perform 3D reconstructions.

Deconvolution was performed using 25 iterations of the Richardson-Lucy algorithm for each

image. Quantitative co-localization analysis of the deconvolved Z-stacks was performed using

the GA3 pipeline (General analysis Pipeline 3; NIS-Elements software; developed in collabora-

tion with Nikon). ImageJ (Fiji version 2.0.0-rc-68/1.52h) was used to crop images, adjust

brightness and intensity, overlay channels and prepare montages. For super resolution imag-

ing, we used either a Nikon N-SIM S Super Resolution Microscope or a W1-Yokogawa Spin-

ning Disk Confocal with a CSU-W1 SoRa Unit. For 3D image analysis, we used Imaris x64

version 6.7 (Bitplane).

Immunoelectron microscopy

Trophozoites were magnetically sorted from uninfected RBCs and ring-stage parasites via

MACS LD separation columns (Miltenyi Biotech). Parasites were collected by centrifugation

and fixed for 1h at 4˚C in 4% paraformaldehyde (Polysciences Inc.) in 100 mM PIPES with 0.5

mM MgCl2 (pH 7.2). Samples were embedded in 10% gelatin and infiltrated overnight with

2.3 M sucrose and 20% polyvinyl pyrrolidone in PIPES/MgCl2 at 4˚C. Samples were trimmed,

frozen in liquid nitrogen, and sectioned with a Leica Ultracut UCT7 cryo-ultramicrotome

(Leica Microsystems Inc.). 50 nm sections were blocked with 5% fetal bovine serum and 5%

normal goat serum for 30 min, and subsequently incubated with primary antibodies for 1h at
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room temperature (anti-PDI (1D3) mouse diluted 1:50, anti-GFP rabbit 1:200, anti-GFP

mouse 1:200, anti-HA rabbit 1:50–1:250, anti-BiP rabbit 1:100, anti-Rab5A rabbit 1:50, anti-

Rab5B rat 1:50, or anti-Rab7 rabbit 1:50; Rab11A antibodies could not be used as they failed to

give signals under our conditions). Species-specific colloidal-gold conjugated secondary anti-

bodies (6 nm, 12 nm or 18 nm particles; Jackson ImmunoResearch) were added at a 1:30 dilu-

tion for 1h at room temperature. Sections were stained with 0.3% uranyl acetate and 2%

methyl cellulose, and viewed on a JEOL 1200 EX transmission electron microscope (JEOL

USA Inc.) equipped with an AMT 8-megapixel digital camera and AMT Image Capture

Engine V602 software (Advanced Microscopy Techniques). All labeling experiments were

conducted in parallel with controls omitting the primary antibodies. These controls were con-

sistently negative at the concentration of colloidal gold-conjugated secondary antibodies used

in these studies.

Co-immunoprecipitation (Co-IP) studies

Co-IP studies were performed using the Pierce Direct IP kit (Thermo Fisher). Briefly, parasites

were extracted from infected erythrocytes as described above, resuspended in Pierce IP Lysis

Buffer supplemented with 1× Halt Protease and Phosphatase Inhibitor Cocktail and 25U

Pierce Universal Nuclease, and lysed on ice for 10 minutes with frequent vortexing. Samples

were centrifuged at 14,000 rpm for 10 min at 4˚C to pellet cellular debris. Supernatants were

collected and protein concentrations were determined using the DC protein assay kit (Bio-

Rad). IPs were performed used 500 μg of lysate per test sample. A mix of K13 E3 and D9 mAbs

(2.5 μg each per test sample) was used for IP. Antibody coupling to IP columns, IP, and elution

steps were performed according to Pierce instructions. Eluates were analyzed by liquid chro-

matography-tandem mass spectrometry (LC-MS/MS) to identify immunoprecipitated

proteins.

Ring-stage survival assays (RSA0-3h)

RSA0-3h assays were carried out as previously described [17], with minor modifications. In

brief, parasite cultures were synchronized 1–2 times using 5% sorbitol (Fisher). Synchronous

schizonts were incubated in RPMI-1640 containing 15 units/mL sodium heparin (Fisher) for

15 min at 37˚C to disrupt agglutinated erythrocytes, concentrated over a gradient of 75% Per-

coll (Fisher), washed once in RPMI-1640, and incubated for 3h with fresh RBCs to allow time

for merozoite invasion. Cultures were subjected again to sorbitol treatment to eliminate

remaining schizonts. 0–3h post-invasion rings were adjusted to 1% parasitemia and 2% hemat-

ocrit and exposed to 700 nM DHA or 0.1% DMSO (vehicle control) for 6h. Alternatively, early

rings were exposed to 4h to 60 nM, 100 nM or 1200 nM ATQ, or combinations thereof. These

concentrations were selected based on separate studies from our lab showing synergy between

DHA and ATQ against Cam3.IIR539T parasites at these concentrations. Cells were washed to

remove drug and returned to standard culture conditions for an additional 66h. Parasite

growth in each well was assessed using flow cytometry. Parasites were stained with 1x SYBR

Green and 100 nM MitoTracker Deep Red (Thermo Fisher), and parasitemias were measured

on a BD Accuri C6 Plus Flow Cytometer with a HyperCyt attachment sampling 60,000–

100,000 events per well. After 72h, cultures generally expanded to 3–5% parasitemia in

DMSO-treated controls. Percent survival of DHA-treated parasites was calculated relative to

the corresponding DMSO-treated control.

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 26 / 35

https://doi.org/10.1371/journal.ppat.1008482


Confocal live-cell imaging

P. falciparum 3D7 parasites were episomally transfected with pARL1a-Mito-hGrx1-roGFP2,

which expresses an oxidation-reduction sensitive GFP fused at its N-terminus to human glu-

taredoxin 1 (Table 1). This fusion protein is targeted to the mitochondria using the citrate

synthase leader sequence, as described previously [56]. Transfected parasites were used to test

the oxidizing effects of antimalarials on the parasite mitochondria. For 30 min exposure exper-

iments we incubated trophozoites with 100 μM DHA, ATQ, or CQ. For mid-term 4h incuba-

tions we exposed young trophozoites to 5 μM DHA, ATQ, or CQ. Long-time 24h exposures

began with young ring-stage parasites, which were exposed to 50 nM DHA, ATQ, or CQ.

Following drug exposure, parasites were blocked with 2 mM N-ethylmaleimide (NEM) for

15 min. Trophozoite-stage parasites were magnetically enriched and eluted in pre-warmed

Ringer’s solution and seeded on poly-lysine coated μ-slides VI (Ibidi, Martinsried, Germany).

Live-cell imaging was performed on a Leica confocal system TCS SP5 inverted microscope

equipped with an HCX PL APO 63.0 x 1.30 GLYC 37˚C UV objective and a 37˚C temperature

chamber, as previously described [83]. Smart gain was set to 222.0 V, smart offset was 12.3%

and argon laser power was set to 20%. To calibrate the microscope, we used parasites whose

redox state was either fully reduced with 10 mM DTT or fully oxidized with 1 mM DIA. Data

were analyzed using Leica LAS AF software. The degree of mitochondrial oxidation (OxD)

was calculated as follows:

OxD ¼
R� Rred

I488ox
I488red
ðRox� RÞ þ ðR� RredÞ

R represents the ratio of the fluorescence intensity measured at 405 nm and 488 nm

(R ¼ 405 nm
488 nm); Rred and Rox are the ratios of the fluorescence intensity of fully reduced or fully

oxidized parasites, respectively; I488ox is the fluorescence intensity at 488 nm for fully oxidized

parasites; and I488red is the fluorescence intensity at 488 nm for fully reduced parasites [89].

Graphs were plotted using GraphPad Prism version 8.
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in vitro culture was granted by the Columbia University Medical Center Institutional Review

Board, which has classified this work as not being human subjects research. The use of mice in
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Supporting information

S1 Fig. Generation of NF54WTattB-GFP-K13WT and NF54WTattB-3HA-K13C580Y parasites.

(A) Schematic of GFP-K13WT or 3HA-K13C580Y gene sequence integration into NF54WT para-

sites containing an attB site in the cg6 locus [90]. The two plasmids used for co-transfection

are represented at the top. pINT codes for the integrase expression unit (Int) and a neomycin

resistance cassette (Neo). pDC-2000-GFP-K13WT-bsd-attP contains an N-terminal

GFP-K13WT fusion protein under the control of the endogenous K13 promoter (k13 5’UTR),

and a blasticidin S-deaminase (BSD) resistance cassette adjacent to the attP coding site.

pDC-EF1α-3HA-K13C580Y-bsd-attP contains an N-terminal 3HA-K13C580Y fusion protein

under the control of the pbef1α promoter, and a BSD resistance cassette. Integrase-mediated
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recombination between the attP and attB sequences resulted in integration of the full-length

pDC2-based plasmids, yielding the NF54WTattB-GFP-K13WT and NF54WTattB-

3HA-K13C580Y transgenic parasite lines. (B) Primer combinations and expected amplicon

sizes used for PCR-based integration screening. Primer positions are indicated with arrows in

(A) and primer sequences are listed in S7 Table. (C) PCR analysis of the two transgenic lines

using the primer sets listed in (B). (D) Western blots of parasite extracts probed with the anti-

K13 mAb E9. This antibody recognizes full-length K13 (~85 kDa) and lower molecular weight

bands. We attribute the latter to N-terminal degradation products, based on our observation

of very high co-localization values between K13 mAbs and antibodies to either GFP or 3HA in

K13 transgenic lines, as well as the finding that antibodies to GFP or 3HA both recognized

fusion proteins consistent with a K13 mass of ~85 kDa (as seen in Fig 1A). (E) Representative

Western blot analysis of synchronized 0-6h ring-stage parasites from the K13- isogenic lines

Cam3.IIWT, Cam3.IIC580Y and Cam3.IIR539T, probed with K13 mAb E9 and mouse monoclo-

nal anti-β actin. The right panel shows ImageJ-generated quantification of K13 C580Y or K13

R539T protein compared to K13 WT protein, with all proteins normalized to the β-actin load-

ing control. These data yielded relative mean ± SEM expression levels of 76 ± 3% and 66 ± 4%

for Cam3.IIC580Y and Cam3.IIR539T relative to the WT control, corresponding to mean K13

protein percent reductions of 24% and 34% for these two mutant proteins respectively.

(PDF)

S2 Fig. Additional super resolution imaging of (A) Cam3.IIWT and (B) Cam3.IIR539T tropho-

zoites, labeled with antibodies to K13 and the cytosolic marker HAD1. Images were acquired

using a W1-Yokogawa Spinning Disk Confocal microscope equipped with a CSU-W1 SoRa

Unit. (C) Quantification of antibody-labeled K13 foci in Cam3.IIWT and Cam3.IIR539T tropho-

zoites, yielding an estimated 48% reduction in K13 R539T protein compared to the K13 WT

levels.

(PDF)

S3 Fig. Schematic of the protocol used for synchronizing and treating parasites for immu-

nofluorescence co-localization studies. DHA, dihydroartemisinin; DMSO, dimethyl sulfox-

ide; MACS, magnetic-activated cell sorting.

(PDF)

S4 Fig. K13 partially co-localizes with Rab GTPases and Sec24a. (A) Representative IFA

images showing DMSO-treated Cam3.IIWT ring-stage parasites co-stained with anti-K13 mAb

E3 and antibodies to Rab5A, Rab5B, or Rab5C (top, middle and bottom panels, respectively).

Samples were collected immediately post treatment. Scale bars: 2 μm. (B) Fluorescence micros-

copy/DIC overlay and 3D volume reconstruction showing the spatial association between K13

and Rab5A in Cam3.IIWT parasites sampled 12h post DMSO mock treatment. Scale bars are

indicated. (C) Representative IFA images showing GFP-Rab6-expressing parasites co-stained

with K13 mAb E3. Assays were conducted with Dd2WT (top) and Dd2R539T (bottom) ring-

stage parasites episomally expressing GFP-Rab6, and samples were collected immediately post

DMSO treatment. Scale bars: 2 μm. (D) Representative IFA images showing DMSO-treated

Cam3.IIWT ring-stage parasites co-stained with anti-K13 mAb E3 and antibodies to Rab7 (top)

or Rab11A (bottom). Samples were collected immediately post treatment. Scale bars: 2 μm. (E)

Fluorescence microscopy/DIC overlay and 3D volume reconstruction showing the spatial

association between K13 and Rab11A in Cam3.IIWT parasites sampled 12h post DMSO treat-

ment. (F) Representative IEM images of NF54WTattB-GFP-K13WT (left) or NF54WTattB-

3HA-K13C580Y (right) trophozoites stained with anti-GFP or anti-HA antibodies, and either

co-stained with antibodies to Rab5A (top), or Rab5B (bottom left), or triply labeled with anti-

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 28 / 35

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s004
https://doi.org/10.1371/journal.ppat.1008482


Rab5B and anti-PDI antibodies (bottom right). Arrows highlight locations of interest. ER,

endoplasmic reticulum; Hz, Hemozoin; M, mitochondria; N, nucleus. Scale bars: 100 nm. (G)

PCC values for the spatial association between K13 and Sec24a immediately post DHA pulse

(6h, 700 nM) or DMSO mock treatment. Assays were conducted on Dd2WT ring-stage para-

sites episomally expressing Sec24a-GFP. Parasites were stained with anti-GFP and the K13

mAb E3. Right panels show representative 3D volume reconstructions of DMSO-treated or

DHA-pulsed Sec24a-GFP expressing parasites. PCC values were calculated and statistics per-

formed as in Fig 2. Scale bars: 1 μm. (H) Representative IFA images showing Dd2WT Sec24a-

GFP-expressing parasites co-stained with K13 mAb E3 and anti-GFP. Samples were collected

immediately post DMSO mock treatment. Scale bars: 2 μm. Several DIC images as well as

montages showing the individual color channels complement the 3D volume view of parasites

shown in Fig 2.

(PDF)

S5 Fig. K13 exhibits extensive co-localization with the parasite ER. (A) Fluorescence

microscopy/DIC overlay and 3D volume reconstructions of deconvolved Z-stacks showing the

spatial association between K13 and BiP in Cam3.IIWT (top) and Cam3.IIR539T (bottom) tro-

phozoites (untreated). Parasites were co-stained with the K13 E3 mAb and anti-BiP antibodies.

Scale bars: 2 μm. (B) Representative IEM images of NF54WTattB-GFP-K13WT trophozoites co-

stained with anti-GFP and anti-BiP antibodies. Arrows highlight locations of interest. Hz,

hemozoin; N, nucleus. Scale bars: 100 nm. (C) PCC values for the spatial association of K13

and BiP in Cam3.IIR539T and Cam3.IIWT ring-stage parasites treated and analyzed as in Fig

3B–3E. (D) Representative IFA images showing Cam3.IIWT ring-stage parasites co-stained

with anti-K13 E3 and either anti-BiP (left) or anti-ERD2 (right) antibodies. Parasites were

sampled immediately post DHA pulse (6h, 700 nM) or DMSO mock treatment. Scale bars:

2 μm.

(PDF)

S6 Fig. K13 localizes to mitochondria-associated membranes. (A) PCC values for the associ-

ation of K13 with parasite mitochondria in NF54WTattB-GFP-K13WT ring-stage parasites co-

stained with MitoTracker Deep Red and anti-GFP. Samples were collected either 0h or 12h

post DHA pulse (6h, 700 nM). DMSO was used as a vehicle control. PCC values were calcu-

lated and statistics performed as in Fig 2. (B-E) PCC values for the association of (B) ERD2,

(C) TRiC, (D) Rab5A, or (E) Rab11A with parasite mitochondria in Cam3.IIR539T and Cam3.

IIWT ring-stage parasites. Samples were collected 0h post DHA pulse (6h, 700nM). Parasites

were co-stained with MitoTracker Deep Red and marker-specific antibodies. (F) Additional

representative 3D volume reconstructions of untreated late (left) Cam3.IIR539T and (right)

Cam3.IIWT trophozoites triply stained with MitoTracker, anti-BIP (ER, green) and anti-K13

E3 (purple). White dotted outlines indicate spatial overlap between the three labels. Scale bars:

1 μm. (G) Percent survival for Cam3.IIR539T and Cam3.IIWT 0–3 hpi rings treated for 4h with

DHA and/or ATQ at the concentrations indicated (in nM). Data show mean ± SEM for three

independent experiments performed in duplicate.

(PDF)

S1 Video. 3D rotations of a Cam3.IIWT late trophozoite labeled with anti-K13 (green) and

anti-HAD1 (red) antibodies.

(MP4)

S1 Table. Co-immunoprecipitation experimental details.

(PDF)

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 29 / 35

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s007
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1008482.s008
https://doi.org/10.1371/journal.ppat.1008482


S2 Table. Putative K13-interacting protein partners identified by co-immunoprecipitation

and LC/MS-MS (relaxed criteria).

(PDF)

S3 Table. PANTHER overrepresentation test for biological processes.

(PDF)

S4 Table. PANTHER overrepresentation test for cellular components.

(PDF)

S5 Table. Pearson correlation coefficient values for IFA studies.

(PDF)

S6 Table. Pearson correlation coefficient values for MitoTracker Deep Red imaging stud-

ies.

(PDF)

S7 Table. Oligonucleotides used in this study.

(PDF)
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22. Straimer J, Gnädig NF, Stokes BH, Ehrenberger M, Crane AA, et al. Plasmodium falciparum K13 muta-

tions differentially impact ozonide susceptibility and parasite fitness in vitro. mBio. 2017; 8: e00172–17.

https://doi.org/10.1128/mBio.00172-17 PMID: 28400526

23. Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function. Trends

Cell Biol. 2000; 10: 17–24. https://doi.org/10.1016/s0962-8924(99)01673-6 PMID: 10603472

24. Zhang DD, Lo SC, Cross JV, Templeton DJ, Hannink M. Keap1 is a redox-regulated substrate adaptor

protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol. 2004; 24: 10941–53. https://doi.

org/10.1128/MCB.24.24.10941-10953.2004 PMID: 15572695

25. Birnbaum J, Flemming S, Reichard N, Soares AB, Mesen-Ramirez P, et al. A genetic system to study

Plasmodium falciparum protein function. Nat Methods. 2017; 14: 450–6. https://doi.org/10.1038/

nmeth.4223 PMID: 28288121

26. Zhang M, Wang C, Otto TD, Oberstaller J, Liao X, et al. Uncovering the essential genes of the human

malaria parasite Plasmodium falciparum by saturation mutagenesis. Science. 2018; 360: eaap7847.

https://doi.org/10.1126/science.aap7847 PMID: 29724925

27. Birnbaum J, Scharf S, Schmidt S, Jonscher E, Hoeijmakers WAM, et al. A Kelch13-defined endocytosis

pathway mediates artemisinin resistance in malaria parasites. Science. 2020; 367: 51–9. https://doi.

org/10.1126/science.aax4735 PMID: 31896710

28. Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, et al. Decreased K13 abundance reduces hemo-

globin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep. 2019; 29:

2917–28 e5. https://doi.org/10.1016/j.celrep.2019.10.095 PMID: 31775055

29. Heller LE, Goggins E, Roepe PD. Dihydroartemisinin-ferriprotoporphyrin IX adduct abundance in Plas-

modium falciparum malarial parasites and relationship to emerging artemisinin resistance. Biochemis-

try. 2018; 57: 6935–45. https://doi.org/10.1021/acs.biochem.8b00960 PMID: 30512926

30. Heller LE, Roepe PD. Quantification of free ferriprotoporphyrin IX heme and hemozoin for artemisinin

sensitive vs delayed clearance phenotype Plasmodium falciparum malarial parasites. Biochemistry.

2018; 57: 6927–34. https://doi.org/10.1021/acs.biochem.8b00959 PMID: 30513202

31. Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, et al. Population transcriptomics of human malaria para-

sites reveals the mechanism of artemisinin resistance. Science. 2015; 347: 431–5. https://doi.org/10.

1126/science.1260403 PMID: 25502316

32. Dogovski C, Xie SC, Burgio G, Bridgford J, Mok S, et al. Targeting the cell stress response of Plasmo-

dium falciparum to overcome artemisinin resistance. PLoS Biol. 2015; 13: e1002132. https://doi.org/

10.1371/journal.pbio.1002132 PMID: 25901609

33. Zhang M, Gallego-Delgado J, Fernandez-Arias C, Waters NC, Rodriguez A, et al. Inhibiting the Plasmo-

dium eIF2alpha kinase PK4 prevents artemisinin-induced latency. Cell Host Microbe. 2017; 22: 766–76

e4. https://doi.org/10.1016/j.chom.2017.11.005 PMID: 29241041

34. Mbengue A, Bhattacharjee S, Pandharkar T, Liu H, Estiu G, et al. A molecular mechanism of artemisinin

resistance in Plasmodium falciparum malaria. Nature. 2015; 520: 683–7. https://doi.org/10.1038/

nature14412 PMID: 25874676

35. Bhattacharjee S, Coppens I, Mbengue A, Suresh N, Ghorbal M, et al. Remodeling of the malaria para-

site and host human red cell by vesicle amplification that induces artemisinin resistance. Blood. 2018;

131: 1234–47. https://doi.org/10.1182/blood-2017-11-814665 PMID: 29363540

36. Pretzel J, Gehr M, Eisenkolb M, Wang L, Fritz-Wolf K, et al. Characterization and redox regulation of

Plasmodium falciparum methionine adenosyltransferase. J Biochem. 2016; 160: 355–67. https://doi.

org/10.1093/jb/mvw045 PMID: 27466371

37. Lo SC, Hannink M. PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated

Keap1-dependent ubiquitin ligase complex. J Biol Chem. 2006; 281: 37893–903. https://doi.org/10.

1074/jbc.M606539200 PMID: 17046835

38. Lo SC, Hannink M. PGAM5 tethers a ternary complex containing Keap1 and Nrf2 to mitochondria. Exp

Cell Res. 2008; 314: 1789–803. https://doi.org/10.1016/j.yexcr.2008.02.014 PMID: 18387606

39. Langsley G, van Noort V, Carret C, Meissner M, de Villiers EP, et al. Comparative genomics of the Rab

protein family in Apicomplexan parasites. Microbes Infect. 2008; 10: 462–70. https://doi.org/10.1016/j.

micinf.2008.01.017 PMID: 18468471

40. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. PANTHER version 14: more genomes, a new

PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019; 47:

D419–D26. https://doi.org/10.1093/nar/gky1038 PMID: 30407594

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 32 / 35

https://doi.org/10.1038/nbt.2925
http://www.ncbi.nlm.nih.gov/pubmed/24880488
https://doi.org/10.1128/mBio.00172-17
http://www.ncbi.nlm.nih.gov/pubmed/28400526
https://doi.org/10.1016/s0962-8924(99)01673-6
http://www.ncbi.nlm.nih.gov/pubmed/10603472
https://doi.org/10.1128/MCB.24.24.10941-10953.2004
https://doi.org/10.1128/MCB.24.24.10941-10953.2004
http://www.ncbi.nlm.nih.gov/pubmed/15572695
https://doi.org/10.1038/nmeth.4223
https://doi.org/10.1038/nmeth.4223
http://www.ncbi.nlm.nih.gov/pubmed/28288121
https://doi.org/10.1126/science.aap7847
http://www.ncbi.nlm.nih.gov/pubmed/29724925
https://doi.org/10.1126/science.aax4735
https://doi.org/10.1126/science.aax4735
http://www.ncbi.nlm.nih.gov/pubmed/31896710
https://doi.org/10.1016/j.celrep.2019.10.095
http://www.ncbi.nlm.nih.gov/pubmed/31775055
https://doi.org/10.1021/acs.biochem.8b00960
http://www.ncbi.nlm.nih.gov/pubmed/30512926
https://doi.org/10.1021/acs.biochem.8b00959
http://www.ncbi.nlm.nih.gov/pubmed/30513202
https://doi.org/10.1126/science.1260403
https://doi.org/10.1126/science.1260403
http://www.ncbi.nlm.nih.gov/pubmed/25502316
https://doi.org/10.1371/journal.pbio.1002132
https://doi.org/10.1371/journal.pbio.1002132
http://www.ncbi.nlm.nih.gov/pubmed/25901609
https://doi.org/10.1016/j.chom.2017.11.005
http://www.ncbi.nlm.nih.gov/pubmed/29241041
https://doi.org/10.1038/nature14412
https://doi.org/10.1038/nature14412
http://www.ncbi.nlm.nih.gov/pubmed/25874676
https://doi.org/10.1182/blood-2017-11-814665
http://www.ncbi.nlm.nih.gov/pubmed/29363540
https://doi.org/10.1093/jb/mvw045
https://doi.org/10.1093/jb/mvw045
http://www.ncbi.nlm.nih.gov/pubmed/27466371
https://doi.org/10.1074/jbc.M606539200
https://doi.org/10.1074/jbc.M606539200
http://www.ncbi.nlm.nih.gov/pubmed/17046835
https://doi.org/10.1016/j.yexcr.2008.02.014
http://www.ncbi.nlm.nih.gov/pubmed/18387606
https://doi.org/10.1016/j.micinf.2008.01.017
https://doi.org/10.1016/j.micinf.2008.01.017
http://www.ncbi.nlm.nih.gov/pubmed/18468471
https://doi.org/10.1093/nar/gky1038
http://www.ncbi.nlm.nih.gov/pubmed/30407594
https://doi.org/10.1371/journal.ppat.1008482


41. Mi H, Muruganujan A, Huang X, Ebert D, Mills C, et al. Protocol update for large-scale genome and

gene function analysis with the PANTHER classification system (v.14.0). Nat Protoc. 2019; 14: 703–

21. https://doi.org/10.1038/s41596-019-0128-8 PMID: 30804569

42. Lee MC, Moura PA, Miller EA, Fidock DA. Plasmodium falciparum Sec24 marks transitional ER that

exports a model cargo via a diacidic motif. Mol Microbiol. 2008; 68: 1535–46. https://doi.org/10.1111/j.

1365-2958.2008.06250.x PMID: 18410493

43. Marapana DS, Dagley LF, Sandow JJ, Nebl T, Triglia T, et al. Plasmepsin V cleaves malaria effector

proteins in a distinct endoplasmic reticulum translocation interactome for export to the erythrocyte. Nat

Microbiol. 2018; 3: 1010–22. https://doi.org/10.1038/s41564-018-0219-2 PMID: 30127496

44. Coffey MJ, Jennison C, Tonkin CJ, Boddey JA. Role of the ER and Golgi in protein export by Apicom-

plexa. Curr Opin Cell Biol. 2016; 41: 18–24. https://doi.org/10.1016/j.ceb.2016.03.007 PMID:

27019341

45. Bridgford JL, Xie SC, Cobbold SA, Pasaje CFA, Herrmann S, et al. Artemisinin kills malaria parasites by

damaging proteins and inhibiting the proteasome. Nat Commun. 2018; 9: 3801. https://doi.org/10.

1038/s41467-018-06221-1 PMID: 30228310

46. Ponpuak M, Klemba M, Park M, Gluzman IY, Lamppa GK, et al. A role for falcilysin in transit peptide

degradation in the Plasmodium falciparum apicoplast. Mol Microbiol. 2007; 63: 314–34. https://doi.org/

10.1111/j.1365-2958.2006.05443.x PMID: 17074076

47. Matz JM, Goosmann C, Matuschewski K, Kooij TWA. An unusual prohibitin regulates malaria parasite

mitochondrial membrane potential. Cell Rep. 2018; 23: 756–67. https://doi.org/10.1016/j.celrep.2018.

03.088 PMID: 29669282

48. Ginsburg H. Progress in in silico functional genomics: the Malaria Metabolic Pathways database.

Trends Parasitol. 2006; 22: 238–40. https://doi.org/10.1016/j.pt.2006.04.008 PMID: 16707276

49. Kehr S, Jortzik E, Delahunty C, Yates JR 3rd, Rahlfs S, et al. Protein S-glutathionylation in malaria para-

sites. Antioxid Redox Signal. 2011; 15: 2855–65. https://doi.org/10.1089/ars.2011.4029 PMID:

21595565

50. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC. Analysis of protein palmitoylation

reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe. 2012; 12:

246–58. https://doi.org/10.1016/j.chom.2012.06.005 PMID: 22901544

51. Wang L, Delahunty C, Prieto JH, Rahlfs S, Jortzik E, et al. Protein S-nitrosylation in Plasmodium falcipa-

rum. Antioxid Redox Signal. 2014; 20: 2923–35. https://doi.org/10.1089/ars.2013.5553 PMID:

24256207

52. Grigoriev I, Splinter D, Keijzer N, Wulf PS, Demmers J, et al. Rab6 regulates transport and targeting of

exocytotic carriers. Dev Cell. 2007; 13: 305–14. https://doi.org/10.1016/j.devcel.2007.06.010 PMID:

17681140

53. Siddiqui FA, Boonhok R, Cabrera M, Mbenda HGN, Wang M, et al. Role of Plasmodium falciparum

Kelch 13 protein mutations in P. falciparum populations from northeastern Myanmar in mediating arte-

misinin resistance. mBio. 2020; 11: e01134–19. https://doi.org/10.1128/mBio.01134-19 PMID:

32098812

54. Crary JL, Haldar K. Brefeldin A inhibits protein secretion and parasite maturation in the ring stage of

Plasmodium falciparum. Mol Biochem Parasitol. 1992; 53: 185–92. https://doi.org/10.1016/0166-6851

(92)90020-k PMID: 1501638

55. Stacchiotti A, Favero G, Lavazza A, Garcia-Gomez R, Monsalve M, et al. Perspective: mitochondria-

ER contacts in metabolic cellular stress assessed by microscopy. Cells. 2018; 8: E5. https://doi.org/10.

3390/cells8010005 PMID: 30577576

56. Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, et al. Determination of glutathione redox

potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med. 2017;

104: 104–17. https://doi.org/10.1016/j.freeradbiomed.2017.01.001 PMID: 28062360

57. Saralamba S, Pan-Ngum W, Maude RJ, Lee SJ, Tarning J, et al. Intrahost modeling of artemisinin resis-

tance in Plasmodium falciparum. Proc Natl Acad Sci USA. 2011; 108: 397–402. https://doi.org/10.

1073/pnas.1006113108 PMID: 21173254

58. Mok S, Imwong M, Mackinnon MJ, Sim J, Ramadoss R, et al. Artemisinin resistance in Plasmodium fal-

ciparum is associated with an altered temporal pattern of transcription. BMC Genomics. 2011; 12: 391.

https://doi.org/10.1186/1471-2164-12-391 PMID: 21810278

59. Siddiqui G, Srivastava A, Russell AS, Creek DJ. Multi-omics based identification of specific biochemical

changes associated with PfKelch13-mutant artemisinin-resistant Plasmodium falciparum. J Infect Dis.

2017; 215: 1435–44. https://doi.org/10.1093/infdis/jix156 PMID: 28368494

60. Henrici RC, Edwards RL, Zoltner M, van Schalkwyk DA, Hart MN, et al. The Plasmodium falciparum

artemisinin susceptibility-associated AP-2 adaptin mu subunit is clathrin independent and essential for

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 33 / 35

https://doi.org/10.1038/s41596-019-0128-8
http://www.ncbi.nlm.nih.gov/pubmed/30804569
https://doi.org/10.1111/j.1365-2958.2008.06250.x
https://doi.org/10.1111/j.1365-2958.2008.06250.x
http://www.ncbi.nlm.nih.gov/pubmed/18410493
https://doi.org/10.1038/s41564-018-0219-2
http://www.ncbi.nlm.nih.gov/pubmed/30127496
https://doi.org/10.1016/j.ceb.2016.03.007
http://www.ncbi.nlm.nih.gov/pubmed/27019341
https://doi.org/10.1038/s41467-018-06221-1
https://doi.org/10.1038/s41467-018-06221-1
http://www.ncbi.nlm.nih.gov/pubmed/30228310
https://doi.org/10.1111/j.1365-2958.2006.05443.x
https://doi.org/10.1111/j.1365-2958.2006.05443.x
http://www.ncbi.nlm.nih.gov/pubmed/17074076
https://doi.org/10.1016/j.celrep.2018.03.088
https://doi.org/10.1016/j.celrep.2018.03.088
http://www.ncbi.nlm.nih.gov/pubmed/29669282
https://doi.org/10.1016/j.pt.2006.04.008
http://www.ncbi.nlm.nih.gov/pubmed/16707276
https://doi.org/10.1089/ars.2011.4029
http://www.ncbi.nlm.nih.gov/pubmed/21595565
https://doi.org/10.1016/j.chom.2012.06.005
http://www.ncbi.nlm.nih.gov/pubmed/22901544
https://doi.org/10.1089/ars.2013.5553
http://www.ncbi.nlm.nih.gov/pubmed/24256207
https://doi.org/10.1016/j.devcel.2007.06.010
http://www.ncbi.nlm.nih.gov/pubmed/17681140
https://doi.org/10.1128/mBio.01134-19
http://www.ncbi.nlm.nih.gov/pubmed/32098812
https://doi.org/10.1016/0166-6851(92)90020-k
https://doi.org/10.1016/0166-6851(92)90020-k
http://www.ncbi.nlm.nih.gov/pubmed/1501638
https://doi.org/10.3390/cells8010005
https://doi.org/10.3390/cells8010005
http://www.ncbi.nlm.nih.gov/pubmed/30577576
https://doi.org/10.1016/j.freeradbiomed.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28062360
https://doi.org/10.1073/pnas.1006113108
https://doi.org/10.1073/pnas.1006113108
http://www.ncbi.nlm.nih.gov/pubmed/21173254
https://doi.org/10.1186/1471-2164-12-391
http://www.ncbi.nlm.nih.gov/pubmed/21810278
https://doi.org/10.1093/infdis/jix156
http://www.ncbi.nlm.nih.gov/pubmed/28368494
https://doi.org/10.1371/journal.ppat.1008482


schizont maturation. mBio. 2020; 11: e02918–19. https://doi.org/10.1128/mBio.02918-19 PMID:

32098816

61. Wandinger-Ness A, Zerial M. Rab proteins and the compartmentalization of the endosomal system.

Cold Spring Harb Perspect Biol. 2014; 6: a022616. https://doi.org/10.1101/cshperspect.a022616

PMID: 25341920

62. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009; 10: 513–25.

https://doi.org/10.1038/nrm2728 PMID: 19603039

63. Quevillon E, Spielmann T, Brahimi K, Chattopadhyay D, Yeramian E, et al. The Plasmodium falciparum

family of Rab GTPases. Gene. 2003; 306: 13–25. https://doi.org/10.1016/s0378-1119(03)00381-0

PMID: 12657463

64. Elliott DA, McIntosh MT, Hosgood HD 3rd, Chen S, Zhang G, et al. Four distinct pathways of hemoglo-

bin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008; 105: 2463–

8. https://doi.org/10.1073/pnas.0711067105 PMID: 18263733

65. Abu Bakar N, Klonis N, Hanssen E, Chan C, Tilley L. Digestive-vacuole genesis and endocytic pro-

cesses in the early intraerythrocytic stages of Plasmodium falciparum. J Cell Sci. 2010; 123: 441–50.

https://doi.org/10.1242/jcs.061499 PMID: 20067995

66. Howe R, Kelly M, Jimah J, Hodge D, Odom AR. Isoprenoid biosynthesis inhibition disrupts Rab5 locali-

zation and food vacuolar integrity in Plasmodium falciparum. Eukaryot Cell. 2013; 12: 215–23. https://

doi.org/10.1128/EC.00073-12 PMID: 23223036

67. Babbitt SE, Altenhofen L, Cobbold SA, Istvan ES, Fennell C, et al. Plasmodium falciparum responds to

amino acid starvation by entering into a hibernatory state. Proc Natl Acad Sci USA. 2012; 109: E3278–

87. https://doi.org/10.1073/pnas.1209823109 PMID: 23112171

68. Witkowski B, Lelievre J, Barragan MJ, Laurent V, Su XZ, et al. Increased tolerance to artemisinin in

Plasmodium falciparum is mediated by a quiescence mechanism. Antimicrob Agents Chemother. 2010;

54: 1872–7. https://doi.org/10.1128/AAC.01636-09 PMID: 20160056

69. Teuscher F, Chen N, Kyle DE, Gatton ML, Cheng Q. Phenotypic changes in artemisinin-resistant Plas-

modium falciparum lines in vitro: evidence for decreased sensitivity to dormancy and growth inhibition.

Antimicrob Agents Chemother. 2012; 56: 428–31. https://doi.org/10.1128/AAC.05456-11 PMID:

21986828

70. Cheng Q, Kyle DE, Gatton ML. Artemisinin resistance in Plasmodium falciparum: A process linked to

dormancy? Int J Parasitol Drugs Drug Resist. 2012; 2: 249–55. https://doi.org/10.1016/j.ijpddr.2012.

01.001 PMID: 23420506

71. Shaw PJ, Chaotheing S, Kaewprommal P, Piriyapongsa J, Wongsombat C, et al. Plasmodium parasites

mount an arrest response to dihydroartemisinin, as revealed by whole transcriptome shotgun sequenc-

ing (RNA-seq) and microarray study. BMC Genomics. 2015; 16: 830. https://doi.org/10.1186/s12864-

015-2040-0 PMID: 26490244

72. Christoforidis S, Miaczynska M, Ashman K, Wilm M, Zhao L, et al. Phosphatidylinositol-3-OH kinases

are Rab5 effectors. Nat Cell Biol. 1999; 1: 249–52. https://doi.org/10.1038/12075 PMID: 10559924

73. Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM. Role of Rab5 in the recruitment of

hVps34/p150 to the early endosome. Traffic. 2002; 3: 416–27. https://doi.org/10.1034/j.1600-0854.

2002.30605.x PMID: 12010460

74. Stein MP, Feng Y, Cooper KL, Welford AM, Wandinger-Ness A. Human VPS34 and p150 are Rab7

interacting partners. Traffic. 2003; 4: 754–71. https://doi.org/10.1034/j.1600-0854.2003.00133.x PMID:

14617358

75. Stein MP, Cao C, Tessema M, Feng Y, Romero E, et al. Interaction and functional analyses of human

VPS34/p150 phosphatidylinositol 3-kinase complex with Rab7. Methods Enzymol. 2005; 403: 628–49.

https://doi.org/10.1016/S0076-6879(05)03055-7 PMID: 16473626

76. Griffiths EJ, Rutter GA. Mitochondrial calcium as a key regulator of mitochondrial ATP production in

mammalian cells. Biochim Biophys Acta. 2009; 1787: 1324–33. https://doi.org/10.1016/j.bbabio.2009.

01.019 PMID: 19366607

77. Wang C, Youle RJ. The role of mitochondria in apoptosis. Annu Rev Genet. 2009; 43: 95–118. https://

doi.org/10.1146/annurev-genet-102108-134850 PMID: 19659442

78. Rainbolt TK, Saunders JM, Wiseman RL. Stress-responsive regulation of mitochondria through the ER

unfolded protein response. Trends Endocrinol Metab. 2014; 25: 528–37. https://doi.org/10.1016/j.tem.

2014.06.007 PMID: 25048297

79. Rosenberg A, Luth MR, Winzeler EA, Behnke M, Sibley LD. Evolution of resistance in vitro reveals

mechanisms of artemisinin activity in Toxoplasma gondii. Proc Natl Acad Sci USA. 2019; Dec 5:

201914732. https://doi.org/10.1073/pnas.1914732116 PMID: 31806760

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 34 / 35

https://doi.org/10.1128/mBio.02918-19
http://www.ncbi.nlm.nih.gov/pubmed/32098816
https://doi.org/10.1101/cshperspect.a022616
http://www.ncbi.nlm.nih.gov/pubmed/25341920
https://doi.org/10.1038/nrm2728
http://www.ncbi.nlm.nih.gov/pubmed/19603039
https://doi.org/10.1016/s0378-1119(03)00381-0
http://www.ncbi.nlm.nih.gov/pubmed/12657463
https://doi.org/10.1073/pnas.0711067105
http://www.ncbi.nlm.nih.gov/pubmed/18263733
https://doi.org/10.1242/jcs.061499
http://www.ncbi.nlm.nih.gov/pubmed/20067995
https://doi.org/10.1128/EC.00073-12
https://doi.org/10.1128/EC.00073-12
http://www.ncbi.nlm.nih.gov/pubmed/23223036
https://doi.org/10.1073/pnas.1209823109
http://www.ncbi.nlm.nih.gov/pubmed/23112171
https://doi.org/10.1128/AAC.01636-09
http://www.ncbi.nlm.nih.gov/pubmed/20160056
https://doi.org/10.1128/AAC.05456-11
http://www.ncbi.nlm.nih.gov/pubmed/21986828
https://doi.org/10.1016/j.ijpddr.2012.01.001
https://doi.org/10.1016/j.ijpddr.2012.01.001
http://www.ncbi.nlm.nih.gov/pubmed/23420506
https://doi.org/10.1186/s12864-015-2040-0
https://doi.org/10.1186/s12864-015-2040-0
http://www.ncbi.nlm.nih.gov/pubmed/26490244
https://doi.org/10.1038/12075
http://www.ncbi.nlm.nih.gov/pubmed/10559924
https://doi.org/10.1034/j.1600-0854.2002.30605.x
https://doi.org/10.1034/j.1600-0854.2002.30605.x
http://www.ncbi.nlm.nih.gov/pubmed/12010460
https://doi.org/10.1034/j.1600-0854.2003.00133.x
http://www.ncbi.nlm.nih.gov/pubmed/14617358
https://doi.org/10.1016/S0076-6879(05)03055-7
http://www.ncbi.nlm.nih.gov/pubmed/16473626
https://doi.org/10.1016/j.bbabio.2009.01.019
https://doi.org/10.1016/j.bbabio.2009.01.019
http://www.ncbi.nlm.nih.gov/pubmed/19366607
https://doi.org/10.1146/annurev-genet-102108-134850
https://doi.org/10.1146/annurev-genet-102108-134850
http://www.ncbi.nlm.nih.gov/pubmed/19659442
https://doi.org/10.1016/j.tem.2014.06.007
https://doi.org/10.1016/j.tem.2014.06.007
http://www.ncbi.nlm.nih.gov/pubmed/25048297
https://doi.org/10.1073/pnas.1914732116
http://www.ncbi.nlm.nih.gov/pubmed/31806760
https://doi.org/10.1371/journal.ppat.1008482


80. Maeno Y, Toyoshima T, Fujioka H, Ito Y, Meshnick SR, et al. Morphologic effects of artemisinin in Plas-

modium falciparum. Am J Trop Med Hyg. 1993; 49: 485–91. https://doi.org/10.4269/ajtmh.1993.49.485

PMID: 8214279

81. Peatey CL, Chavchich M, Chen N, Gresty KJ, Gray KA, et al. Mitochondrial membrane potential in a

small subset of artemisinin-induced dormant Plasmodium falciparum parasites in vitro. J Infect Dis.

2015; 212: 426–34. https://doi.org/10.1093/infdis/jiv048 PMID: 25635122

82. Wang J, Huang L, Li J, Fan Q, Long Y, et al. Artemisinin directly targets malarial mitochondria through

its specific mitochondrial activation. PLoS One. 2010; 5: e9582. https://doi.org/10.1371/journal.pone.

0009582 PMID: 20221395

83. Mohring F, Jortzik E, Becker K. Comparison of methods probing the intracellular redox milieu in Plasmo-

dium falciparum. Mol Biochem Parasitol. 2016; 206: 75–83. https://doi.org/10.1016/j.molbiopara.2015.

11.002 PMID: 26593282

84. Rahbari M, Rahlfs S, Przyborski JM, Schuh AK, Hunt NH, et al. Hydrogen peroxide dynamics in subcel-

lular compartments of malaria parasites using genetically encoded redox probes. Sci Rep. 2017; 7:

10449. https://doi.org/10.1038/s41598-017-10093-8 PMID: 28874682

85. Mamoun CB, Gluzman IY, Goyard S, Beverley SM, Goldberg DE. A set of independent selectable

markers for transfection of the human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U S

A. 1999; 96: 8716–20. https://doi.org/10.1073/pnas.96.15.8716 PMID: 10411941

86. Nkrumah LJ, Muhle RA, Moura PA, Ghosh P, Hatfull GF, et al. Efficient site-specific integration in Plas-

modium falciparum chromosomes mediated by mycobacteriophage Bxb1 integrase. Nat Methods.

2006; 3: 615–21. https://doi.org/10.1038/nmeth904 PMID: 16862136

87. Fidock DA, Nomura T, Wellems TE. Cycloguanil and its parent compound proguanil demonstrate dis-

tinct activities against Plasmodium falciparum malaria parasites transformed with human dihydrofolate

reductase. Mol Pharmacol. 1998; 54: 1140–7. https://doi.org/10.1124/mol.54.6.1140 PMID: 9855645

88. Ekland EH, Schneider J, Fidock DA. Identifying apicoplast-targeting antimalarials using high-throughput

compatible approaches. FASEB J. 2011; 25: 3583–93. https://doi.org/10.1096/fj.11-187401 PMID:

21746861

89. Schuh AK, Rahbari M, Heimsch KC, Mohring F, Gabryszewski SJ, et al. Stable integration and compari-

son of hGrx1-roGFP2 and sfroGFP2 redox probes in the malaria parasite Plasmodium falciparum. ACS

Infect Dis. 2018; 4: 1601–12. https://doi.org/10.1021/acsinfecdis.8b00140 PMID: 30129748

90. Adjalley SH, Johnston GL, Li T, Eastman RT, Ekland EH, et al. Quantitative assessment of Plasmodium

falciparum sexual development reveals potent transmission-blocking activity by methylene blue. Proc

Natl Acad Sci USA. 2011; 108: E1214–23. https://doi.org/10.1073/pnas.1112037108 PMID: 22042867

PLOS PATHOGENS P. falciparum K13 properties and artemisinin Resistance

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008482 April 20, 2020 35 / 35

https://doi.org/10.4269/ajtmh.1993.49.485
http://www.ncbi.nlm.nih.gov/pubmed/8214279
https://doi.org/10.1093/infdis/jiv048
http://www.ncbi.nlm.nih.gov/pubmed/25635122
https://doi.org/10.1371/journal.pone.0009582
https://doi.org/10.1371/journal.pone.0009582
http://www.ncbi.nlm.nih.gov/pubmed/20221395
https://doi.org/10.1016/j.molbiopara.2015.11.002
https://doi.org/10.1016/j.molbiopara.2015.11.002
http://www.ncbi.nlm.nih.gov/pubmed/26593282
https://doi.org/10.1038/s41598-017-10093-8
http://www.ncbi.nlm.nih.gov/pubmed/28874682
https://doi.org/10.1073/pnas.96.15.8716
http://www.ncbi.nlm.nih.gov/pubmed/10411941
https://doi.org/10.1038/nmeth904
http://www.ncbi.nlm.nih.gov/pubmed/16862136
https://doi.org/10.1124/mol.54.6.1140
http://www.ncbi.nlm.nih.gov/pubmed/9855645
https://doi.org/10.1096/fj.11-187401
http://www.ncbi.nlm.nih.gov/pubmed/21746861
https://doi.org/10.1021/acsinfecdis.8b00140
http://www.ncbi.nlm.nih.gov/pubmed/30129748
https://doi.org/10.1073/pnas.1112037108
http://www.ncbi.nlm.nih.gov/pubmed/22042867
https://doi.org/10.1371/journal.ppat.1008482

