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• Developed models showed excellent 
prediction accuracy across 10 key 
outputs. 

• Gradient boosting regression out-
performed other model types. 

• Feedstock particle size and gasifying 
agent most strongly influenced 
predictions. 

• Global and local model interpretability 
methods have been combined.  
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A B S T R A C T   

Machine learning has been regarded as a promising method to better model thermochemical processes such as 
gasification. However, their black box nature can limit how much one can trust and learn from the developed 
models. Here seven different machine learning methods have been adopted to model the gasification of biomass 
and waste across a wide range of operating conditions. Gradient boosting regression has been found to 
outperform the other model types with a coefficient of determination (R2) of 0.90 when averaged across ten key 
gasification outputs. Global and local model interpretability methods have been used to illuminate the developed 
black box models. The studied models were most strongly influenced by the feedstock’s particle size and the type 
of gasifying agent employed. By combining global and local interpretability methods, the understanding of black 
box models has been improved. This allows policy makers and investors to make more educated decisions about 
gasification process design.   

1. Introduction 

Bioenergy will likely play a critical role in achieving the sustainable 
development goals set out by the 2015 Paris Agreement. To date, only a 
small fraction of its potential has been tapped (Lacrosse et al., 2021). 
Thermochemical methods, such as gasification, are key technologies 

highlighted as part of the UK government’s Net Zero Strategy. Amongst 
other reasons, gasification stands out to be an attractive renewable en-
ergy technology, as it has, unlike wind and solar, the potential to provide 
a stable baseload. When combined with carbon capture and storage (i.e. 
bioenergy with carbon capture and storage (BECCS)), gasification could 
become a negative emission technology that is highly demanded to fulfil 
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the 1.5 ◦C climate goal. Additionally, gasification can aid with reducing 
the emissions of the hardest-to-decarbonise sectors, such as transport 
and heating (BEIS, 2021). 

Whilst the potential of gasification is clear, its widespread commer-
cialisation and industrial scale implementation is still subject to limited 
process performance and efficiency (BEIS, 2021). It becomes an 
important topic to search for new methods and tools towards improved 
process design. Machine learning (ML) represents one such method. ML 
is a type of artificial intelligence, which uses a data-driven approach to 
develop methods which “learn” from provided data. This way models 
can be developed without any predetermined equations. For this work, 
ML is a promising method to achieve high accuracy gasification pro-
duction predictions, which can simplify model-based process design and 
optimisation. However, existing models often focused on a narrow range 
of feedstock types and gasifier setups (Ascher et al., 2022b). For 
instance, Kardani et al. compared five soft computing methods, but 
focused on municipal solid waste (MSW) gasification only (Kardani 
et al., 2021). 

In addition to low data availability and the narrow scope of existing 
models, limited interpretability has been another major problem. When 
first developed, many ML methods have been considered a black box, 
but more recent efforts to illuminate the inner workings of these 
methods have led to improved process understanding and analysis 
(Molnar, 2019). Indeed, interpretability is crucial for allowing re-
searchers to guard against bias in their models and extract maximum 
knowledge from their data and models, improving the efficiency of data 
and model utilisation. A variety of methods such as correlation co-
efficients, hypothesis tests, and variance-based methods have been 
developed to assess the importance of a model’s variables to aid with 
interpretability (Wei et al., 2015). A model is considered interpretable 
when the reasoning behind its predictions can be readily understood by 
humans. 

In the field of bioenergy, conventionally, model-specific techniques 
predominantly aimed at explaining a model’s global behaviour have 
been used. Global model interpretability is concerned with a holistic 
view of the model and how the distribution of model outcomes is 
affected by the model’s features. For instance, Serrano and Castelló used 
Garson’s algorithm to explain the variable importance of a tar prediction 
model for a bubbling fluidised bed gasifier (Serrano and Castelló, 2020). 
Zhu et al. used Gini importance based variable importance assessment to 
analyse a random forest (RF) model for the prediction of biochar yield 
from biomass pyrolysis (Zhu et al., 2019). Zhang et al. used Pearson 
correlation coefficients, Gini feature importance assessment, and partial 
dependence plots (PDPs) to study the effect of biomass composition and 
pyrolysis conditions on bio-oil characteristics (Zhang et al., 2022). The 
developed RF was found to rely more heavily on the biomass composi-
tion than the pyrolysis conditions to make its predictions. 

Model-agnostic methods, which aim to separate the explanations 
from the ML model, have been a more recent development (Lundberg 
and Lee, 2017; Ribeiro et al., 2016). The key advantage of model- 
agnostic techniques lies in their flexibility. This way a researcher is 
free to use any model type and different model types can be compared by 
using the same interpretability methods. SHAP (SHapley Additive ex-
Planations) (Lundberg and Lee, 2017) is one such method which has 
recently been used (Li et al., 2021a; Li et al., 2020). SHAP can be used as 
a global method to explain the average effect of features on an output, 
but also as a local method to explain individual predictions. Whilst, in 
this field, these local methods have not been explored yet, they can 
powerfully communicate to stakeholders how a model has made a 
particular prediction. The merits of the interpretability methods selected 
for this work are discussed in more detail in Section 2.4. 

In this work a range of ML methods to model biomass and waste 
gasification have been developed and systematically compared. Instead 
of focusing on a narrow range of feedstocks and operating conditions 
like many existing studies (Ascher et al., 2022b), an expansive data set 
including an array of different feedstock and gasifier types has been 

used. Model performance has been optimised by identifying the best 
model preprocessing steps for each model type and tuning their hyper-
parameters using a search algorithm. 

As compared to existing interpretability-related studies, the consid-
eration of three different feature importance assessment methods and 
the use of global and local methods allowed for the creation of a more 
complete picture of how the developed models made their predictions. 
Gini, permutation, and SHAP feature importance assessment have been 
compared, which mitigates limitations of individual methods and re-
duces uncertainty in the results (Gevrey et al., 2003). The use of local 
explainability methods to guide the decisions of stakeholders and in-
vestors by providing an intuitive way to communicate a ML model’s 
prediction process has been illustrated. By combining local with global 
methods, thermochemical process prediction black box models can be 
better understood. The developed models can predict syngas yield, 
syngas lower heating value (LHV), and syngas tar content, as well as the 
char yield and syngas composition in terms of N2, H2, CO, CO2, CH4, and 
C2Hn. These models and their predictions can simplify further gasifica-
tion system design and analysis such as life cycle sustainability assess-
ment (LCSA) during which a system’s environmental, economic, and 
social impacts are studied. 

2. Materials and methods 

2.1. Data collection, preliminary analysis, and predictor selection 

The data set used for model development has been presented in 
greater detail in one of our previous works (Ascher et al., 2022a). It 
contains information on the feedstock’s composition and its preparation, 
as well as data describing the gasification system and how it was oper-
ated. In total, up to 312 samples were collected from the current gasi-
fication literature for a range of different gasifier types, operating 
conditions, and feedstocks. 

Preliminary analysis followed a similar procedure to the one 
described in one of our previous works (Ascher et al., 2022a). In short, 
Pearson’s and Spearman’s correlation coefficients were calculated to 
measure the linear/monotonic relationship between predictors. It is 
important to identify highly correlated features before model training, 
as retaining them can limit a model’s performance and hinder feature 
importance assessment (Li et al., 2021a). 

Predictor variables were excluded for several reasons. The feed-
stock’s N and O content and LHV were excluded due to their high cor-
relation with other predictors. Volatile matter (VM) and fixed carbon 
(FC) were removed as literature considers them dependent variables 
(Baruah et al., 2017). Feedstock type and shape were deemed redundant 
as the same information was already captured by the feedstock’s ulti-
mate and proximate composition and particle size. Finally, several 
predictors were dropped as they contained too many missing samples. 
Namely, the feedstock’s cellulose, hemicellulose, and lignin contents, as 
well as the operating pressure, residence time, and steam to biomass 
ratio were dropped for this reason. 

The following predictors were ultimately used for model develop-
ment: feedstock C, H, S, ash, and moisture content, feedstock particle 
size, gasifier temperature, gasifier operation mode (batch/continuous), 
gasifier scale, equivalence ratio (ER), catalyst usage, gasifying agent, 
reactor type, and bed material. 

All analysis was done in the Python programming language (version 
3.8.13). 

2.2. Data preparation 

Careful data preparation is an essential step before model training. It 
ensures maximum performance and trust in the developed models. 
Many ML algorithms require data to be in a uniform and specific format. 
For instance, missing or invalid entries cannot be processed by most 
algorithms and thus need to be treated beforehand. In this work, all data 
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was cleaned, and categorical predictors were encoded using ordinal or 
one-hot encoding. Multilayer perceptron neural networks and support 
vector machines (SVMs) prefer features which are normally distributed. 
Thus, each feature was standardised by removing the mean and scaling 
samples to unit variance. 

Regarding categorical variables, the following variables were ordi-
nally encoded: operation mode (batch or continuous), system scale (lab 
or pilot), and catalyst use (present or not present). Gasifying agent, bed 
material, and reactor type were one-hot encoded. Both encoding tech-
niques have been discussed in more detail in (Ascher et al., 2022a). 

To study the effects of various data preparation and preprocessing 
options a range of scenarios was defined. For this, predictor and target 
data were treated independently. Predictor data was prepared based on 
one of the following four procedures: (i) Continuous predictors only and 
drop row if missing value present (CONT + DROP); (ii) Continuous 
predictors only and mean impute missing values (CONT + MEAN); (iii) 
Add categorical predictors and drop row if missing value present (ALL +
DROP), (iv) Add categorical predictors and mean impute missing values 
(ALL + MEAN). 

The aim of comparing these four options was twofold. Firstly, the 
effect of adding categorical predictors to the training data set was 
studied by comparing CONT + DROP and CONT + MEAN to ALL +
DROP and ALL + MEAN. Secondly, the effect of mean imputing missing 
values was studied. This is one of the simplest and most employed 
methods to deal with missing values. One main benefit of mean 
imputing missing values, compared to dropping the row is that it does 
not lead to a reduction in the size of the data set used for model 
development. During mean imputation, all instances where a sample is 
missing for a variable are filled with the mean of all samples that are 
present for that variable. 

Target data was only processed for the training set. If missing values 
were present in the test set a prediction was not made. This way test data 
remained independent and was not affected by any data preprocessing. 
The training data was prepared based on one of the following three 
procedures: (i) Drop row if missing value present (TAR-DROP); (ii) Mean 
impute missing values (TAR-MEAN); (iii) Impute missing values using 
RF submodel (TAR-RF). 

Methods TAR-DROP and TAR-MEAN follow similar procedures as 
the methods described for the preparation of the predictor data. Method 
TAR-RF employs RF submodels to fill missing values. One RF submodel 
was fitted for each target variable with missing values present. Each 
submodel was trained using the complete data set and then used to make 
predictions for the missing target values. Using this method, a size 
reduction in the data set can be avoided (similar to the mean imputation 
method) whilst filling the missing instances with more meaningful 
values than simply the variable’s mean. RF was chosen for the sub-
models due to its strong out of the box performance (Kégl, 2013). A 
visual explanation of the employed methods is shown in the supple-
mentary materials. 

2.3. Model development 

2.3.1. Model types 
A range of different model types have been compared in this work. 

One important family of models is tree-based models. On a fundamental 
level, tree-based models are algorithms which infer simple decision rules 
from the feature space to predict a target variable (Hastie et al., 2009). In 
practice, many models employ a collection of trees to reduce the vari-
ance associated with using a singular decision tree. RF is one such 
method introduced by Breiman (Breiman, 2001). It is a bootstrap 
aggregating, also called bagging, algorithm which averages the results of 
many independent learners. By averaging the results of many decision 
trees, the noise problems of individual trees can be circumvented (Hastie 
et al., 2009). Whilst bagging algorithms average the results of many 
independent models, boosting algorithms iteratively train and adjust the 
weights of many weak learners to create a powerful ensemble model. In 

this work three different algorithms falling under this category were 
considered, namely gradient boosting for regression (GBR), XGBoost, 
and AdaBoost. 

SVMs are another class of well-performing algorithms and were also 
considered in this work. Whilst modern deep neural networks often 
outperform SVMs or some of the other mentioned model types when vast 
amounts of data are available, for the size of data set available for this 
work, the presented algorithms could be among the best performing 
algorithms in terms of prediction accuracy (Brunton and Kutz, 2017). 
For this reason, instead of a deep neural network, a simpler multilayer 
perceptron neural network (ANN) was considered as another alterna-
tive. It is worth noting that artificial neural networks have been the most 
popular ML method to model biomass and waste gasification (Ascher 
et al., 2022b). The final tested model type is the super learner (SL) 
concept which combines all previously developed models into one 
ensemble model (Van Der Laan et al., 2007). 

2.3.2. Model optimisation and comparison 
Whilst some algorithms, such as RF and AdaBoost, are well known 

for their good out of the box performance, other algorithms, such as 
ANN and SVM, require careful hyperparameter tuning to maximise their 
performance (Kégl, 2013). In the past, trial and error has often been 
manually implemented to tune ML models; however, more advanced 
methods have become available to find the best hyperparameter com-
binations (Ascher et al., 2022b). In this work, a search algorithm has 
been used to optimise each type of model. Specifically, a parameter grid 
was defined for each model type. These grids contained the hyper-
parameters which were to be optimised and possible options/values 
each parameter could take. The algorithm then searched the parameter 
space for the best performing combination of hyperparameters. Model 
performance was assessed by determining the 5-fold cross-validated 
coefficient of determination (R2): 

R2 = 1 −
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performance measure given by. 
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where the variables have the same meaning as the variables used in Eq. 
(2). It measures the mean difference between observed values and an 
estimator’s predictions. 

R2 and RMSE were used in conjunction as performance measures to 
quantitatively compare all the model types. They were calculated for 
test sets and the cross-validated models. For the model development, the 
data set was split into a training and test set using an 85 % to 15 % split. 
Another approach for accurately judging a model’s generalisation 
capability is using cross-validation. This work employed k-fold cross- 
validation, during which the dataset was split into k parts. The model 
was then trained on k-1 folds and tested on the last fold. This process was 
then repeated k times, so that each fold has been used for testing once. 
Cross-validation allows one to obtain an independent measure of model 
performance, whilst using all available data for model development. 
Here 5-fold cross-validation has been used. 

The overall methodology and workflow of this study is illustrated by 
Fig. 1, where the left-hand side of the figure focuses on the ML model 
development described in this section. 
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2.4. Interpretability analysis 

Model interpretability and explainability are concerned with 
extracting knowledge about relationships learned by a model or the 
patterns of the underlying data. Interpretability may be understood as a 
human’s ability to understand the cause of a ML model’s prediction. A 
highly interpretable model is easy to comprehend, and the model’s re-
sults can be consistently predicted by a human. In contrast, humans 
struggle to understand the predictions of a model with low interpret-
ability (Molnar, 2019). 

Many ML models have been considered a black box, as their inner 
workings are often poorly understood. One approach to make ML more 
interpretable is the use of models such as linear regression and decision 
trees which are inherently interpretable (Molnar, 2019). However, these 
simple models generally do not offer the same prediction performance as 
more complex models (Tang et al., 2020). A more recent approach are 
model-agnostic methods which aim to make any black box model 
interpretable. One intuitive approach is called permutation feature 
importance during which a feature’s values are randomly shuffled 
(Breiman, 2001). The resulting increase in the prediction error yields a 
measure of the feature’s importance. This provides a global insight into 
the model’s behaviour and automatically accounts for interaction effects 
of features (Molnar, 2019). 

Another global method uses the Gini index, also known as Gini im-
purity, which is used by tree-based models to determine where nodes 
should be split. This provides a straightforward measure to interpret 
tree-based methods such as RF and GBR. One disadvantage of Gini-based 
variable importance assessment is that it is biased towards inputs with 
more categories. This is less of an issue for mostly continuous and largely 
uncorrelated features. Furthermore, this method is not applicable to 
other model types (Wei et al., 2015). 

Whilst global methods explain the workings of the overall model, 
they remain limited in explaining individual predictions. Here methods 
such as local surrogate models (LIME) (Ribeiro et al., 2016) and SHAP 
(Lundberg and Lee, 2017) come into play. LIME fits an interpretable 
surrogate model locally. The local models only explain individual pre-
dictions and are not required to be a good global approximation of the 
model. Whilst LIME has been considered a promising method, it still has 

a number of problems, especially for tabular data. For instance, hyper-
parameter tuning can be challenging with opposite findings being 
possible depending on the chosen smoothing kernel width. Another 
issue is the instability of LIME’s explanations, which means that 
repeating the same explanation can lead to significantly different results 
(Molnar, 2019). 

SHAP is a flexible technique which can be used for global interpre-
tation and to explain individual predictions. It has a strong theoretical 
foundation in game theory and uses the concept of allocating optimal 
credits based on Shapley values to estimate the importance of features. 
SHAP force plots provide an intuitive visualisation of how different 
features affect an individual prediction. One advantage of SHAP for 
global interpretation, over the Gini and permutation feature importance 
assessment methods, is that SHAP not only informs about the impor-
tance of features but also their relationship with the output. Addition-
ally, SHAP’s predictions are fairly distributed among feature values. 
These factors are critical in guaranteeing trust in the method (Molnar, 
2019). 

In this work Gini, permutation, and SHAP feature importance 
assessment were used for global interpretation of the developed models. 
SHAP was also used to give examples on how individual predictions can 
be explained locally. The workflow outlined here is summarised by the 
right-hand side of Fig. 1, which illustrates the workflow of the inter-
pretability analysis and how it interacts with the model development 
stage described in Sections 2.1 to 2.3. 

For interpretation, the results of the analysis were illustrated in 
graphical form. Global methods were illustrated using bar charts by 
showing the importance scores across all ten model outputs/targets in 
the same figure which maximises the information contained per figure. 
Results were then systematically compared between model types and 
feature importance assessment methods. As previously mentioned, 
SHAP also lends itself to the explanation of individual predictions and 
can globally illustrate the relationship between features and model 
outputs. Hence additional figures were created to illustrate these 
aspects. 

Fig. 1. Flowchart of the methodology and workflow of this study, illustrating the two stages model development and interpretability analysis.  
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3. Results and discussion 

3.1. Selection of optimal preprocessing steps 

As data preparation and preprocessing is a key stage in ML model 
development, various methods were compared as outlined in Section 
2.2. The predictor and target preprocessing methods ALL + DROP and 
TAR-RF performed best for all but one model type. Predictor methods 
CONT + DROP and CONT + MEAN which did not include categorical 
variables performed significantly worse than their counterparts which 
included categorical variables. This suggests that the use of meaningful 
categorical variables can noticeably increase the models’ prediction 
accuracy. Mean imputation has frequently been employed due to its 
simplicity (Hastie et al., 2009). However, comparing mean imputation 
(CONT + MEAN and ALL + MEAN) to simply dropping the row if 
missing data was present (CONT + DROP and ALL + DROP) showed that 
dropping the row generally led to a higher R2. These findings indicate 
that other methods, such as dropping rows with missing data or impu-
tation by a submodel, also need to be considered to ensure optimal 
model performance. 

Target preprocessing method TAR-RF outperformed its alternatives 
by a considerable margin, which means the added complexity from 
developing the RF submodels was well justified. By leaving the test data 
untouched, an unbiased evaluation of the model was possible whilst 
maximising the models’ performance by avoiding missing samples in the 
training set. The performance of all methods is shown in the supple-
mentary materials. 

3.2. Model optimisation and comparison 

Initially, the performance between the out of the box models with 
optimal preprocessing choices and optimised models was compared by 

considering the average 5-fold cross-validated R2 scores shown in 
Table 1. It was found that RF and XGBoost did not benefit from hyper-
parameter optimisation, as the out of the box models were found to 
perform best. The performance of all other model types improved after 
hyperparameter optimisation as compared to the out of the box models. 
For instance, the R2 of GBR slightly increased from 0.87 to 0.90, whereas 
hyperparameter optimisation had a more substantial effect on the ANN 
model which showed an increase from 0.63 to 0.81. Generally, optimi-
sation was shown to have a relatively minor effect on ensemble and tree- 
based methods. However, wherever computational demands during 
model training are of no concern, hyperparameter optimisation can be 
an effective mean to obtain the best possible model structure. 

In addition to the average 5-fold cross-validated R2 scores, Table 1 
also shows the prediction performance of individual submodels pre-
dicting the ten outputs modelled as part of this work. Similarly, the 
prediction performance in terms of the 5-fold cross-validated RMSE 
values is shown in brackets. All optimisation results shown in Table 1 
used the best preprocessing steps determined during the previous model 
development stage, as described in Section 3.1. From these results it 
becomes clear that, overall, GBR was the best performing model type. It 
achieved the highest performance for seven and eight out of ten outputs 
in terms of R2 and RMSE respectively. RF, XGBoost, AdaBoost, ANN, and 
the SL model were found to perform at an acceptable level with mean R2 

scores > 0.80. Particularly, the SL model had a similar performance to 
GBR. Whilst ANN models performed exceptionally well in previous 
works (Ascher et al., 2022b), they were outperformed here. As ANNs 
require large amounts of data, a potential reason for this is the relatively 
limited amount of data available to train the model, despite the data set 
used in this study being still larger than the ones used in previous works 
(Baruah et al., 2017; Kardani et al., 2021; Zhao et al., 2021). 

The SVM model performed well for a few outputs, such as the syngas 
yield and LHV, but very poorly for other outputs such as the char yield 

Table 1 
5-fold cross-validated R2 scores and RMSE (shown in brackets) for all model outputs and model types. The highest scoring model types are shown in bold for each 
output.   

RF GBR XGBoost AdaBoost SVM ANN Super Learner 

N2  

[vol.% db] 
0.96 (4.47) 0.97 (4.08) 0.97 (4.19) 0.96 (4.19) 0.24 (19.7) 0.96  

(4.33) 

0.97  

(4.09) 
H2  

[vol.% db] 
0.86 (5.13) 0.89 (2.53) 0.91 (2.89) 0.88 (2.68) 0.58 (5.52) 0.83  

(3.36) 

0.88  

(2.61) 
CO  

[vol.% db] 
0.94 (3.90) 0.94 (2.36) 0.82 (2.35) 0.95 (2.14) 0.53 (6.47) 0.93  

(2.53) 

0.94  

(2.10) 
CO2  

[vol.% db] 
0.94 (2.82) 0.94 (1.57) 0.79 (1.61) 0.94 (1.57) 0.74 (3.41) 0.88  

(2.25) 

0.93  

(1.59) 
CH4 [vol.% db] 0.83 (1.58) 0.90 (0.85) 0.77 (1.06) 0.88 (0.93) 0.76 (1.30) 0.84  

(1.02) 

0.89  

(0.87) 
C2Hn  

[vol.% db] 
0.77 (0.82) 0.87 (0.40) 0.64 (0.51) 0.78 (0.50) 0.69 (0.61) 0.64  

(0.61) 

0.85  

(0.43) 
LHV  

[MJ/Nm3] 
0.93 (0.79) 0.94 (0.60) 0.94 (0.63) 0.92 (0.69) 0.90 (0.78) 0.88  

(0.78) 

0.94  

(0.60) 
Tar  

[g/Nm3] 
0.59 (15.94) 0.76 (10.29) 0.85 (13.73) 0.41 (14.49) 0.09 (20.47) 0.62  

(12.2) 

0.75  

(9.98) 
Gas yield  

[Nm3/kg wb] 
0.93 (0.26) 0.96 (0.20) 0.91 (0.25) 0.92 (0.29) 0.90 (0.31) 0.72  

(0.45) 

0.95  

(0.22) 
Char yield  

[g/kg wb] 
0.83 (25.11) 0.83 (21.69) 0.76 (21.27) 0.82 (21.92) 0.14 (49.57) 0.76  

(26.47) 

0.82  

(24.84) 
Mean 0.86 (6.08) 0.90 (4.46) 0.84 (4.85) 0.85 (4.94) 0.56 (10.81) 0.81  

(5.40) 

0.89  

(4.73)  
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and syngas’ N2 content. Interestingly, the syngas’ N2 content was an 
output which was learned extremely well by all other model types with 
R2 scores > 0.96. In contrast, SVM only achieved a R2 of 0.24. This 
suggests that, without extensive further optimisation, SVM is not a 
suitable method for modelling some of the studied gasification outputs 
based on the data set provided in this study. When considering the 
strong out of the box performance of tree-based model such as GBR and 
RF, it becomes hard to justify the optimisation of SVM models which 
requires the careful selection of an appropriate kernel function and other 
hyperparameters. 

Fig. 2 shows scatter plots of known target values against model 
predictions for all optimised GBR submodels. Data points in yellow 
represent the training set, whereas the test set is shown in blue. The 
outputs which were modelled well with a high R2 and low RMSE, as 
shown in Table 1, showed little dispersion. Syngas yield and LHV are 
two examples of outputs with a high prediction accuracy. Other outputs, 
such as the tar content in the produced syngas, showed a much larger 
dispersion. When considering test data across all outputs, most pre-
dictions have an error of <10 % and very few predictions have an error 
>20 %, with most outliers being constrained to the syngas tar concen-
tration and char yield submodels. This has been illustrated graphically in 
the supplementary materials. 

A like-for-like comparison of this work to existing studies is not al-
ways possible, due to vastly different aims and assumptions. However, in 
a previous work by the authors an ANN model framework was devel-
oped on the same data set (Ascher et al., 2022a). By directly comparing 
the averaged R2 score (averaged across all model outputs) of this pre-
vious work, an improvement from 0.86 to 0.90 was achieved by the best 
performing GBR model of this work. An ANN model suitable for a range 
of different fluidised bed gasifier bed materials was developed by 
Serrano et al. (Serrano et al., 2020). Their model achieved R2 scores 
ranging from 0.57 to 0.98 for a range of different outputs (e.g. gas 
composition in terms of CO2, CO, CH4, H2 and gas yield). When looking 
at the mean absolute percentage error (MAPE) achieved in their work, 
there were significant errors ranging from 9.18 % to 38.91 %. The best 
performing model developed in our work compares favourably with 
most MAPEs being around or lower than 10 %. Furthermore, our model 
is also suitable for a wider range of gasifiers, such as fixed-bed gasifiers. 

Whilst GBR was found to be the best performing model type in this 
work, a range of model types were found to be suitable in literature and 
no single model type appears to be dominant (Ascher et al., 2022b). 
Elmaz et al. trained polynomial regression, SVM, ANN, and decision tree 
models on data from an in-house gasifier fed with pine cones and wood 
pellets (Elmaz et al., 2020). They found decision trees and ANN to be the 
preferable model types. Despite their data set being more homogenous 
than the one used in this study, their decision tree models achieved a 
lower test performance than the ones studied in our work with R2 =

0.81–0.94. 
Sun et al. took an alternative approach for model optimisation than 

the one proposed in our work (Sun et al., 2022). By employing particle 
swarm optimisation, they developed an ANN model for the prediction of 
syngas yield, gas species concentrations, and char yield with an excellent 
test performance of R2 = 0.97. However, the authors highlighted that 
the model had only been trained on data from pine wood gasification 
and increasing the size of the data set by incorporating a wider range of 
feedstocks and gasification conditions was deemed important to 
improve the model’s applicability. 

The model developed in this work has the potential to simplify 
general gasification process design. By using a varied data set for model 
training a large range of different gasification systems and feedstocks 
could be optimised and compared. Furthermore, the model’s predictions 
could be used in a more holistic system modelling context. For instance, 
predictions could be directly used for LCSA or techno-economic analysis 
(TEA). 

3.3. Interpretability analysis 

Initially, the global interpretability of models was studied. The GBR 
model was taken as the baseline model as it was found to be the best 
performing model. It was then compared to the three next best per-
forming model types, namely AdaBoost, RF, and XGBoost. It must be 
noted that at the time of writing the SHAP method was not supported for 
AdaBoost, hence only Gini and permutation importance were computed 
for this model type. 

Fig. 3(a) and (b) shows the Gini feature importance of the GBR and 
RF models across all ten outputs. The x-axis shows the importance 
scores, whereas the y-axis shows the predictors used to train the models. 
Submodels predicting the different outputs can be differentiated by their 
colours. RF is shown for comparison purposes, because as a bagging 
model it operates differently from the GBR model. However, other 
model types are also discussed. Additional figures for other model types 
and feature importance assessment methods are shown in the supple-
mentary materials folder of the GitHub repository shared in the Data 
Availability section. The feedstock’s particle size and choice of gasifying 
agent were found to be the key predictors across all four studied model 
types, with the particle size being the top predictor for GBR, RF, and 
AdaBoost. The top ten predictors account for most of the variation in the 
GBR and RF models’ predictions. This is illustrated by a drop of over 50 
% in the combined Gini importance scores from the 10th to 11th most 
important predictor. 

Looking at the ten most influential predictors, it can be seen that they 
are identical for GBR and RF, with predictors such as the temperature, 
ER, and proximate and ultimate composition strongly affecting the 
models’ predictions. Some minor differences for AdaBoost were 
apparent, whereas XGBoost showed some more major deviations. Where 
most submodels generally substantially contributed to a feature’s 
importance for GBR, RF, and AdaBoost, this is not the case for XGBoost. 
For this model type, a feature’s combined importance was often heavily 
dominated by a few submodels. For instance, the score of XGBoost’s top 
predictor gasifying agent oxygen was largely made up by the three 
submodels predicting the syngas yield, syngas CO2 content, and syngas 
LHV. 

Comparing Gini to permutation importance for RF showed few dif-
ferences, with the top three predictors remaining the same. Similarly, 
the top predictors for GBR remained nearly unchanged when comparing 
Gini to permutation importance, with only catalyst usage displacing 
oxygen as a gasifying agent in the top ten as shown by Fig. 3(c). The use 
of a catalyst was found to impact the prediction of the syngas’ tar con-
tent most strongly. This is in good agreement with literature, as many 
studies used a catalyst with the goal of reducing the tar content in the 
produced syngas (De Andrés et al., 2011; Luo et al., 2012). 

Whilst the char yield submodel only contributed marginally to the 
Gini importance findings, it dominated other submodels based on per-
mutation importance assessment. For permutation importance, the 
gasification temperature was found to be the most important predictor 
for GBR, with more than two thirds of the combined score coming from 
the char yield prediction submodel. 

In general, when looking at the combined feature importance of all 
submodels, all studied model types were in good agreement for 
permutation-based feature importance. However, the overall impor-
tance of individual predictors could result from very different sub-
models. For instance, the particle size, which was found to be the most 
importance predictor for three out of four model types, had significant 
contributions to its importance from most outputs for GBR and XGBoost. 
In contrast, for AdaBoost its importance was heavily dominated by the 
outputs CO and C2Hn. When looking at RF, N2, C2Hn, and char yield were 
the outputs which mostly contributed to the particle size’s importance as 
a predictor. 

The feature importance results yielded by the SHAP method are 
shown by Fig. 3(d) for GBR. Top predictors were found to be similar to 
Gini and permutation feature importance. Where permutation 
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Fig. 2. Scatter plots of target values vs predictions for all 10 optimised GBR submodels. The figures show both the training (yellow) and test (blue) performance of 
each model. The black dashed line indicates perfect predictions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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importance was heavily dominated by individual outputs, SHAP-based 
feature importance scores showed more balanced contributions. A 
finding worth highlighting is that whilst the N2 content submodel 
contributed to a similar level as other submodels to the importance of air 
as a gasifying agent for Gini and permutation feature importance, this 
contribution was much larger for SHAP feature importance. RF and 
XGBoost already showed a much larger contribution from this submodel 
to the importance of air as a gasifying agent for Gini and permutation 
feature importance. For SHAP feature importance, this dominance was 
more obvious and more than half of the importance score of air as a 
gasifying agent resulted from the N2 content submodel. These findings 
are in good agreement with literature, where the use of air as an agent 
has been linked to a diluted syngas with a high N2 concentration (Lui 
et al., 2020; Sikarwar et al., 2017). 

Even though all three methods generally agreed well with each 
other, there was some variation in the importance of predictor variables. 
The most striking difference was that the combined permutation-based 

feature importance scores could be heavily dominated by a single 
output, whilst this was less obvious for the Gini and SHAP-based scores. 
Gini-based feature importance is generally prone to favour high cardi-
nality features, such as numerical inputs (Breiman, 2001). However, in 
this work, it was found that some categorical variables (e.g. type of 
gasifying agent used) were also important. 

Whilst Fig. 3 shows the absolute importance of features across all 
outputs, the nature of their relationships with the outputs remains un-
explained. The SHAP method can be used to not only study the impor-
tance of features but also their relationships with individual output 
parameters. Fig. 4(a) shows the absolute importance of features in a 
similar fashion to Fig. 3, but this time for a single output. In this instance, 
the syngas yield is shown. Fig. 4(b) not only illustrates the feature 
importance but also feature effects. Red represents a high feature value, 
whereas blue represents a low feature value. The further away a point is 
from the baseline SHAP value of zero, the stronger it effects the output. 
This way a features relationship with the SHAP value (and in turn the 

Fig. 3. Gini feature importance of (a) gradient boosting models and (b) random forest models, as well as (c) permutation and (d) SHAP feature importance analysis of 
gradient boosting models. Importance scores are shown on the x-axis. The y-axis shows the predictors used to train models for the 10 considered outputs. A pre-
dictor’s total score is made up of the importances from the different submodels (i.e. model outputs) which are illustrated by the different colours shown in the legend. 
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predicted output) can be better understood. 
The feedstock’s carbon content most strongly affected the GBR 

model’s prediction for the syngas yield. From Fig. 5(b) it becomes clear 
that a low feedstock carbon content led to a minor decrease in syngas 
yield. A high carbon content led to a large increase in syngas yield. Most 
data points show a low feature value and are bulked in the negative or 
near zero SHAP value region. The data points with a high feature value 
(SHAP value close to 1) correspond to plastic waste and other feedstocks 
with a very high carbon content. The temperature and ER show a 
smoother distribution of data points. Again, low temperatures and ERs 
decreased the syngas yield, whereas high feature values increased the 
syngas yield. Feature values near the middle of the range (shown in 
purple) were shown to have little effect on the model’s predictions. For 
the binary variable catalyst usage, it was shown that the use of a catalyst 
generally had a positive effect on the syngas yield. Figures for the 
remaining nine model outputs can be found in the supplementary ma-
terials folder of the shared GitHub repository. 

Fig. 5 illustrates how the SHAP method can be used to explain in-
dividual model predictions. Two example model outputs and feedstocks 
are shown in the figure. The figures represent an intuitive way to guide 
the decisions of stakeholders and investors and improve their under-
standing of how the developed model makes a particular prediction. 
Fig. 5(a) and (b) show the syngas yield from barley straw gasification for 
a base case at 800 ◦C (a) and a high temperature case at 1,000 ◦C (b). The 
gasification process underwent continuous operation without a catalyst 
in a pilot-scale fluidised bed gasifier using silica as a bed material and air 
as an agent. A temperature of 800 ◦C, particle size of 4 mm, and an ER of 
0.3 were selected for the base case (Fig. 5(a)), as these values are close to 
the mean of all samples for these variables. The force plots show how 
individual feature values perturb the model’s prediction from a baseline 
value. For the base case, as shown by Fig. 5(a), most feature values 

lowered the predicted syngas yield (shown in blue). Most notably, the 
barley straw’s low carbon and relatively high moisture contents led to a 
decrease in the model’s predicted value. When raising the temperature 
to 1000 ◦C as shown by Fig. 5(b), a significant increase in the predicted 
syngas yield can be noticed (shown in red). The model’s predicted 
syngas yield rose from 1.63 to 2.21 Nm3/kg wb. The high temperature 
value solely balanced the effects of all feature values lowering the pre-
dicted yield. 

For Fig. 5(c), the gasifier setup and conditions remained unchanged 
from the ones previously described (i.e. shown in Fig. 5(a) and (b)), 
however the feedstock has been changed to MSW. Two variables have 
been altered for Fig. 5(d), namely steam was used as a gasifying agent 
instead of air and the feedstock’s particle size was reduced from 4 mm to 
1 mm. The syngas LHV has been selected as the output of interest in this 
example. MSW’s high feedstock carbon content led to an increase in the 
model’s prediction. In contrast, a high feedstock ash content of 16.82 % 
db and a particle size of 4 mm led to a reduction in the predicted LHV. 
Fig. 5(d) reveals that a smaller particle size can increase the predicted 
LHV. Similarly, using steam as a gasifying agent was found to signifi-
cantly increase the model’s predicted LHV. Interestingly, this was 
illustrated by the one-hot encoded variable representing the gasifying 
agent air equalling zero. This could be interpreted as the model under-
standing that air as a gasifying agent reduced the LHV. The opposite 
applied to the variable gasifying agent oxygen equalling zero – here the 
model learned that the gasifying agent not being oxygen adversely 
affected the syngas’ LHV. 

In summary, Fig. 5 shows how the SHAP method could be used to 
communicate a ML model’s prediction process to a non-expert audience. 
This way the ML practitioner can offer a simple explanation of how 
certain system set-ups effect the outputs which stakeholder or policy-
makers may be concerned with. Different system or feedstock choices 

Fig. 4. Feature importance analysis by SHAP method for GBR model predicting the syngas yield. Absolute importance scores are shown by (a), whereas (b) shows the 
influence of individual predictions on the overall importance scores. Red represents a high feature value (in this case syngas yield), whereas blue represents a low 
feature value. The further away a point is from the baseline SHAP value of zero, the stronger it effects the output. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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may be studied by creating similar figures for an array of operating 
conditions and feedstock combinations. 

Studies assessing the interpretability of bioenergy ML models are still 
scarce. Researchers have often looked towards PDPs and Pearson’s or 
Spearman’s correlation coefficients (Li et al., 2021a; Yuan et al., 2021; 
Zhao et al., 2021; Zhu et al., 2019). PDP are an effective and straight-
forward mean to illustrate the relationship between a predictor variable 
and model output. However, as each input and output combination re-
quires an individual plot this method can become infeasible, especially 
for multiple-input multiple-output (MIMO) models like the one pre-
sented in this work. For this reason, identifying the importance of fea-
tures through global methods, to then study the relationship in more 
detail using PDP, represents a good alternative. Furthermore, con-
founding factors cannot be captured by PDP. 

Another popular interpretability method has been permutation 
feature importance (Li et al., 2021c; Yuan et al., 2021; Zhao et al., 2021). 
A key benefit of permutation importance is its easy implementation and 
the fact that it can be implemented for any model type. However, by 
randomly shuffling a feature, unrealistic data instances can be created 
(e.g. feedstock ultimate composition no longer summing to 100 %) 
which may limit interpretability. 

Zhao et al. studied the supercritical water gasification of biomass for 
hydrogen production (Zhao et al., 2021). By using feature permutation 
on a RF model, the authors identified the biomass concentration and 

temperature to be the two most influential factors effecting hydrogen 
production. Our work found gasifier temperature to be of medium 
importance with features such as the gasifying agent and particle size 
being more important in predicting hydrogen production. However, 
these factors were not considered in Zhao et al.’s work. 

Li et al. developed a GBR model to predict the syngas yield from the 
hydrothermal gasification of wet waste (Li et al., 2021b). By assessing 
the feature importance, the authors showed that the model heavily 
relied on the gasifier temperature to make its predictions. Other factors 
such as the feedstock composition had a lesser effect. In comparison, in 
our work the gasifier temperature was found to be important but not 
multiple times more important than other factors as in Li et al.’s study. 
However, a direct comparison is difficult as the studied gasification 
process is significantly different from the ones studied in our work. 

A challenge for all types of feature importance assessment are 
correlated features. As they contain largely the same information, their 
importance can be split across two or more features, making the corre-
lated features appear less important than they are. This highlights the 
importance of removing strongly correlated features to ensure that 
important features do not get lost. Hence, a rigorous predictor selection 
process is required when feature importance assessment is one of the 
aims of model development. In this work, this issue has been addressed 
by computing Pearson’s and Spearman’s correlation coefficients to 
subsequently remove strongly correlated features. Finally, the difference 

Fig. 5. SHAP explanations of some selected individual predictions. The syngas yield from barley straw gasification is shown for a base case at 800 ◦C (a) and a high 
temperature case at 1,000 ◦C (b). The resulting syngas LHV from MSW gasification is shown for a base case using air as a gasifying agent (c) and an alternative case 
using steam as a gasifying agent (d). The force plots start at the base value (the average of all predictions). Each predictor (and its corresponding Shapley value) is 
represented by an arrow which either increases (shown in red) or decreases (shown in blue) the model’s predicted value with respect to the base value. A predictor’s 
importance is shown by the size of its arrow, where a larger arrow represents a more important predictor. Ultimately, the model’s predicted value is illustrated by the 
point where the red and blue arrows meet. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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between causation and correlation must be highlighted. Feature 
importance assessment can only bring to light which features the model 
uses to make its predictions. Although the behaviour of the model does 
not necessarily correspond to a real-world process, it may provide one 
with a good starting point on which variables may significantly affect 
some of the outputs one is interested in. Additionally, it allows sensi-
bility checks to confirm whether inputs deemed important by theory are 
also deemed important by the model. 

By combining both global and local methods, a more complete pic-
ture of a model’s workings can be established. Global models powerfully 
describe the average behaviour of a ML Model and highlight trends in 
the data. Local explanations on the other hand are useful for under-
standing which factors might influence a given gasification system. This 
provides researchers with an idea on which parameters could be 
changed to optimise a given output. For instance, the developed method 
could be used to screen and test for promising process conditions before 
moving on to more expensive and time-consuming physical experi-
ments. Furthermore, SHAP makes it easy to communicate the entire 
thought process to stakeholders. However, care needs to be taken when 
interpreting SHAP results as interpretability methods can be fooled to 
hide biases (Slack et al., 2020). As such, it is the researcher’s re-
sponsibility to avoid creating misleading explanations. 

4. Conclusions 

Gradient boosting regression (GBR) has been found to outperform 
other model types with a coefficient of determination (R2) of 0.90 when 
averaged across all ten model outputs. 

Global and local interpretability methods were combined to extract 
new information from the developed models. This information can be 
used to guide the decisions of investors and policy makers by increasing 
their confidence in the models’ results. This reduction in uncertainty can 
in turn promote the uptake of a new technology. The feedstock’s particle 
size and the gasifying agent were amongst the top predictor variables 
influencing the models. 
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