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Abstract
It hasoftenbeen remarked that single-photon interference experiments, however complicated, seemto
behave verymuch in the samewayas thoseperformed in theclassical regime,using thefield generatedbya
laser.Thisobservationhas the statusofbeing ‘well-known to thosewhoknow it’, butperhapsmysterious to
others.Wediscuss the reasonsunderlying the similarity andalso someof the limitationsof this simple idea.

1. Introduction

Modernquantumoptics andquantum informationhave encouraged thedevelopment of experiments using single
photons or, to bemoreprecise, in the single-photon regime.Themost popularwayof generating these is to employ
spontaneousparametric downconversion,whichprepares entangledphotonpairs anduses oneof these to herald the
presence of the other [1–3]. This heraldedphoton is then available for thedesired experimentor application.Aspart
of the operation a laserfield is oftenused to assistwith alignment andotherpractical considerations before employing
the single photon source,with themeasured intensity at various output ports beingproportional to the anticipated
detectionprobabilities in the single-photon regime. It is noteworthy,moreover, that a number of important
experiments reporting quantumbehaviourhaveused a laser source, sometimes attenuated, rather than single
photons, in the expectation that a single photonwouldbehave in the samemanner.A fewexamplesmaybe inorder:
quantumkeydistributionwithweak laser pulses [4, 5], optimalmeasurements for quantumstate discrimination [6],
quantumwalks [7] anddemonstrations of the benefits of indefinite causal order [8].

We seek to explain the reasonwhy classical (laser-based) and single-photon interference experiments are so
similar. Our analysis is based on the behaviour of coherent states of light, which provide the closest
approximation, within quantum theory to a classical radiation field [9–11]. The properties of coherent states
and, in particular, theway inwhich fields prepared in coherent states interfere provide simple explanations for
the similarity between classical and single-photon interference experiments.

It is important to realise that there are distinct differences between coherent states, even thosewith a very
small amplitude, and genuine single photons.We concludewith a discussion of two of these differences: photon
anti-bunching [12, 13] and the two-photonHong-Ou-Mandel effect [3, 14].

2. Classical and quantum theories of interference

To address our questionwe need tomake precise aworking definition of an interferometer.We define an
interferometer as a device comprising only passive linear optical elements, principally beam splitters,mirrors
andwave-plates, with input ports intowhich light can be directed and output ports which record either
photocounts in the single photon regime or photocurrents proportional to the laser intensity. It is certainly
possible to construct interferometrers that includemore complicated elements, such as nonlinearmedia, but
including these tends to invalidate the link between laser-based experiments and those utilising single photons.
Examples of suitable devices include the familiarMach–Zehnder andMichelson interferometers, but also the
famous Young two-slit experiment. The components in these devices coherently superpose light from
interferingmodes, redirect light and rotate polarisations. They do not add photons to the field although lossy
elementsmay remove them.
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Akey element inmanypractical interferometers is thebeamsplitter, depicted infigure 1. In the classical theory
this combines twomodeswith complex amplitudes a1 anda2 toproduce twooutputmodeswith amplitudesb1 and
b2. For simplicitywe consider a symmetric beamsplitter1 forwhich the two sets of amplitudes are relatedby [12]

= + = + ( )b ta ra b ta ra . 11 1 2 2 2 1

The intensity is proportional to themodulus squared of these amplitudes and it follows that the total output
intensity is proportional to
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As it stands this expression depends on the relative phase between the amplitudes a1 and a2, but the values of t
and r, being fixed properties of the beam splitter, cannot depend on this relative phase sowe can infer that
t*r+ r*t= 0, so that t*r is imaginary. Conservation of energy then requires that |t|2+ |r|2= 1. In the quantum
theorywe can replace the field amplitudes by photon annihilation operators so that our classical relationship in
equation (1) is replaced by the operator form

= + = +ˆ ˆ ˆ ˆ ˆ ˆ ( )b ta ra b ta ra . 31 1 2 2 2 1

The same relationships between t and r as found in the classical theory can nowbe derived from the

commutation relations d= =[ ˆ ˆ ] [ ˆ ˆ ]
† †b b a a, ,i j ij i j .We see that each of the two output-mode operators, b̂1 and b̂2,

acts on both of the inputmodes. In quantum theory, it is the superposition of these operators that corresponds
to the superposition offield amplitudes arising in the classical theory.

As an examplewe consider a simpleMach–Zehnder interferometer as depicted infigure 2. It is
straightforward to determine the forms of the output amplitudes, c1 and c2 or, in quantum theory, the output
annihilation operators in terms of the input ones.
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If we input light only inmode a1, then the intensities at the outputs will be proportional to the quantities
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Wecan think of the quantity + j∣ ∣t t e r r e eikL i ikL
2 1 2 1

21 2 as the probability that any one photon in the input emerges
inmode c1 and +j∣ ∣t r e e r t ei ikL ikL

2 1 2 1
22 1 as the probability that it emerges inmode c2.We can check this

Figure 1. Schematic representation of a beam splitter. In the classical theory, inputmodes with complex amplitudes a1 and a2 are
superposed to form the output amplitudes b1 and b2. In the quantum theory these complex amplitudes are replaced by photon
annihilation operators.

1
Amore general relation of the form

= + = +b t a r a b t a r a ,1 11 1 12 2 2 22 2 21 1

is also possible, with |t11|
2 + |r12|

2 = 1 = |t22|
2 + |r21|

2 and + =* *t r r t 022 12 21 11 . Adopting thismore general formonly complicates, but does
not significantlymodify our analysis.
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interpretation by turning to the quantumdescription, wherewefind that the annihilation operators for the
outputmodes are related to those of the input by

= + + +
= + + +
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If we have just a single photon prepared inmode a1 and none inmode a2 then á ñ =ˆ ˆ†a a 11 1 and á ñ =ˆ ˆ†a a 02 2 . It
follows that the probabilities that the photon leaves the interferometer inmode c1 or c2 are
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respectively. These are precisely the quantities inferred from the classical description.
In the following sectionwe shall address the question of why the single-photon probabilities arise so simply

in the classical theory and, in doing so, establish that the equivalence is general andmay be applied to any
interferometric device. Before turning to this, it is instructive to recall what three others (amongmany) have
written on this point.We start with the famous quote fromDirac [15]:

‘Suppose we have a beam of light consisting of a large number of photons split up into two components of equal
intensity. On the assumption that the intensity of a beam is connectedwith the probable number of photons in it, we
should have half the total number of photons going into each component. If the two components are nowmade to
interfere, we should require a photon in one component to be able to interfere with one in the other. Sometimes these
two photons would have to annihilate one another and other times theywould have to produce four photons. This
would contradict the conservation of energy. The new theory, which connects the wave functionwith probabilities for
one photon, gets over the difficulty bymaking each photon go partly into each of the two components. Each photon
then interferes only with itself. Interference between two different photons never occurs.’

In thefirst edition of his book, TheQuantumTheory of Light, Loudonwrites of Young’s interference
experiment [16]:

‘Photons do not interact with each other, and any interference effects must be sought in the process by which each
single photon passes from the source to the second screen. Quantum-mechanically, the interference occurs between the
probability amplitudes for passage from source to screen via the two different paths corresponding to the two pinholes.
The intensity on the second screen is proportional to the squaremodulus of the sum of the two probability amplitudes.
The structure of the quantum-mechanical calculation is the same as that of the classical calculation, which is also
based of the sum of two amplitudes, and the two calculations give the same intensity distribution.’

Finally, in Jex’s translation of Paul’s book, Introduction toQuantumOptics, wefind [17]:
‘Let us note that the quantized theory of the electromagnetic field encompasses the particle equally well as the wave

aspect. In particular, beamsplitting can be described in such away that (in complete correspondence to classical
theory) the electric field strength—now described by an operator—of the incident wave is decomposed into parts
corresponding to the reflectedwave and the transmitted wave.We find then the surprising (at least at first glance)
result that the classical interference pattern is quantummechanically exactly reproducible independent of the
(perhaps even non-classical) state of the incident light.’

Figure 2. Schematic representation of aMach–Zehnder interferometer. The input beam splitter is as infigure 1with transmission and
reflection coefficients t1 and r1. The lengths of the two arms are L1 and L2 so that propagation along the arms produces the phase shifts
kL1 and kL2. For completeness, we include, also an additional element in the upper armproducing an additional phase shiftj.
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The commonpoint emphasised by each of these accounts is that in interference, as we have discussed it,
single photonswithin a beamof light behave, individually, in the samemanner aswould afield in the classical
theory.

3. Interfering coherent states

The key to deriving our desired result, that single-photon interference experiments behave precisely as do
classical ones, lies in the properties of the coherent states. For any singlemode, with annihilation and creation
operators, â and ˆ†a , the coherent state is a displaced vacuumobtained bymeans of a unitary transformation
[3, 9–12, 18]:

a a a añ = ñ = - ñ*∣ ˆ ( )∣ ( ˆ ˆ)∣ ( )†D a a0 exp 0 . 8

Twoproperties of the coherent states will be useful to us. Thefirst of these is that the coherent states are right-
eigenstates of the annihilation operatorwith eigenvalueα:

a a añ = ñˆ∣ ∣ ( )a . 9

The second is that the coherent state is a superposition of photon number states in the form
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From the eigenvalue property we can determine how coherent states combinewhen superposed on a beam
splitter. In equation (3)wehave, essentially, aHeisenberg picture relation between the output and inputmodes
for a simple beam splitter. If we prepare each inputmode in a coherent state, |α1〉 and |α2〉 respectively, then it
follows that the state is a right-eigenstate of the output annihilation operators b̂1 and b̂2:

a a a a a a

a a a a a a
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It follows that, in the Schrödinger picture, the states of the outputmodes are also coherent states, |β1〉 and |β2〉
respectively, whereβ1= tα1+ rβ2 andβ2= tα2+ rβ1. Hence the complex amplitudes of our coherent states
combine in precisely the samemanner as do the classical amplitudes. This conclusion applies to each of our
passive linear optical elements and, indeed, to any interferometer, however complicated. This property was first
obtained in the context of coupled oscillators byGlauber [19]. Itmay be of interest to note that this idea can
readily be extended to any state of light bywriting such states as a superposition of coherent states [20].

Another way to see the relationship between the coherent state amplitudes and the amplitudes in the classical
theory is to adopt the vacuumpicture [21–24]. To see how this works consider a singlemode of the field inwhich
the electricfield operator has the form

= +w w- * *ˆ ( ) ˆ ( ) ˆ ( )†u e a u e aE E r E r , 12i t i t
0 0

where u(r) is the spatialmode function. Let thismode be prepared in the coherent state |α〉.We can transform
into the vacuumpicture by acting on the state with the unitary operator a a= -ˆ ( ) ˆ ( )†

D D , which leaves thefield
mode in its vacuum state, |0〉. To keep the physical situation unchangedwe need, also, to transform the
operators a aˆ ˆ ( ) ˆ ˆ ( )†

O D OD . For our electric field operator, this transformation produces the operator

a a a a= + +w w- * * *ˆ ( ) ˆ ˆ ( ) ˆ ( ) ( ) ( )†D D u e u eE E E r E r , 13i t i t
0 0

which is a superposition of the electric field operator and a classicalfieldwith an amplitude proportional toα.
We have seen how a beam splitter affects both a classical field, by superposing c-numberfield amplitudes

from the inputs, and also how it superposes quantum fields by superposing annihilations operators from the
inputmodes. In the vacuumpicture the c-number amplitudes are similarly superposed as are the annihilation
(and creation) operators in the electric field operator. The passive optical elements, such as beam splitters, leave
the vacuumfield unchanged; zero photons in leads to zero photons out, and the c-number amplitudes behave as
do the amplitudes in the classical theory. It follows that a coherent state input into our interferometer behaves in
precisely the samemanner as the field amplitude in the classical theory.

Thefinal step is to note that in the number-state expansion of the coherent state, the single-photon
probability amplitude is proportional toα, with the amplitude for higher photon numbers varying asα n. It
follows that the single-photon probability amplitude evolves on passage through an interferometer in the same
manner as the amplitudeα and, therefore, as does the field in the classical description. This completes our proof
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that in an interferometer with single photon input, the probability amplitude associatedwith any given path
through the device behaves precisely as does the amplitude of a classical field.

The simplestway to state the equivalence is that the coherent amplitude for a coherent state,α, behaves in the
sameway as does a classicalfield amplitude. For a single photon,α is also theprobability amplitude and thedetection
probability is proportional to |α|2, as is the intensity in a classical treatment. This connectionbetween the classical
field amplitude and the single-photonprobability amplitude is, perhaps, the singlemost important element in
establishing the similarity between single-photon and classical interferometry.This viewpointwas emphasisedby
Glauber inhis commentary onDirac’s statement that ‘eachphoton then interferes onlywith itself’.Hewrote [25]:

‘The things that interfere in quantummechanics are not particles. They are probability amplitudes for certain
events. It is the fact that probability amplitudes add up like complex numbers that is responsible for all quantum
mechanical interferences.’

The similarity between single-photon and classical interference then comes down to the simple fact that
these single-photon quantumamplitudes evolve through an interferometer in precisely the samemanner as do
thefield amplitudes in the classical theory.

4. Limitations

It is important not to push the above idea too far.What we have established is an equivalence between the
probabilities for single detection events at the outputs of a single-photon device with the corresponding
intensitymeasured in the same interferometer with a laser input.We consider two quantum interference
phenomena that are not obtainable classically. These are photon antibunching and two-photon interference
in theHong-Ou-Mandel effect, both of which reveal themselves in the correlations between pairs of
detectors.

4.1. Photon antibunching
If we have just a single photon, then it cannot be detected in two separate detectors. Thismeans that if we place a
detector in each of the outputs fromour beam splitter infigure 1 and send a single photon in one of the input
arms thenwe can only get a detection event in one of the two detectors. The transmission and reflection
coefficients tell us the probability that the photons is transmitted or reflected and then is detected in the
corresponding detector. This feature, as we have seen, is reproduced in the classical theory.

In the classical theory ifα is the inputfield amplitude then the probability that a detection event occurs in
both detectors is proportional to |t|2|r|2|α|4.More precisely, the probability of detecting light in both output
detectors is always at least as big as the product of the probabilities for detections at the individual detectors, and
the anticorrelation between detection events found for a single photon input cannot be reproduced in the
classical theory.

The anticorrelation is crucial to the demonstration of single-photon interference. Note that the first
attempt to produce single-photon interference was probably that by Taylor in 1909, who employed a heavily
attenuated light source and very long exposure times (up to threemonths) in an attempt to determine,
through the loss of visibility, the size of light quanta [26].We now know, as shown above, that this
experiment could only produce interference fringes however faint the input light. To demonstrate true
single-photon interference one needs a truly single-photon source and ameans of verifying this property.
This was achieved nearly eighty years after Taylor’s work [13, 27]. A cascade emission provided a herald that a
second photonwas about to be emitted and this entered either an interferometer or a beam splitter followed
by two detectors. The observation of high visibility fringes in the interferometer but near perfect
anticorrelation in the two detectors following the beam splitter finally confirmed the quantumprediction,
noted by Dirac, that each photon interferes only with itself.

4.2. Two-photon interference
In a now classic experiment, Hong,Ou andMandel showed that if a pair of indistinguishable photons2 are
incident on a beam splitter, with one photon in each arm, then the outputmodes tend to produce an
anticorrelation, with detections in both detectors suppressed. It is straightforward to confirm this using the
relationships. In equation (3), between the input and outputmodes:

2
By indistinguishable we do not necessarilymean identical. Indeed analogous experiments have been performed inwhich the photons have

different frequencies but are, nevertheless, indistinguishable [28–30].
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Finding a photon in each outputmode is suppressed owing to the phase relationship between t and r,3 but the
probability forfinding two photons both in each of the outputmodes are equal. If the beam splitter is balanced

so that = =∣ ∣ ∣ ∣t r2 1

2
2, then the coefficient of the two photon state ñˆ ˆ ∣

† †
b b 01 2 is zero and the two photons are never

found in different detectors [3, 14].
This feature, which like antibunching depends on correlated detections or their absence, cannot be

reproduced in the classical theory or, what comes to the same thing, with coherent states. To see this it suffices to
consider the two-photon component of input coherent states. Let the two inputmodes be prepared in the
coherent states |α1〉 and |α2〉. It follows that the two-photon component of the state is
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The corresponding (unnormalised) state of the outputmodes is
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2
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The onlyway to remove the correlations between the two detectors, that is to set the coefficient of ñ ñˆ ˆ ∣ ∣
† †

b b 0 01 2 1 2

equal to zero, is to set eitherα1t+ α2r orα1r+ α2t to be zero. In this case there is perfect interference between
the coherent state amplitudes and all of the light goes into a just one of the two outputmodes. This is in sharp
contrast to the behaviour of two single photons, noted above, inwhich correlations between the two detectors
are suppressed, but the two photons are equally likely to be found in either outputmode.

5. Conclusion

It has long been recognised that single-photon interference experiments behave, essentially, in the sameway as
those performedwith farmore intense fields such as those generated by a laser. At the heart of this is the familiar
statement byDirac that ‘each photon then interferes onlywith itself’ [15]. Our aim inwriting this paper is to
explore precisely why this is so.We have found that, as is often the case in quantumoptics, the coherent states
provide a natural way of linking single photon (quantum) behaviourwith that of laser-light (classical) behaviour.
The key idea is that the complex amplitude,α, associatedwith a coherent state behaves in precisely the same
manner as does the classical, c-number, amplitude in the quantum theory of interference.Moreover, this same
amplitude is that of the single photon component of the coherent state.

It is important to appreciate that there are limitations to the association between single-photon and classical
interference. In particular we are limited to devices constructed frompassive linear optical elements as these
conserve the photon number. The forms ofmeasurement are also restricted; we can compare single-photon
detection events only, that is the probabilities for detecting the single photon at any given detector, and compare
thesewith the fraction of the intensity recorded in the same output port in the classical treatment. It is by
observing the correlations between pairs of detectors (ormore) that quantum effects become apparent.We
presented two classic examples of this: anticorrelation at a pair of detectors in the single photon regime and two-
photon interference in the classical Hong-Ou-Mandel experiment.

We have concentrated exclusively on passive linear optical elements and by doing so have found a very
general equivalence between the behaviour of single-photon and classical behaviours. This does notmean,
however, that such an equivalencewill never hold in devices that include nonlinear optical elements. One
important example is a recent realisation of quantum teleportation inwhich the state to be teleported is encoded
first on a laserfield and is then teleported to a distant single photon [31]. One nonlinear optical process produces
a pair of entangled photons as is often the starting point in a teleportation experiment [32]. The comparison step
is achieved by a frequency conversion arrangement inwhich one of the entangled photons (the local photon)

3
This follows onwriting

⎡
⎣⎢

⎤
⎦⎥

+ = + = -*
∣ ∣
∣ ∣

[ ( )] [∣ ∣ ∣ ∣ ] [ ( )]t r t
r

t
i t r t r i t1 exp arg exp arg ,2 2 2

2

2
2 2 2 2 2

which is zerowhen the beam splitter is balanced so that |t|2 = |r|2.Wehave derived this result here for a symmetric beam splitter
characterised by a single transmission coefficient and a single transmission coefficient, but similar behaviour is found for beam splitters
without this symmetry property.
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interacts with the laserfield to produce a new photon carrying information fromboth the previously entangled
photon and the laser field. The teleportationmay be viewed as the transfer of the state of one of the laser photons
to the distant and previously entangled photon. Aswith single photon interference, this laser-based teleportation
does not share all of the features of a single-photon teleportation; it cannot teleport entanglement for example. It
does, nevertheless, transfer the state of the laser photons to the distant photon and it does this without using
knowledge of the state of the laser photons and this, of course, is the key feature of quantum teleportation.
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