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A data driven approach 
in less expensive robust 
transmitting coverage and power 
optimization
Amir Parnianifard1*, Shahid Mumtaz2, Sushank Chaudhary1, Muhammad Ali Imran3 & 
Lunchakorn Wuttisittikulkij1*

This paper aims the development of a new reduced-cost algorithm for a multi-objective robust 
transmitter placement under uncertainty. Toward this end, we propose a new hybrid Kriging/Grey Wolf 
Optimizer (GWO) approach combined with robust design optimization to estimate the set of Pareto 
frontier by searching robustness as well as accuracy (lower objective function) in a design space. We 
consider minimization of the energy power consumption for transmitting as well as maximization of 
signal coverage in a multi-objective robust optimization model. The reliability of the model to control 
signal overlap for multiple transmitting antennas is also provided. To smooth computational cost, 
the proposed method instead of evaluating all receiver test points in each optimization iteration 
approximates signal coverages using Kriging interpolation to obtain optimal transmitter positions. 
The results demonstrate the utility and the efficiency of the proposed method in rendering the robust 
optimal design and analyzing the sensitivity of the transmitter placement problem under practically 
less-expensive computational efforts (350% and 320% less than computational time elapsed using 
standalone GWO and NSGAII respectively).

Background of study and motivations
The antenna placement problem or cell planning problem involves locating and configuring infrastructure for 
cellular wireless networks. From candidate site locations, a set needs to be selected against the objectives related 
to issues such as financial cost and service  provision1. Antenna placement in a multi-antenna platform involves 
a manual process that is challenging and time-consuming and may result in a sub-optimal placement, leading 
to inferior performance of communication systems. The search space becomes exponentially large concerning 
the number of antennas to be placed (|search space|= mn , where m is the number of allowable locations for each 
antenna, and n is the number of antennas)2. The antenna placement problem is well-known to be NP-hard3–5. Its 
solution has been attempted using heuristic approaches such as evolutionary algorithms (e.g., Genetic algorithm 
(GA)6), or swarm intelligence algorithms (e.g., Ant Colony Optimization (ACO)7, Particle Swarm Optimization 
(PSO)8). Another new swarm intelligence algorithm is Grey Wolf Optimizer (GWO)9. However, the literature 
lacks studies involving new swarm intelligence optimizers such as GWO in solving the optimal transmitter 
placement problem for wireless coverage systems. Besides, considering uncertainty as a source of variability in 
the computational model can significantly increase the cost of estimating the statistical figures of merit such as 
the mean and the Standard Deviation (Std) of the system response. In such cases, the application of fast surro-
gate models (also called metamodel) such as polynomial regression, Kriging, Artificial Neural Network (ANN), 
or Radial Basis Function (RBF), integrated into robust design optimization flow, allows for maintaining low 
computational  cost10–14.

This paper proposes a new hybrid approach that employs Kriging interpolation surrogates and GWO as 
a new swarm intelligence methodology. The presented technique is combined with a dual-surface design to 
obtain (robust) optimal positions of the base stations in the transmitter placement problem under uncertainty. 
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This integration is developed to achieve the design robustness along with accuracy in an optimal allocation of 
the base station transmitting antennas at a reduced computational cost. Also, we are interested in analyzing the 
sensitivity of the optimization results, in particular, computing the confidence regions caused by the random-
ness without extra function evaluations, which is ensured by employing the samples that are already acquired 
for the initial training of the model.

Related works. Since the definition of the so-called Frequency Assignment Problem (FAP), i.e., a design 
problem focusing solely on the optimal assignment of transmitting frequencies, the optimal design of wireless 
networks has received much  attention15. Over the years, more and more generalized versions of the problem 
have been taken into consideration, eventually leading to the consideration of multi-decision wireless network 
design problem versions that jointly consider the setting of the position, power emission, frequency, and modu-
lation scheme of transmitters,  see16,17. A transmitter placement scheme relies on a certain propagation model 
to assess the quality of a given transmitter allocation. For all cellular network systems, a major design step is 
to select the locations for the base station transmitters and to set up the optimal configurations such that the 
coverage of the desired area with sufficiently strong radio signals is high, and the deployment costs are  low18. 
Interactive or automatic approaches have been used to produce an optimized transmitter placement based on 
certain propagation  models19–22. When choosing the propagation model, one often needs to achieve a balance 
between the computational cost and the prediction  accuracy23. Practical solution methods mainly differ in the 
optimization objectives and the search algorithms. Some metaheuristic methods have been developed for solv-
ing the transmitting placement problem.

In24, the authors adopt the ACO approach to optimize the transmitter locations to maximize the average 
received power. However, the benchmarking demonstrates that almost the same antenna locations are obtained 
with PSO and GA, whereas ACO requires more than ten times objective function evaluations (slow conver-
gence), compared to PSO and GA. Like most evolutionary algorithms, GA has proven very capable of yielding 
high-performance antenna  designs2,25,26. Determination of the base station position for optimum signal coverage 
using a particle swarm optimizer (PSO) has been investigated  in27. The most important advantages of the GWO 
algorithm, compared to other optimization methods like GA, PSO, and ACO include (i) ease of implementation 
using fewer parameters for adjustment, (ii) owing to its simplicity and ease of implementation, GWO has gained 
significant attention and has been applied in solving many practical optimization problems since its  invention28, 
(iii) the GWO algorithm has the convenient implementation and the advantages of not relying on parameter 
 settings29, (iv) GWO has a high search efficiency, and the past seven years since it was first  introduced9, have 
witnessed its rapid application to Wireless Sensor Networks (WSN)  fields29–31, with acceptable capability in 
finding optimal coverage solutions in WSN within reasonable computational time (fast convergence to global 
optima)32. Application of metaheuristics to solve single or multi-criteria wireless network design problems serve 
as outstanding examples of the work being done to apply exact methodologies (i.e., to ensure convergence to an 
optimal solution) and applied to real-world large-scale problems in wireless network design.

Though in engineering design practice, the model has been impacted by the majority of external and environ-
mental uncertainty or noise  components33, causing the true response to be far from optimum points with system 
variation. By limiting the impacts of variation without eradicating the sources because they are either too difficult 
to manage or too expensive to do so, robust design optimization is an engineering way to enhance the perfor-
mance of a  model34. The robustness strategy’s primary goal is to determine the optimal amount of design factor 
setting for achieving a desired system’s response that is insensitive to uncertainty as a source of  variability13,35. 
Some recent development in the field of robust optimization can be found  in36–39. Besides, considerable effort has 
also been put into using stochastic programming and robust optimization approaches to address robust versions 
of wireless network design challenges, as seen  in40–43. However, in the coverage optimization problem, estimating 
the statistical measures due to uncertainty (the main source of antenna parameter variability) can considerably 
increase the computational cost. Consequently, the development of a less expensive approach, which—at the same 
time—offers sufficient reliability in searching for robust optimum is a practical necessity from the perspective 
of real-world communication system design.

To smooth the computational cost due to uncertainty, an accelerated data-driven method namely surrogates 
has been suggested  properly44,45. Kriging surrogate (also known as the Gaussian process) is one the well-known 
surrogate that has been applied for different types of engineering design  problems46–48.  In49, the Kriging sur-
rogate is used for transmitter location optimization in both single-transmitter and three-transmitter cases.  In50, 
a comparative study between Kriging and GA for optimal transmitter location in an indoor environment has 
been performed from the fields scattered in the environment.  In51, the PSO integrated with another surrogate 
named Radial Basis Function (RBF) has been applied to obtain the optimal placement of multiple transmitters 
by maximizing the overall signal coverage in an objective function, and controlling the intersection of transmit-
ters in a constraint. In recent  work52, a surrogate-based evolutionary algorithm by proposing the Mahalanobis 
sampling surrogate model assisting Ant Lion Optimizer (ALO) method has been applied to compute optimal 
coverage in a single objective three-dimensional WSN model. This study aims to employ Kriging assisted GWO 
to interpolate the whole network zone for the robust optimal placement of transmitting antennas due to some 
main reasons namely (i) in the electromagnetic community, Kriging is a recognized exact interpolation that 
has been applied  intensively53–55, (ii) it highly flexible due to its ability to employ various ranges of correlation 
functions e.g., Gaussian, exponential, spherical and  spline56, (iii) the Kriging method is extremely flexible in 
capturing nonlinear behavior (e.g., due to uncertainty) because the correlation functions can be tuned by the 
sample  data11,57, and (iv) Kriging can provide a measure of error or uncertainty of the estimated  surface57. Yet, 
instead of Kriging, it is common to employ another reputable surrogate such as ANN as its fitting functionality 
has been  confirmed58. However, studying the application of other alternatives e.g., ANN, RBF, polynomial chaos 
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expansion, and polynomial regression, in the robust coverage optimization of wireless networks is out of the 
scope of the current work. Notably, the quality of surrogate construction strongly depends on the distribution 
of training points, sample size, and optimally adjustments of hyperparameters of the surrogate. Hyperparameter 
optimization along with control on a number of expensive simulations keeping in mind the model doesn’t get 
overfitted has been performed in  literature59. Even though stochastic learning theory is responsible for the devel-
opment of Kriging, the bounds on the hyperparameters are typically fixed  arbitrarily57,60. There are new studies 
in the literature has been proposed the trade-off between model accuracy and sample size, with optimization 
of surrogate’s hyperparameters for surrogate model development,  see61,62. In the current work, the space-filling 
design using the grid sampling method is used to design a training sample set. This method covers the whole 
design space by permuting sample points in equal  ranges63.

Main contributions. The major contributions of this study can be summarized as follows:

• The development of a new hybrid Kriging/GWO approaches combined with robust design optimization to 
estimate the Pareto front for the two objectives: design robustness and its (nominal) accuracy. We also provide 
a sensitivity analysis of transmitting antenna placement under uncertainty.

• Conducting numerical studies concerning multi-objective constrained robust optimization through minimi-
zation of the power consumption required by signal transmission, and maximization of the signal coverage 
as the objective functions. The control over the signal overlap is treated as the design constraint.

• In cases with a large number of receiver test points, the computational cost of the optimization process is very 
high because of evaluating the intensity of a signal received in all receiver points. The method developed in 
this work does not require exhaustive receiver evaluations in each optimization iteration.

• Carrying out extensive numerical experiments demonstrating the efficiency and reliability of the proposed 
algorithm in yielding robust optimal placement of multiple transmitters.

The rest of this paper is organized as follows. “Problem statement” section provides the preliminaries required 
by the proposed algorithm including a definition of the free space propagation model and a formulation of the 
relevant multi-objective robust design optimization concepts applied in this study. The algorithmic framework 
of the proposed reduced-cost approach to solving and analyzing the considered optimization task is presented 
in “Proposed Algorithm” section. The verification examples for the robust optimal placement of multiple trans-
mitting antennas under uncertainty using the proposed approach are presented in “Experimental benchmark 
problems” section. “Conclusion” section concludes the paper.

Problem statement
Free space propagation model. This paper adopts the free space propagation model, which is widely 
used in the studies of placement  problems25,64. The free space propagation model assumes a transmit antenna 
and a receive antenna to be located in an otherwise empty environment. Neither absorbing obstacles nor reflect-
ing surfaces are  considered65. The characteristics of an antenna may also be described in terms of the perfor-
mance of a radio or radar system of which it is a  part66. It is necessary to distinguish between the case of one-way 
transmission, in which a given antenna serves for transmission or reception only, and the case of radar or two-
way transmission, in which a single antenna performs both functions. In this study, we consider a transmitting 
antenna and a receiving antenna separated by a large distance dr,t . For propagation distances dr,t much larger 
than the antenna size, the far field of the electromagnetic wave dominates all other components. That is, we are 
allowed to model the radiating antenna as a point source with negligible physical dimensions. In such case, the 
energy radiated by an omni-directional antenna is spread over the surface of a sphere. This allows us to analyze 
the effect of distance on the received signal power.

Let Gt and Gr be the respective gain functions of the transmitting antenna and receiver antenna for the direc-
tion of transmission. In electromagnetics, an antenna’s power gain or simply gain is a key performance number 
that combines the antenna’s directivity and electrical efficiency. In a transmitting antenna, the gain describes 
how well the antenna converts input power into radio waves headed in a specified direction. In a receiving 
antenna, the gain describes how well the antenna converts radio waves arriving from a specified direction into 
electrical power. If the power transmitted is Pt , the power radiated in the direction of the receiver, per unit solid 
angle, would be 

(
1
4π

)
PtGt . If � is the carrier wavelength, the receiving antenna would present a receiving cross-

section 
(

1
4π

)
Gr�  to the incident wave; it would, in effect, subtend a solid angle Gr�

2

4πd2r,t
 at the transmitter. The power 

absorbed at the receiver would thus  be66:

where d2r,t =
{
(xr − xt)

2 +
(
yr − yt

)2} stands for the Euclidean distance (2-norm) between locations of the 
receiver r and the transmitter t  in a two-dimensional design space. The maximum operating range is determined 
by the signal-to-noise ratio of the detector system. If it is possible to ignore the effect of the earth on the propaga-
tion of the wave, and if Gr is constant, it would be possible to operate the receiving system satisfactorily every-
where within the surface with a radius D as below:

(1)Pr =
PtGtGr�

2

16π2d2r,t
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where Prm is the minimum detectable signal for the receiver, and the surface with radius D is called the “free-
space coverage pattern for one-way transmission”, see Fig. 1.

Transmitter placement planning model. The planning model describes the environment and the 
mathematical model of the transmitter placement problem. The map for transmitter placement has two regions 
in a two-dimensional area ( X,Y  ) including covered regions ( CR ) and placement regions ( PR ). The former shows 
the regions that need to be covered by a signal transmitted by antennas, and the latter represents the regions 
where the transmitters can be located. In this study, we consider the same free-space two-dimensional map 
( Z2 ) region for both covered and placement regions with grid resolution δ where CR ⊆ Z

2 , and PR ⊆ Z
2 . In the 

placement planning model, a receiver gathers signals from the transmitters. The connectivity is assessed by a 
signal threshold θ to maintain the quality of service. This paper uses a large set R of receivers as test points for the 
coverage: a receiver r ∈ R has a position ( xr , yr ) ∈ CR with threshold θr . Let EP be the set of energy power that 
can be transmitted by each transmitter, then the transmitter placement problem is to create a set of transmitters 
T = {t = (xt , yt , pt)|xt , yt ∈ PR, pt ∈ EP} and place its elements (i.e., the transmitters). In the current study, the 
transmitter placement problem is performed based on two objectives including maximization of percent cover-
age and minimization of Total Power Transmitted (TPT), when keeping the amount of coverage overlap (signal 
interference) under the predefined threshold. The latter is implemented as a design constraint.

Percent coverage A receiver r ∈ R is said to be covered by a transmitter t ∈ T when the signal strength is 
greater than the threshold, i.e.,

where Pr is computed using Eq. (1). The value 1 indicates that the receiver r is covered by at least one transmitter. 
Accordingly, the percent signal coverage of a set of transmitters can be calculated by:

Note that the first objective is to maximize the percent coverage.
Total power transmitted The proper planning model needs to be designed to minimize the total power con-

sumed for transmitting signals by all designed transmitters while achieving as high percent coverage as possible. 
Thus, in this paper, apart from maximizing the percent coverage (see Eq. (4)), we consider minimizing the total 
power transmitted, i.e.,

where pt is the power ( mW ) that is employed in transmitter t  for transmitting the signal.

(2)D =

(
Pt

Prm

)
�

4π
(GtGr)

1
/2

(3)Covered(r) =

{
1, ∃t ∈ T , Pr ≥ θr

0, Otherwise

(4)%Coverage = 100.

(∑
r∈R Covered(r)

|R|

)

(5)TPT =
∑

t∈T

pt , pt ∈ EP

Transmitter

Receiver

( , )

( , )

,

Figure 1.  The free-space propagation model in a two-dimensional (2D) design space. Transmitting antenna 
is modelled as a point source. Transmitted power is spread over the surface area of a hypothetical sphere. The 
receiver antenna has an aperture. This surface with radius D is called the “free-space coverage pattern for one-
way transmission”, see Eq. (2).
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Overlap The coverage overlap between transmitters raises the issue of  interference18,25. To reduce the inter-
ference, we add a constraint to the model to keep the overlap under the predefined threshold. The relevant 
mathematical formulation of the overlap and the associated constraint will be explained in the next section.

Proposed algorithm
Materials and methods. Kriging. Kriging is an interpolation method that can cover deterministic data 
and is highly flexible due to its ability to employ various ranges of correlation  functions57. In a Kriging model, a 
combination of a polynomial model and the realization of a stationary point is assumed by the form of:

where the polynomial terms of fp(X) are typically the first or the second-order response surface approach and 
coefficients β̂p are regression parameters ( p = 0, 1, . . . , k ). This type of GP approximation is called the universal 
GP, while in the ordinary GP, instead of f (X), the constant mean µ = E

(
y(x)

)
 is used. The term ε describes the 

approximation error and the term Z(X) represents the realization of a stochastic process which in general is a 
normally distributed Gaussian random process with zero mean and variance σ 2 , and non-zero covariance. The 
correlation function of Z(X) is defined by:

where σ 2 is the process variance and R
(
xk , xj

)
 is the correlation function that can be chosen from different cor-

relation functions which were proposed in the literature (e.g. exponential, Gaussian, linear, spherical, cubic, 
and spline)67,68.

Grey wolf optimizer. The canonical GWO is one of the recently proposed swarm intelligence-based algorithms, 
which is developed by Mirjajili et al.9 in 2014. It has been widely tailored for a wide variety of optimization 
problems due to its impressive characteristics over other swarm intelligence methods: it has very few param-
eters, and no derivation information is required in the initial search. The GWO has recently gained a very big 
research interest with tremendous audiences from several domains in a very short  time28,32. It mimics the social 
leadership and hunting behavior of grey wolves. In the GWO algorithm, the fittest solution in the population is 
named alpha ( α ). The second and third best solutions are called beta ( β ) and delta ( δ ), respectively. The rest of 
the individuals in the population are assumed as omega ( ω ). Grey wolves encircle prey during the hunt. In order 
to mathematically model encircling behavior the following equation is  proposed9:

where t  indicates the current iteration, −→A  and −→C  are coefficient vectors, −→X p is the position vector of the prey, 
and −→X  indicates the position vector of a grey wolf. The vectors −→A  and −→C  are calculated as follows:

where r1 and r2 are random vectors in [0, 1] , and components of −→a  are linearly decreased from 2 to 0 throughout 
iterations by equation −→a (t) = 2− 2t

MaxIter where MaxIter indicates the total number of iterations. The other 
wolves update their positions according to the positions of α , β , and δ as  follow9:

where 
−→
A . and −→C . are obtained by relevant expressions in Eq. (10). The pseudo-code of the GWO algorithm is 

presented in Algorithm 1.

(6)y = f (X)+ Z(X)+ ε

(7)f (X) =

k∑

p=0

β̂pfp(X)

(8)Cov
[
Z(xk),Z

(
xj
)]

= σ 2R
(
xk , xj

)

(9)
−→
X (t + 1) =

−→
X p(t)−

−→
A .

∣∣∣−→C .
−→
X p(t)−

−→
X (t)

∣∣∣

(10)−→
A = 2−→a .−→r 1 −

−→a and
−→
C = 2−→r 2

(11)

−→
X (t + 1) =

1

3

(
−→
X α(t)−

−→
A 1.

∣∣∣−→C 1.
−→
X α(t)−

−→
X (t)

∣∣∣+−→
X β(t)−

−→
A 2.

∣∣∣−→C 2.
−→
X β(t)

−
−→
X (t)

∣∣∣+−→
X δ(t)−

−→
A 3.

∣∣∣−→C 3.
−→
X δ(t)−

−→
X (t)

∣∣∣
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Algorithm 1 Pseudocode of the GWO algorithm.

Input: Population size , the total number of iterations .

Output: The optimal individual position ⃗ and the relevant fitness 
value.

Begin
Initialize algorithm parameters.

Generate a random population with size . 

Evaluate individual fitness values.

Identify , , and . 

∶= 0.

while ≤ do
Update all individuals using Eq.(11). 

Update ⃗, ⃗, and ⃗. 
Calculate the fitness value of each individual.

Update , , and . 

∶= t + 1.
end while
End

Robust dual‑surface design. The dual response surface approach has been successfully applied in robust pro-
cess  optimization69. There are different robust optimization methods in the class of dual response that has been 
developed in the literature,  see14,69,70. Here, we  follow71,72 and inspire Taguchi’s overview of robust  design73 for 
dealing with uncertainty as a source of variability in the model. However, we expand Taguchi’s robust design ter-
minology and apply its definition for environmental noise factors in such a multiple transmitters system under 
uncertainty. But in this study, we replace the statistical approach of the Taguchi viewpoint with hybrid Kriging 
and GWO approach. Furthermore, we intersect two experimental designs (data sample sets). The first design 
is pertinent to decision variables (inner array), whereas the second one is for uncertain variables (outer array). 
Given the vector s = (1, 2, . . . , l) of sample points over the decision variables, and the vector r = (1, 2, . . . ,m) 
of uncertainty scenarios, l ×m input combinations are designed, and the true model is evaluated l ×m times 
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Figure 2.  Visualization of crossing the model design parameters and uncertainty scenarios as inspired by the 
Taguchi’s crossed array design.
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to collect relevant model responses, see Fig. 2. Let Y  be the l ×m matrix of model responses. The mean and the 
standard deviation (Std) for each row of Y  can be computed as

The following Signal-to-Noise Ratio (SNR) as a robustness criterion can be formulated:

Since the goal is to minimize the model response, the formulation of the SNR in (14) has the opposite sign 
of the Taguchi  formulation73.

Mathematical optimization model. Numerical optimization uses a compact mathematical model for 
describing the problem of concern. Here, we define the problem of multiple transmitting antenna placement 
under uncertainty in the framework of robust multi-objective optimization. The goal is to obtain the set of 
transmitters’ optimal positions on a 2D map and the relevant optimal power for each positioned transmitter, {
t∗ =

(
x∗t , y

∗
t , p

∗
t

)
|t∗ ∈ T

}
 in T = {t = (xt , yt , pt)|xt , yt ∈ PR, pt ∈ EP} where PR ⊆ Z

2 determines allowable 
placement regions, whereas EP is the set of power that can be transmitted by each transmitter. The objectives 
and constraints are defined as below:

The first objective is constructed to make a trade-off between the mean and Std of signal coverage in the 
model. The SNR criterion is defined by

In Eq. (16), the terms %CoverageMean and %CoverageStd denote the mean and the standard deviation of the 
coverage, estimated based on the variability of uncertain parameters in the model, using Eqs. (12) and (13). This 
objective is formulated to enable maximization of the percent coverage as well as robustness.

The second objective function considers the minimization of the total power (expressed in mW) consumed 
by all transmitters as follows

The expersions Ntrans and Pmax in Eq. (17) represent the number of transmitters in a model, and the maxi-
mum allowed power that can be allocated to each transmitter, respectively.

The probability of overlap (the intersection) between all transmitters that existed in the model is kept within 
the predefined threshold in the constraint of the model by

The term � refers to the cumulative distribution function (CDF) of a standard normal distribution. The 
term 0 ≤ β ≤ 1 can be defined by the designer and represents the allowed probability for the average overlap 
of transmitters in the model. The expressions MeanD . and StdD . represent the mean and the standard deviation 
of the radius D (see Eq. (2)). In general, regarding each transmitter in the model, three design variables need 
to optimally be investigated using the proposed approach. The coordinate of each transmitter and transmitting 
power (design variables regarding each individual transmitter) need to be used to compute the percent coverage 
provided by each transmitter, see Eqs. (1), (2), and (3). This procedure is applied to all transmitters in the model. 
However, the overlap (intersection) between signal coverage by transmitters also is controlled by defining the 
probability of intersection that is kept under a predefined threshold in the models’ constraints (Eq. 18).

As both objective functions are expressed on the same logarithmic scale as 10log(ε) , where ε ∈ [0, 1] , we can 
aggregate them as

(12)Means =
1

m

m∑

r=1

ysr , for (s = 1, 2, . . . , l)

(13)Stds =

√√√√ 1

m

m∑

r=1

y2sr −

(
1

m

m∑

r=1

ysr

)2

, for (s = 1, 2, . . . , l)

(14)SNR = 10log
[
Mean2 + ω∗Std2

]

(15)

MinimizeSNR

MinimizeTPT

Subject to :

prob.
(
overlap

)
≥ 1− β

(16)SNR = 10 log

[(
1

%CoverageMean

)2

+ ω.
(
%CoverageStd

)2
]

(17)TPT = 10log

[( ∑
t∈T pt

Ntrans.Pmax

)2

+ 1

]

(18)

2

Ntrans.(Ntrans − 1)
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where α ∈ [−2,+2] is the weighting factor. The optimum selection of α depends on the designer’s preferences 
and the characteristics of the optimization model. Sweeping α allows for capturing the Pareto front, and for 
identifying trade-off designs between the considered objective  functions74.

Computational cost. One of the main difficulties in solving the above-mentioned mathematical model for 
multiple transmitters’ placement problems under uncertainty is obtaining the estimation of statistical measures 
including mean and Std of response due to variability of uncertain parameters. However, repetitions of the 
original model to estimate these statistical measures can increase the computational cost, while also may not 
provide accurate estimation in complex and non-linear  models75–77. The main issue is computational cost due 
to the required large number of function evaluations. This paper uses a large set R of receivers as test points for 
coverage: a receiver r ∈ R has a position ( xr , yr)∈ CR with threshold θr . The grid resolution δ of the map and 
the threshold θr is the same for all receiver test points. We are interested to obtain the optimal positions and 
power for multiple transmitters in a 2D map ( X × Ym2 ). So, with resolution δ , there is [(X × Y)/δ] possible 
base placements for each transmitter. In a stochastic model by considering the uncertainty, we also need m 
repetitions of model to obtain the estimation of statistical measures including mean and Std of response due 
to variability of uncertain parameters. Notably, m needs to be large enough to decrease the error of estimation, 
hence often, random sampling method for Monte Carlo-based uncertainty quantification has been  applied78–80. 
In this paper, we apply the non-parametric space-filling design that applied a smaller number of sample points 
than the classical Monte Carlo  method81,82. Let’s assume n is the number of transmitters that need to be opti-
mally designed in a stochastic model (under uncertainty) and the standalone optimizer to investigate a robust 
optimal solution is adjusted by total s individual runs (for instance for GWO the total number of optimizer’s 
runs is equal to “ SearchAgentsNo ×MaxIterations”), so the total number of required function evaluations is equal to 
[ n×m× s × (X×Y)

δ
] . Thus, in a multi-transmitter placement problem particularly under uncertainty, directly 

applying metaheuristics such as evolutionary algorithm as used  in1,18,25,83 or swarm-intelligence as applied  in24,27 
imposes high computational cost due to a large number of function evaluations. These techniques that require 
a large number of fitness evaluations to obtain robustness besides accuracy (lower objective function) are often 
limited to directly being applied to computationally expensive engineering problems under uncertainty, there-
fore, surrogate-assisted metaheuristic optimization algorithms have been proposed in the literature,  see84–86.
Algorithmic framework. Figure 3 provides the flow diagram of the proposed optimization approach. The 
algorithmic procedure of proposed hybrid approach in pseudocode is provided in Algorithm 2 and proceeds as 
main steps below:

Step 1 Initialize the model parameters.
The model parameters and constants that need to be adjusted at the beginning of the algorithm are shown in 
Table 1. As can be seen, some parameters need to be adjusted initially by the decision-maker before running 
the optimization procedure (e.g., shown with “initialize”). Besides, we define three design variables includ-
ing the transmitter coordinates 

(
x, y

)
 in the 2D map and required power transmitted for each transmitter 

Furthermore, according to the number of transmitters in the model, the number of design variables is equal 
to 3× No.transmitters , while these variables are searched for optimal values during the optimization proce-
dure. Note that in the current study, we consider the transmitting antenna gain ( ̃Gt ) in Eq. (1) as an uncertain 
parameter that is uniformly varied in a predefined range with known lower and upper bounds. Among the 
proposed optimization procedure, we aim to reduce the sensitivity of optimal design variables (transmitter 
position in 2D map and required power transmitted) against this source of variability (uncertainty in trans-
mitting antenna gain).

(19)overall function =
SNR

1+ e−α
+

e−α .(TPT)

1+ e−α
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Figure 3.  The proposed algorithm for multiple transmitter placement problem under uncertainty. In the 
proposed algorithm, two set of experiments are designed regarding the crossed array design, by setting decision 
variables in an inner array and uncertain variables in an outer array. Two surrogates are fitted, one over mean 
and another over Std of coverage. Another crossed array design constructed with the same framework for power 
radius.

Table 1.  The list of parameters applied in the proposed algorithm.

Parameter Title Unit Value

Gt Transmitting antenna gain mW Uncertain variable (uniform distribution)
(
xt , yt

)
The transmitter coordinate in a 2D map – Design variables

Pt Power transmitted mW Design variable

δ Grid resolution m Initialize

Gr Receiving antenna gain mW Initialize

� Wavelength m Initialize

X × Y Two-dimensional map area m2 Initialize

β The allowable probability for average overlap of transmitters, Eq. (17) – Initialize

θr Signal threshold in receiver point to maintain the quality of service 2 Initialize

Ntrans Number of transmitters in the model – Initialize

ω The weighting parameter in Eq. (15) – Initialize

α The weighting parameter in Eq. (18) – Initialize

dr,t Euclidean distance between receiver and transmitter m Update among algorithm procedure
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Algorithm 2 The proposed hybrid approach in pseudocode.

Input: Initialized parameters as mentioned in Table 1.
Output: Robust optimal coordinates and power transmitted for each 

transmitter in a model.

begin
Design three sets of sample points using the grid-sampling method 

for:

One sample set for the signal coverage. 

One sample set for the transmitting power. 

One sample set (uncertainty scenarios) for the uncertain 
parameter (here is transmitting antenna gain). 

Construct two crossed array designs using sampling sets already 
designed (see Figure 2):

First crossed array by intersections of signal coverage and 

uncertainty scenarios. 

Second crossed array by intersections of transmitting power 

and uncertainty scenarios. 
Run the true model and collect relevant responses (using Eq.(1) and 

Eq.(3) for the first crossed array, and Eq.(2) for the second 

crossed array) according to both designed crossed arrays for 
each input combination/uncertainty intersection.  

Compute the mean and Std of responses for each crossed array 

design (See Figure 2).
Train four individual Kriging surrogates:

The first set includes two surrogates, one for the mean and 
another for the Std of signal coverage.  

The second set includes two surrogates, one for the mean 
and another for the Std of power radius. 

Construct a mathematical optimization model according to 

formulations mentioned in Section 3.2, while using the first 
set of Kriging surrogates in the objective function (Eq.16), 

and the second set in the constraint function (Eq.(18)). 

Run GWO optimizer and collect optimal results (consisting of 
optimal coordinate and transmitting power for each 

transmitter in the model ) using Eq.(19) as fitness function 

and using death penalty method dealing with constraint 
function (Eq.(18)). 

end

Step 2 Design of experiments using crossed array design.
Design sets of experiments using the structure of crossed array design (see Fig. 2) separately for two different 
functions, one for power absorbed in Eq. (1) and the second for the power radius in Eq. (2). For each func-
tion, also two sets of sample points are designed separately. The first set (over the design variables) is in an 
inner array and the second set (over an uncertain variable) is in an outer array. The design variables for the 
absorbed power in Eq. (1) are dr,t and Pt , and for power radius in Eq. (2) is Pt . The uncertain variable in both 
functions is G̃r . Here, we apply the grid-sampling method in the class of space filling  design87 with resolution 
� ≫δ . In other words, the sampling grid is of considerably lower resolution than δ to reduce the number 
of required function evaluations. The information for the regions between the grid points will be obtained 
through interpolation using the Kriging surrogate.
Step 3 Obtain response for each combination of design and uncertain variables.
Regarding the first crossed sampling design, we execute the power absorbed function using Eq. (1) and 
accordingly compute the “ Covered(r) ” using Eq. (3) with values 1 or 0. Besides, regarding the second crossed 
sampling design, we run the power radius function using Eq. (2) and obtain the relevant responses for each 
combination of design and uncertain parameters in the crossed array designs.
Step 4 Compute the statistical measures including mean and Std of responses.
In this step, the mean and the standard deviation of coverage and power radius are computed for each input 
combination using Eqs. (12) and (13) regarding a relevant crossed array design. Note that these statistical 
measures result from the variability of the uncertain parameter that was already considered in the previous 
steps.
Step 5 Construct Kriging surrogates.
Four Kriging surrogates are constructed separately using the acquired input–output data pairs. The Kriging 
model is identified for: (i) the mean of the coverage, (ii) the standard deviation of the coverage, (iii) the mean 
of the power radius, and (iv) the standard deviation of the power radius.
Step 6 Validate surrogate models.
The surrogate model constructed in Step 5 has to be validated to ensure that its predictive power is sufficient 
for design optimization purposes. Here, validation is executed using the leave-one-out cross-validation ( k = 1
)86,88, which works as follows. First, delete the sth input combination and the relevant output from the complete 
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set of the l  th combination ( s = 1, 2, . . . , l ), i.e., to avoid the extrapolation by Kriging, we avoid dropping the 
sample points in the margin. The model is constructed using l − 1 remaining rows and predicts the output 
for the left-out point ( s−1 ). This is realized for all input combinations (sample points) and leads to computing 
l  predictions ( ̂ys ). Finally, evaluating the standardized residuals are computed as

Most of the standardized residuals should be within the interval −3 ≤ Ds ≤ 3 , and any observation outside 
of this interval (outlier) is potentially unacceptable with regard to its observed simulation  output86,88.
Step 7 Set up the mathematical optimization model.
The proposed robust optimization model using Eq. (15) through Eq. (19) is arranged.
Step 8 Run the GWO optimizer.
The GWO optimizer is executed using the expression Eq. (19) as a fitness function, and Eq. (18) as a con-
straint. Here, we control the feasibility of model in constraint using the death penalty for any point out of the 
feasible region. Note that during the optimization run, all required expressions in both Eqs. (18) and (19) 
are estimated by the relevant Kriging surrogates constructed in Step 5, so that no further evaluations of the 
original computational model are required. Another point is that to improve the computational efficiency of 
the optimization process, we do not investigate all receiver test points CR ⊆ Z

2 in each iteration. But instead, 
we consider a smaller set of receiver test points that are randomly selected from the domain.
Step 9 Compute the two-sided BCI for an obtained robust optimal point.
In the stochastic simulation, each input combination X is replicated several times m ≥ 1 . In the case of 
expensive simulations, the number possible of replications is smaller, therefore, parametric bootstrapping 
is unlikely to produce acceptable results (i.e., it rarely can find the exact distribution of the I/O simulation 
data)47,67,89. Here, to find the bootstrapped set of data, a model is resampled B times (b = 1, 2, . . . ,B) (sampling 
with replacement). Let us assume that d+ is a robust optimal solution obtained from the procedure in Step 1 
through Step 6. It is assumed that d+ is a robust optimal solution, which is obtained from the original (non-
bootstrapped) surrogate. All output values at point d+ are estimated using all the B bootstrapped surrogates. 
The distribution-free Bootstrapped Confidence Intervals (BCI) can be computed as  below67,90:

where γ /2 gives two-sided BCI, whereas Bonferroni’s  inequality91 suggests that the type-I error rate of γ
67,92 for each interval per output is divided by the number of outputs, here, the mean, Std, and the SNR. If 
the values of the bootstrap estimate d+∗ are sorted from low to high, then ⌊.⌋ and ⌈.⌉ , respectively, denotes 
floor and ceiling function to achieve the integer part and round upwards. Here, it is assumed that the set of 
sample points is fixed and only old data to fit a surrogate with sufficient replication is available, whereas new 
simulation replicating is very expensive. This augmented bootstrapping approach does not imply extra com-
putational cost due to resampling, and the required simulation run to find a bootstrapped set of  data72,85,93. xs 
( s = 1, 2, . . . , l ) denotes the set of sample points and each xs is repeated m times ( r = 1, 2, . . . ,m ). We assume 
that the original set of data obtained from the original simulation model is available (size l ×m ) when m is 
the number of scenarios for uncertainty and l  is the number of input combinations. Moreover, the augmented 
bootstrapping procedure is sketched in Algorithm 3.

Experimental benchmark problems
The algorithm setup. In this section, three cases featuring a different number of transmitting antennas 
(e.g., two, three, and four base stations) are considered to evaluate the performance of the proposed algorithm 
for reduced cost transmitting antenna placement under uncertainty. Following we also compare the effective-
ness of the proposed hybrid approach compare with standalone GWO (uncombined with a surrogate) and the 
Non-dominated Sorting Genetic Algorithm (NSGAII)94 in cases with a higher number of transmitters (up to 
20 base stations). The comparison results are provided in terms of accuracy (higher coverage rate and higher 
power transmitted), robustness (reliability due to uncertainty using SNR criterion), and computational cost 
(number of required function evaluations and total time elapsed for computing). The transmitters are assumed 
to be homogeneous (i.e., transmitters are of only one type and have the same cost). In each case, the optimiza-
tion model simultaneously considers the coverage and transmit power as objective functions, and the over-
lap as a constraint. The free-space propagation model is used to measure the signal strength in each case. The 
initial parameters used in the proposed algorithm are adjusted as follows. The two-dimensional map size is 
120× 120m2 , and the grid resolution δ of the map is 10m . All radiation patterns of the transmitters are assumed 
to be omnidirectional. The receiving antenna gain Gr is 1mW , and wavelength � is 0.125m . The θr threshold for 
all receivers is 1× 10−7 mW.

(20)Ds =
ys − ŷ−s√

1
l

∑l
s=1

(
ys − ŷ−s

)2

(21)P
(
d+∗
(⌊B(γ /2)⌋) � d+ � d+∗

(⌈B(1−γ )/2⌉)

)
= 1− γ
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Algorithm 3 The augmented bootstrapping procedure.

Input: Set of input-output data, and robust optimal point.
Output: Estimation of BCIs.

begin
Set = 1 and = 1.
Choose (with replacement) one random number from the collection 

of { ∗ = 1,2,… , }.

Replace the th original output , (selected from the old data) with 

the bootstrap output ,
∗ = , ∗. 

Set = + 1 and continue Step 3 and Step 4 till = .

Set = + 1 and continue Step 3, Step 4, and Step 5 till = . 

Compute ∗ , ∗ , and ∗ using Eq.(6), Eq.(7), and 

Eq.(8) respectively for ( = 1,2,… , ) and fit a Kriging 
surrogate over a new set of input-output data. 

Continue resampling times ( = 1,2,… , ) where is the 

number of resampling or bootstrap sample size and compute 
∗ = ( ∗, ∗ , … , ∗ ), ∗ =

( ∗, ∗ , … , ∗ ) , and ∗ =

( ∗, ∗, … , ∗). 
Compute bootstrapped BCI using Eq.(21) for the robust optimal 

point obtained by the proposed algorithm.

end

The mathematical model for each test case (i.e., with two, three, or four transmitters) is constructed according 
to equations Eq. (15) through Eq. (19). In each case, the design variables are the coordinate ( xt , yt) and transmit-
ting power Pt of each transmitter, and the transmitting antenna gain G̃t is assumed to be an uncertain parameter. 
The design ranges for design variables are 0 ≤ xt ≤ 120 , 0 ≤ yt ≤ 120 , and 0.5 ≤ Pt ≤ 2.5 , ( Pmax = 2.5 used in 
Eq. (17). The uncertain parameter G̃t is also assumed to vary uniformly in the range 0.5 to 1.5. In the optimiza-
tion procedure, the Std of the coverage is weighted three times of mean by considering ω = 3 in Eq. (16). We 
allow 30 percent average intersection between all signals transmitted by multiple transmitters in a model, thus 
β = 0.3 considered in Eq. (18). Additionally, to compare the results in all cases, the parameter α in Eq. (19) is 
set to zero. Furthermore, the sensitivity analysis is conducted with different values of α in [−2,+2] , separately 
for each case. We apply 50× 30 samples (50 input combinations with 30 uncertainty scenarios) regarding the 
crossed array for coverage functions (Eq. (1) and Eq. (3)) and fit Kriging surrogates for the mean and Std of cov-
erage. Also,  50× 30 samples are employed involving the crossed array design for computing the mean and Std 
of power radius using Eq. (2) and fitting two relevant Kriging surrogates. To evaluate the reliability of obtained 
results, the optimization procedure is repeated 10 times for each case. We employ the Matlab® environment for 
data and function analysis. The  DACE60, Matlab® toolbox has been employed to construct the Kriging surrogate 
with zero-order polynomial regression and Gaussian correlation functions. The Matlab® function “gridsamp” in 
the DACE toolbox is used for sampling design for both design parameters (inner array) and uncertain parameters 
(outer array) according to crossed array configuration (see Fig. 2).

Robust optimal positioning. For each case of Ntrans = 2, 3 , and 4 transmitters, we run the algorithm 
ten times to compute the relevant statistical measures to account for the randomness in the proposed stochastic 
optimization algorithm. Figure 4 shows the 3D surface plot for mean and Std of coverage over input combina-
tions in the crossed array ( dr,t and Pt ). As it can be seen, there is a nonlinear relationship between the input 
and output set of data in the crossed array design because of the existence of uncertainty in the model. Figure 5 
illustrates the mean and Std of coverage over one input parameter ( dr,t or Pt ) while the other is fixed at a pre-
defined value. The power radius function of Eq. (2) is applied to collect the data regarding each crossed design 
and uncertain parameters. Figure 6 shows the mean and Std of power radius ( m ) overpower transmitted ( mW ). 
Using the input–output data pairs obtained from the crossed array, two Kriging surrogates are fitted, one for the 
mean and the other for the Std of the coverage. Two other Kriging surrogates are fitted using the input–output 
data pairs in the relevant crossed array design, one for the mean of power radius and another one for Std of 
power radius. The prediction errors for all four Kriging surrogates are computed by the leave-one-out cross-
validation approach. As shown in Fig. 7, most observed standardized residuals are within the interval [−3, 3] , 
which ensures sufficient accuracy of the surrogates.

In the next step, the robust optimization model is constructed using Eq. (19) as an objective function and 
Eq. (18) as the constraint. In both functions, we employ the Kriging surrogates that are already identified for 
the mean and the standard deviation of the coverage and the power radius. Accordingly, the GWO is run to 
obtain the robust optimal solution ( xt , yt , and Pt ) for each case (e.g., the cases with number of two, three, or four 
transmitters). As mentioned earlier, optimization runs are repeated 10 times for each case. This optimization 
procedure is performed for different values of the parameter α in Eq. (19) to investigate the effects of α on the 
robust optimal results. Toward this end, the parameter α is changed from − 2 to + 2 with a step size of 1. The results 
obtained by the proposed hybrid approach for all three cases of two, three and four transmitters. Table 2 gathers 
the obtained statistical results. Using all collected data provided in Table 2 for the proposed hybrid approach 
by varying threshold α in Eq. (19), the Pareto-optimal efficiency frontier is estimated, where we consider the 
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mean and Std as criteria between which finding a trade-off. Figure 8 illustrates the mean and the Std versus the 
total transmitted power using all samples that were already collected during the previous optimization runs. 
This figure also provided the Pareto front estimation using the common NSGAII method known for such multi-
objective problems. As can be seen, the results are competitive, and given these results, the decision-makers 
select their preferred combination of the mean and Std regarding the power consumed to transmit the signals 
in a predefined network zone.

To study more the obtained results in Table 2 by serving examples, for case α = 0 , the solution with the 
highest SNR among all 10 repetitions are selected as a robust optimal point. Table 3 shows the best results (cor-
responding to the higher SNR value) for the placement problems with two, three, and four transmitters. Figure 9 
shows the coverage using the robust optimal results depicted in Table 3 for the cases with two, three, and four 
transmitters separately. The plots are shown for the mean of the power radius, mean+ 3Std , and mean− 3Std. 
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The results indicate that the mean of the coverage is 91.38% (with Std = 10.01% ) by using TPT = 4.56(mW) is 
obtained in the case of three transmitters. For the problem with two transmitters, the total transmitted power is 
3.18(mW) to provide 70.30% of the mean coverage with Std = 13.70% . Finally, for the problem with four trans-
mitters, the mean coverage of 97.83% can be obtained with Std = 4.25% , when the total power is 6.41(mW) . Note 
that four transmitters ensure higher SNR, but it also leads to a higher average overlap. The average intersection 
of transmitters is kept at less than β = 30% due to the predefined model’s constraint in Eq. (18). In general, the 
three transmitters case seems to be the most advantageous from the point of view of ensuring the best trade-off 
between the coverage, robustness, power consumption, and overlap.

Bootstrapping (sensitivity analysis). Here, instead of estimating a single robust optimal point using 
a particular response that might be inaccurate because of high variability in uncertain parameters, we derive a 

0.5 1 1.5 2 2.5
Pt(mW)

20

25

30

35

40

45

50

M
ea

n
of

po
w
er

ra
di
us

(m
)

0.5 1 1.5 2 2.5
Pt(mW)

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

St
d
of

po
w
er

ra
di
us

(m
)

Figure 6.  The mean and Std of power radius (m) over the power transmitted (mW) in [−3,+3].

0 5 10 15 20 25
Validation Points

-4

-3

-2

-1

0

1

2

3

4

St
an

da
rd
ize

d
Re

sid
ua

ls

%Coverage-Mean

0 5 10 15 20 25
Validation Points

-4

-3

-2

-1

0

1

2

3

4

St
an

da
rd
ize

d
Re

sid
ua

ls

%Coverage-Std

0 10 20 30 40 50
Validation Points

-4

-3

-2

-1

0

1

2

3

4

St
an

da
rd
ize

d
Re

sid
ua

ls

Mean of Power Radius

0 10 20 30 40 50
Validation Points

-4

-3

-2

-1

0

1

2

3

4

St
an

da
rd
ize

d
Re

sid
ua

ls

Std of Power Radius
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in the range of [−3, 3] for the mean and Std of coverage and power radius.



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17725  | https://doi.org/10.1038/s41598-022-21490-z

www.nature.com/scientificreports/

Table 2.  Statistical results over 10 repetitions of proposed Kriging-GWO (hybrid surrogate-metaheuristic) 
approach in robust optimal placement of two, three, and four transmitting antennas for different " α " values in 
Eq. (19).

α

%Coverage_Mean %Coverage_Std SNR TPT (mW)

Avg Std Max Min Avg Std Max Min Avg Std Max Min Avg Std Max Min

#BS = 2

− 2 52.47 1.41 49.95 55.66 14.17 0.45 13.44 15.28 − 5.68 0.22 − 6.09 − 5.18 2.01 0.05 1.94 2.10

− 1 60.16 1.81 56.47 62.15 15.41 0.59 14.51 16.53 − 4.53 0.27 − 5.08 − 4.25 2.53 0.10 2.39 2.69

0 68.05 2.17 65.04 70.32 14.91 0.69 13.70 16.23 − 3.48 0.28 − 3.87 − 3.18 3.07 0.18 2.82 3.32

 + 1 69.32 1.68 66.43 71.60 15.39 1.24 13.64 17.90 − 3.33 0.21 − 3.68 − 3.03 3.26 0.20 2.83 3.50

 + 2 69.52 1.90 66.16 71.65 15.81 0.83 14.52 17.33 − 3.32 0.24 − 3.74 − 3.07 3.34 0.21 2.91 3.62

#BS = 3

− 2 69.93 9.00 45.05 78.96 14.94 1.86 11.96 18.86 − 3.34 1.28 − 6.96 − 2.20 3.07 0.08 2.96 3.23

− 1 82.28 2.46 77.49 84.62 14.04 0.81 12.30 15.29 − 1.87 0.26 − 2.38 − 1.61 3.76 0.19 3.42 4.06
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Figure 8.  The estimation of the Pareto front using the proposed approach and NSGAII method for the mean 
and standard deviation of the coverage versus the transmitted total power. The estimation is obtained regarding 
different values of the weighting parameter α.
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Table 3.  The optimal results with the highest SNR among 10 repetitions of proposed algorithm for placement 
of two, three, four transmitting antennas ( β = 0.3,α = 0).

#BS

Optimal Location Power Transmitted (mW) % Coverage

xt1 yt1 xt2 yt2 xt3 yt3 xt4 yt4 Pt1 Pt2 Pt3 Pt4 Sum Mean Std SNR

#2 30 30 90 91 – – – – 1.55 1.63 – – 3.18 70.30 13.70 − 3.18

#3 99 18 17 45 72 99 – – 1.63 1.54 1.40 – 4.56 91.38 10.01 − 0.89

#4 14 17 90 69 92 50 8 107 1.62 1.70 1.75 1.35 6.41 97.83 4.25 − 0.21
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Figure 9.  2D Visualization of the robust optimal coverage for the problems with placement of two, three, and 
four transmitters. Shown are the mean, mean+ 3Std , and mean− 3Std.
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series of possible responses that consider the degree of uncertainty by providing confidence regions or predic-
tion intervals. This is realized by resampling adopted to the uncertain component. In this study, we set the boot-
strapped sample size B = 100 , and γ = 0.05 . For each bootstrapped sample, we randomly select 30 uncertainty 
scenarios from the original sample points that were already available in the crossed array design (with the same 
sample size of 30). Subsequently, regarding the new sample sets, the mean and the standard deviation of the 
coverage are computed for the obtained robust optimal points as shown in Table 3. However, 95% two-sided 
approximations of BCI obtained by the distribution-free bootstrapping technique for the mean and the standard 
deviation of the coverage in the robust optimal points and the relevant SNR are as follows:

Figure 10 illustrates the 95% confidence regions for the mean and the standard deviation of the coverage at 
the original robust optimal points (as shown in Table 3).

Comparative study. Here, a deep comparison between the proposed hybrid surrogate/metaheuristic 
approach (Kriging/GWO) with standalone metaheuristic (GWO) and NSGAII method are provided for robust 
optimal placements of multiple transmitters problem. Results are compared in terms of accuracy (higher cover-
age rate and higher power transmitted), robustness (reliability against uncertainty with SNR criterion), and com-
putational cost (number of required function evaluations and total computation time consuming). We employ 
all three methods using different sizes of transmitters. The model’s parameters including β in Eq. (18) and α in 
Eq. (19) are adjusted to 0.5 and 0 respectively, and other parameters are tuned the same as what is mentioned in 
“The algorithm setup” section. All methods are executed 10 times separately for each size of transmitters (num-
ber of base stations) to study the effect of randomness as well. As mentioned in “The algorithm setup” section, in 
our proposed algorithm, we apply 50× 30 samples to construct the crossed array for the coverage (Eqs. (1) and 
3) using to fit Kriging surrogates for the mean and Std of coverage. In addition,  50× 30 samples are employed 
in the crossed array design to compute the mean and Std of power radius using Eq. (2) and training two relevant 
Kriging surrogates. To speed up the optimization procedure, we set grid resolution δ to 10  m, so instead of 
evaluation all possible receiver test points in network (120× 120) , we evaluate 12× 12 test points in each fitness 
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Figure 10.  The 95% two-sided confidence region obtained by free-distribution bootstrapping technique for 
placement problems with two, three, and four transmitters.
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evaluation by optimizer. The GWO optimizer which is combined with Kriging surrogates is derived to obtain 
the robust optimal solution for the mathematical optimization model described in “Mathematical optimization 
model” section. Note that the number of optimizer’s runs can be chosen large enough without worrying about 
the computational cost because the Kriging surrogates are used to predict the responses instead of the true 
model in each optimizer’ run. However, if the optimizer, e.g., GWO is used individually (not combined with 
a surrogate), let’s compute the required number of function evaluations by considering 10 search agents with 
20 maximum iterations, and 30 uncertainty scenarios to obtain statistical measures of mean and Std. The total 
number of fitness evaluations required for the standalone GWO optimizer (see “Computational cost” section) 
is equal to [10× 20× 30× (12× 12)× No.Transmitetrs] . It clear that by increasing the number of transmit-
ters in the model, the required number of function evaluations in each optimizer’s run is mounted significantly. 
To be fair comparison, the NSGAII also is adjusted to employ the same number of function evaluations. All 
three methods are derived for robust coverage optimization of cases with 2, 5, 10, 15, and 20 transmitters. The 
obtained statistical results for all three approaches are given in Table 4. As it can be seen from the obtained 
results, in terms of accuracy (higher coverage rate and higher power transmitted) and robustness against uncer-
tainty (greater SNR), the proposed Kriging/GWO (hybrid surrogate-metaheuristic) approach outperforms the 
GWO (uncombined metaheuristic) for cases with 5, 10, 15, and 20 number of transmitters (base stations). The 
GWO provides better performance in accuracy and robustness for the case with two base stations. Besides, the 
proposed hybrid approach outperforms NSGAII in cases with the sizes of 2 and 5 transmitters and provides 
competitive performance (accuracy and robustness) with NSGAII for problems with 10, 15, and 20 base stations. 
While, in a term of computational time consumption, as shown in Fig. 11, both GWO and NSGAII approaches 
significantly elapsed much more computational time compared with the proposed approach. The average com-
putational time consumed for robust optimal transmitters’ placements using the proposed approach is 350% 
and 320% less than the time elapsed using GWO and NSGAII respectively. Notably, the total time elapsed by 
the proposed hybrid approach is counted to include all algorithmic steps consisting of the sampling design for 
crossed arrays, collecting data, constructing surrogates, and running an optimizer to obtain optimal results. 
Consequently, the proposed less-expensive approach by integrating surrogate and metaheuristic (Kriging/GWO 
in this study) can be derived using more cheaply procedure both in terms of a number of required function 
evaluations and computational time consuming to effectively obtain the robust optimal placements of multiple 
transmitting antennas in coverage optimization problems under uncertainty. Here, it is worth mentioning that 
the computational time issue is more emphasized for real-time coverage analysis and optimization of such WSN 
problems in digital twins or cyber-physical systems,  see95,96.

Conclusion
This paper presented a novel algorithm for solving the homogeneous transmitter placement problem under 
uncertainty. Our methodology employs a hybrid Kriging-GWO approach combined with robust design opti-
mization. The proposed algorithm enables computing the statistical measures due to the source of variability 
(uncertainty) and evaluating the possible positions and receiver test points to obtain robust optimal placement 
of multiple transmitters at a low computational cost. Multiple objectives including the mean and the Std of the 
coverage, the total required transmitted power, as well as the reliability of the model by controlling the overlap, 
are all considered simultaneously. The proposed approach is applied effectively for robust coverage optimization 
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with two, three, and four transmitters. The comparative study is conducted to evaluate the performance of the 
proposed approach with two common optimizers of GWO (when applied standalone) and NSGAII for cases 
with different sizes of transmitting, e.g., 2, 5, 10, 15, and 20 in the model in terms of accuracy, robustness, and 
computational time consumption. The results confirm the effectiveness of the less-expensive proposed hybrid 
approach by integrating Kriging and GWO to obtain the robust optimal placement of transmitting antennas 
using much less time elapsed for computational procedure compared with standalone optimizers.

However, this study limits itself in some points that future research can be devoted to overcoming those 
limitations of the current study as follows. Other surrogates such as ANN, RBF, polynomial regression, and 
polynomial chaos expansion can be combined with also some other common metaheuristics such as NSGAII, 
PSO, ACO, and GA. Instead of conventional robust dual surface, recent developments in robust optimization 
approaches may be served to tackle the existence of uncertainty in the model,  see39,40,97,98. The proposed approach 
can manage to consider other uncertainty distributions e.g., Gaussian among the crossed array framework in 
addition of uniform distribution in this paper,  see72 for such cases with an unknown probability distribution of 
uncertainty. The optimization problem for the transmitter placement problem can be expanded to obtain the 
required number of transmitters as a new design variable. In addition, other objective functions such as trans-
mitters cost, or demand rate also can be attended to in an optimization model. Instead of transmitting antenna 
gains, uncertainty in some other physical parameters can be considered as well.

Data availability
All data generated or analyzed during this study are included in this published article and the results would 
be reproducible using the supplementary information files that are shared on the link below: Supplementary 
Information.
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