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A B S T R A C T   

Cross-linguistic differences in morphological complexity could have important consequences for language learning. Specifically, it is often assumed that languages 
with more regular, compositional, and transparent grammars are easier to learn by both children and adults. Moreover, it has been shown that such grammars are 
more likely to evolve in bigger communities. Together, this suggests that some languages are acquired faster than others, and that this advantage can be traced back 
to community size and to the degree of systematicity in the language. However, the causal relationship between systematic linguistic structure and language 
learnability has not been formally tested, despite its potential importance for theories on language evolution, second language learning, and the origin of linguistic 
diversity. In this pre-registered study, we experimentally tested the effects of community size and systematic structure on adult language learning. We compared the 
acquisition of different yet comparable artificial languages that were created by big or small groups in a previous communication experiment, which varied in their 
degree of systematic linguistic structure. We asked (a) whether more structured languages were easier to learn; and (b) whether languages created by the bigger 
groups were easier to learn. We found that highly systematic languages were learned faster and more accurately by adults, but that the relationship between language 
learnability and linguistic structure was typically non-linear: high systematicity was advantageous for learning, but learners did not benefit from partly or semi- 
structured languages. Community size did not affect learnability: languages that evolved in big and small groups were equally learnable, and there was no addi-
tional advantage for languages created by bigger groups beyond their degree of systematic structure. Furthermore, our results suggested that predictability is an 
important advantage of systematic structure: participants who learned more structured languages were better at generalizing these languages to new, unfamiliar 
meanings, and different participants who learned the same more structured languages were more likely to produce similar labels. That is, systematic structure may 
allow speakers to converge effortlessly, such that strangers can immediately understand each other.   

1. Introduction 

Languages differ greatly in how they map different meanings into 
morpho-syntactic structures (Dryer and Haspelmath, 2013; Evans and 
Levinson, 2009). Some languages appear to be relatively simple in terms 
of their morphology, while other languages are viewed as highly com-
plex. For example, English makes minimal use of verb inflection to ex-
press grammatical relations: most English verbs have only one basic 
inflection paradigm to express time, such as adding [− ed] to express past 
tense, and this inflection is consistent across grammatical persons (i.e., 
she and they receive the same inflected form). Even verbs that are 
considered irregular in English (e.g., sing, ring, buy, seek) often follow a 
systematic inflectional rule (i.e., sang, rang, bought, sought). In contrast, 
Georgian has an elaborate set of verb inflection paradigms based on 
time, grammatical person, grammatical case, mood, and more (Hewitt, 
1995; Imedadze and Tuite, 1992). Verbs in Georgian can take an 

astonishing number of different forms (estimated at around 200), and 
many verbs are truly irregular and follow unique rules, requiring 
speakers to learn the inflections of these verbs independently. Beyond 
such anecdotal examples, cross-linguistic studies have confirmed that 
languages differ in their degree of morphological complexity (Ackerman 
& Malouf, 2013; Bentz and Berdicevskis, 2016; Hengeveld and Leufkens, 
2018; Lewis and Frank, 2016; Lupyan and Dale, 2010; McCauley & 
Christiansen, 2019). 

This cross-linguistic difference in morphological complexity may 
have important consequences for learning: some languages may be 
easier to learn than others. This idea goes against a wide-spread axiom in 
the field of linguistics, which is that all languages are equally difficult to 
learn and take the same effort to acquire (Sweet, 1899). Recent work has 
challenged this axiom, and provided initial support for the premise that 
languages differ in their degree of learnability. Even though all lan-
guages are fully learnable in the long run (i.e., all children eventually 
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acquire their native language, regardless of how complex it is), lan-
guages may still differ in how well they are learned in a fixed period of 
time, and/or in how long it takes to fully acquire them. For instance, 
corpus studies report that the trajectory of children’s first language 
acquisition (L1) can vary across languages, such that the relative speed 
of learning differs for children acquiring different languages (Armon- 
Lotem et al., 2016; Bleses et al., 2008; Bleses et al., 2011; Dressler, 2003; 
Xanthos et al., 2011). Similarly, work on second language learning (L2) 
has shown that adults are better at learning some languages than others, 
suggesting that not all languages are equally learnable for adults given 
limited exposure (Kempe & Brooks, 2008; Kempe & MacWhinney, 
1998). These differences in learning outcomes, learning trajectories, and 
proficiency have been related to various factors, including morpholog-
ical complexity, i.e., the degree to which inflectional morphemes are 
informative, productive, and clearly marked. Specifically, languages 
with more regular, compositional, and transparent structures are 
generally considered to be easier to learn by both children and adults 
when compared to languages with opaque and irregular structures 
(DeKeyser, 2005; Dressler, 2003, 2010; Hengeveld and Leufkens, 2018; 
Slobin, 1985). 

While there is no widely accepted way to measure morphological 
complexity, various metrics have been used – from counting the number 
of inflected word forms per lemma (Xanthos et al., 2011), to conditional 
entropy (Ackerman & Malouf, 2013; Winters et al., 2015), type/token 
ratio (McCauley & Christiansen, 2019), and the degree of regularity in 
the mapping between forms and meaning (Cornish et al., 2009; Tamariz, 
Brown, & Murray, 2010; Tamariz and Smith, 2008). Although the 
quantitative definitions of morphological complexity vary across re-
searchers, its descriptive notion is relatively stable. Generally speaking, 
a language is considered to be simpler if it is compositional, regular, and 
transparent, i.e., if there are systematic one-to-one relations between 
units of meanings and units of form (DeKeyser, 2005; Hay and Baayen, 
2005; Hengeveld and Leufkens, 2018). For example, the word [walked] 
consists of two parts: the verbal stem [walk] and the past tense 
morpheme [-ed], which are combined in a transparent way to express 
the act of walking in the past. In comparison, the irregular past form 
[bought] cannot be as easily divided into separate bits, making it more 
holistic and opaque. Similarly, a language is considered to be more 
complex if the meanings of words are not directly predictable from their 
constituents. Such opacity can stem from multiple sources, such as 
having redundant or optional marking, syncretism, and/or a high 
prevalence of inconsistencies and irregularities. In this sense, more 
complexity is seen as the result of having less transparency. Complexity 
can also stem from having multiple inflectional paradigms and many 
obligatory grammatical rules. As such, the relation between complexity 
and transparency is not always straight-forward (Kempe and Brooks, 
2018; Kempe & MacWhinney, 1998). For example, Russian has complex 
and elaborate inflectional paradigms with multiple grammatical cases, 
which are nevertheless transparent and informative; in contrast, German 
has considerably simpler paradigms with fewer grammatical cases, but 
high levels of syncretism that render the system fairly opaque and un-
informative. In any case, the main theoretical notion of linguistic 
complexity incorporates the idea that more regularity, more trans-
parency, and more compositionality are simpler and should therefore be 
beneficial for learning. 

Intuitively, it seems reasonable that languages with more regular and 
compositional morphology will be easier to learn, given that they 
generally allow learners to derive a set of productive rules rather than 
memorizing individual forms (Kirby, 2002; Zuidema, 2003). This intu-
ition is computationally and mathematically supported by information 
theory and set redundancy compression models, which show that data 
with systematically recurring elements can be more efficiently com-
pressed into fewer bits (Karadimitriou, 1996; Kortman, 1967). More-
over, the postulated positive relation between systematicity and 
learnability is based on general characteristics of the learning system, 
such as a domain-general cognitive bias in favor of simplicity (Chater 

and Vitányi, 2003; Culbertson and Kirby, 2016). As such, the learning 
advantage of systematicity is expected to hold across one’s lifespan and 
be present in learners of all ages. In other words, both children and 
adults should benefit from having more regularity in their input. We 
return to this point in the Discussion. 

However, the causal relationship between linguistic structure and 
language learnability in both children and adults is currently untested. 
Very few studies have attempted to examine this link by investigating 
learning difficulty as a function of linguistic complexity. Only a handful 
of correlational and experimental studies have examined learning out-
comes and learning trajectories in natural languages that differ in their 
morphological complexity. These studies exhibit a mixed patterns of 
results: some report slower acquisition and worse overall proficiency for 
natural languages that are more morphologically opaque (Kempe & 
Brooks, 2008; Kempe & MacWhinney, 1998; Slobin, 1985), while others 
report similar learning rates across different natural languages (Armon- 
Lotem et al., 2016; Braginsky et al., 2019), or the opposite pattern 
altogether, i.e., that morphologically complex languages are acquired 
faster (Dressler, 2003; Xanthos et al., 2011). There are various potential 
reasons for these conflicting findings, such as different complexity 
metrics used across studies, different variables of interest, different age 
groups of learners, etc. In any case, this mixed pattern of results high-
lights the lack of decisive empirical evidence and consensus on the 
relation between systematicity and learnability in natural language. 

No study to date has systematically compared the acquisition of a 
broad yet comparable range of morphological structures using a 
controlled experimental paradigm such as artificial language learning. 
As such, there is no direct empirical evidence that languages with more 
regular and transparent structures are indeed easier to learn by children 
or adults. While direct empirical evidence for this argument is lacking, 
two studies provide initial support for this assumption. Brooks et al. 
(1993) and Monaghan et al. (2011) both conducted artificial language 
learning experiments to test the acquisition of languages that differed in 
their degree of sound-systematicity, i.e., the mapping between forms 
and categories. In these studies, participants were trained on a miniature 
vocabulary containing two word classes, corresponding to grammatical 
gender (Brooks et al., 1993) or to actions/objects (Monaghan et al., 
2011). In the arbitrary condition, there were no similarities between the 
words’ phonological forms and their grammatical classes, such that 
sounds were distributed randomly between the two classes. In Mon-
aghan et al. (2011), who tested adults, this condition was contrasted 
with a fully systematic condition, in which words from different gram-
matical classes contained distinct sounds (e.g., words for objects con-
tained fricatives while words for actions contained plosives) and with a 
partially systematic condition in which members of each noun class 
shared a subset of phonological features. In Brooks et al. (1993), who 
tested both children and adults, the arbitrary condition was only con-
trasted with a partially systematic condition. In both studies, partici-
pants were significantly better at learning the distinction between the 
two categories when there was full or partial systematicity in the map-
ping between forms and meanings, i.e., when there was a phonological 
cue indicating the nouns’ grammatical category. Brooks et al. (1993) 
showed that children and adults were similarly affected by the degree of 
systematic mapping between phonological forms and grammatical cat-
egories, and benefitted from having systematic cues in their input. These 
findings provide initial support for the idea that learning outcomes can 
be affected by the degree of systematic structure (at least in terms of 
mapping sounds to grammatical classes). But since these studies did not 
directly test the effect of morphological complexity or compositionality, 
they are not sufficient for concluding that compositional, transparent, 
and regular languages are indeed easier to learn. 

The current study aimed to fill this gap and experimentally test the 
learnability of artificial languages that vary in the degree of systematic 
structure (i.e., in how transparent, compositional, and predictable the 
mapping between meanings and labels is). We examined adults’ acqui-
sition of miniature languages that had been created by big and small 
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groups of interacting participants in a previous group communication 
experiment (Raviv et al., 2019b). Specifically, adult learners were 
trained on input languages that varied in their degree of systematic 
structure (ranging from completely unstructured languages to highly 
systematic languages) and in their group size origin (whether they had 
been created by big or small groups). After training, participants were 
tested on their knowledge of the input language in a memory test 
(measuring their reproduction accuracy on learned items) and in a 
generalization test (measuring their ability to label new, unseen items). 
We compared adults’ learning of the input languages with two questions 
in mind: (1) are more systematic languages easier to learn? And (2) are 
languages created by bigger groups easier to learn, above and beyond 
the effect of systematic structure? 

Answering question (1) was the main goal of the current study. This 
research question was motivated by the literature discussed above, as 
well as by its importance to influential theories on language evolution 
and language diversity, which are discussed below. To preview, with 
respect to Question (1), our findings confirmed the link between sys-
tematicity and learnability, showing that regardless of group size origin, 
the more structured languages were learned significantly better and 
faster by the adult learners. Moreover, we found that systematic struc-
ture was advantageous not only for learning, but also for generalization 
productivity. Question (2) was motivated by studies suggesting that 
visual signals (i.e., drawings) created by bigger groups are processed, 
learned, and reproduced faster by new individuals compared to signals 
created by pairs, despite these signals being equally complex (Fay et al., 
2008; Fay and Ellison, 2013). Therefore, we considered the possibility 
that, even when equating for the degree of structure in the language, 
languages that evolved in bigger groups may be easier to learn due to 
other features. This hypothesis by no means entails that languages of 
bigger communities are better than those of smaller communities: all 
natural languages are equally good at expressing messages, and being 
“easy to learn” does not entail any quality judgment (for more on this 
point, see Gil, 2001; Raviv, 2020, pp. 223–224). To preview our results, 
with respect to Question (2) we found no evidence of additional benefits 
for languages created by bigger groups beyond their degree of system-
atic structure. 

The hypothesis that transparent and regular grammars are more 
easily learned, at least by adults, is essential for the theoretical reasoning 
in at least two fields: (a) language evolution simulations on the emer-
gence of linguistic structure during cross-generational transmission, and 
(b) the social origin of cross-linguistic diversity. In both fields, the 
postulated causal relationship between systematic linguistic structure 
and language learning serves as a crucial assumption that underlies 
much of their motivations and conclusions. As such, it is important to 
validate this link. 

In the first line of research, language evolution models explicitly 
argue that compositional structure emerges as a consequence of learn-
ability pressures combined with expressivity pressures, and that 
compositional structure facilitates the accurate transmission of lan-
guages over multiple generations of learners, who would struggle to 
learn a holistic and unstructured lexicon (e.g., Cornish et al., 2009; 
Kirby, Cornish, & Smith, 2008; Kirby et al., 2015; Smith, 2011). At the 
core of this literature is the assumption that systematic structure is ad-
vantageous for learning in general – be it for a human child, an adult, a 
primate, or a completely simulated computer agent – and thus promotes 
the emergence and accumulation of structure over generations of 
learners. Using iterated learning and diffusion chain paradigms, multi-
ple studies have reported that artificial languages become more 
compositional (as reflected by more systematic form-meaning mapping) 
and more faithfully reproduced (as reflected by fewer transmission er-
rors) over generations (Beckner et al., 2017; Kirby, Cornish, & Smith, 
2008; Raviv and Arnon, 2018). In this field, the emergence of compo-
sitional languages is directly attributed to learning pressures: more 
systematic and predictable signals are presumably favored over gener-
ations because they are learned better (i.e., there are fewer unique forms 

to remember, making languages easier to reproduce (Cornish, 2010; 
Tamariz and Kirby, 2016). Moreover, compositional languages are 
argued to be advantageous for generalizations, allowing learners to 
overcome the “poverty of stimulus” (Kirby, 2002; Kirby, Smith, & 
Brighton, 2004; Zuidema, 2003): since learners must acquire their lin-
guistic competence from finite and partial input, languages with more 
regular and transparent structures should be favored because they allow 
learners to easily refer to new, unfamiliar meanings using the same 
system. In other words, iterated learning studies assume a close and 
causal relationship between linguistic structure and learnability, and the 
hypothesized mechanism behind the emergence of structure strongly 
relies on the intuition that more systematic languages are easier to learn 
and are more generalizable. 

Accordingly, iterated language learning studies typically report a 
simultaneous increase in both systematic structure and learnability over 
generations of learners, which is taken as evidence that more structured 
languages are easier to learn (e.g., Beckner et al., 2017; Kirby, Cornish, 
& Smith, 2008). Yet ttthese studies typically do not examine this relation 
directly, and rely on correlational evidence. As such, iterated language 
learning paradigms have not directly confirmed the causal role they 
assume between linguistic structure and learning, beyond the mediating 
variable of generation number. Nevertheless, there is some evidence in 
support of the correlation between accuracy and systematicity in such 
paradigms. For example, Tamariz and Smith (2008) found that partici-
pants who learned languages with more regular form-to-meaning 
mappings also produced languages with more regular form-to- 
meaning mappings, but participants’ accuracy in learning the input 
language was not reported. Two other studies reported a significant 
correlation between learning accuracy and producing systematic struc-
ture, albeit in the opposite postulated direction of causality: trans-
mission error was a significant negative predictor of linguistic structure 
across all generations of learners, such that participants who showed 
better learning of the input language also introduced more linguistic 
structure when reproducing the language (Johnson et al., 2020; Raviv 
and Arnon, 2018). Finally, the results of one iterated learning study 
suggested that linguistic structure and learnability are not always 
related: Berdicevskis (2012) found that even though artificial languages 
became more compositional over generations of learners, they did not 
become more learnable: there was no significant increase in reproduc-
tion fidelity over generations despite the increase in systematic struc-
ture, and there was no correlation between how compositional 
languages were and how accurately they were learned. That is, the in-
crease in linguistic structure did not facilitate learning. Together, these 
findings strengthen the need for conducting a careful examination of the 
causal relation between language learnability and systematicity. 

As for the second line of research, on the social origin of linguistic 
diversity, cross-linguistic work has found that languages spoken by big 
communities are typically less morphologically complex than languages 
spoken by small communities – a finding that has been typically 
attributed to learnability pressures caused by the presence of more adult 
second-language learners in larger communities (Bentz et al., 2015; 
Bentz and Winter, 2013; Lupyan and Dale, 2010). Specifically, the in-
verse correlation between morphological complexity and population 
size has been argued to be driven by the higher proportion of non-native 
adult speakers in larger communities, and the difficulty of adult L2 
learners in acquiring morphologically complex and opaque languages 
(Bentz and Berdicevskis, 2016; Dale & Lupyan, 2012; Lupyan and Dale, 
2010, 2016; McWhorter, 2007; Trudgill, 1992, 2002, 2009). In other 
words, the reduced morphological complexity observed in the languages 
of larger communities is hypothesized to be the direct result of the 
postulated relationship between linguistic structure and learnability: 
because adult second language learners typically struggle with learning 
languages with complex structure, languages adapt and simplify in the 
presence of many such learners (which is more typical of bigger 
communities). 

This line of reasoning includes two assumptions: (a) that the 
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presence of adult non-native speakers leads to morphological simplifi-
cation, and (b) that morphologically simpler languages are in turn ad-
vantageous for learning and use by adults. The first assumption, i.e., that 
the presence of adult non-native speakers leads to morphological 
simplification, has received consistent support from multiple sources. 
For example, artificial language learning studies report that adults’ non- 
native language learning (as simulated by insufficient exposure during 
learning) leads them to simplify morphologically complex languages 
(Atkinson et al., 2018b; Bentz and Berdicevskis, 2016), and that such 
simplifications may increment during the process of cross-generational 
transmission (Berdicevskis & Semenuks, 2020). In addition, work on 
koineization (dialect mixing) and language contact has shown that 
languages tend to simplify when several dialects come together, or due 
to long-term accommodation to second language learners as in migra-
tion scenarios (Kerswill & Williams, 2000; Trudgill, 1992, 2002, 2008, 
2009). Supporting the latter point, experimental work confirms that 
native speakers tend to adapt more to the syntactic choices of non-native 
than native confederates, even when they produce simpler, ungram-
matical sentences (Loy and Smith, 2019). Thus, there is ample empirical 
evidence for the assumption that the presence of adult non-native 
speakers can induce language simplification.1. The second assumption 
(i.e., that morphologically simpler languages are advantageous for 
learning and use by adults), has not been tested directly. Nevertheless, it 
receives indirect support from the literature on second language 
learning, which demonstrates that adults generally struggle with 
learning and using morphology in a second language: adults L2 speakers 
typically show optional or variable use of verbal and nominal inflections 
related to case marking, tense, agreement, aspect, and gender marking 
(DeKeyser, 2005; Haznedar, 2006; Parodi, Schwartz, & Clahsen, 2004), 
and learn faster when languages exhibit more reliable morphological 
cues (Kempe & MacWhinney, 1998). 

An alternative explanation for the documented correlation between 
morphological complexity and community size is that, instead of being 
mediated by the proportion of adult non-native speakers and their dif-
ficulty in language learning, it is directly derived from differences in 
community size (Nettle, 2012; Raviv et al., 2019b; Wray and Grace, 
2007). According to this hypothesis, the total number of speakers in the 
community can affect language structure during peer-to-peer diffusion, 
and there is no need to assume the prevalence of second language 
learning as a mediating factor: big communities might favor simpler and 
more transparent linguistic structures simply because they are big. The 
general idea is that members of bigger communities generally face a 
greater communicative challenge as they need to interact with more 
people with whom they have less shared history. Consequently, mem-
bers of bigger communities may be under a stronger pressure to develop 
more systematic and transparent languages that are presumably easier 
to remember, and that can in turn facilitate convergence between 
strangers (Wray and Grace, 2007). This hypothesis is supported by 
typological studies on newly emerging sign languages, which show that 
within the same time period, languages that developed in bigger and 
sparser communities were more systematic and more conventionalized 
than languages developed in smaller and tightly knit communities (Meir, 
Israel, Sandler, Padden, & Aronoff, 2012; Meir and Sandler, 2019). 
Furthermore, this hypothesis was recently tested experimentally using a 
group communication paradigm, in which groups of four or eight 
interacting participants needed to create new artificial languages to 
communicate with each other about different novel scenes (Raviv et al., 
2019b). Results showed that larger groups developed more systematic 
and compositionally structured languages over the course of the 
experiment, and did so faster and more consistently than small groups. 

Furthermore, the emergence of more systematic and compositional 
languages in larger groups was advantageous for communication, with 
more linguistic structure being associated with better convergence In 
this study, community size alone had a causal role in shaping the 
emergence of more systematic linguistic structure, and its results suggest 
that more systematic languages may facilitate convergence between 
more individuals. 

Notably, this line of reasoning still assumes that systematicity is 
advantageous for adults: systematic languages are presumed to be 
selected for in bigger groups because they are more efficient for learning 
and use. But is this indeed the case? Would the languages developed by 
larger groups in Raviv et al. (2019b) be more easily acquired by naïve 
individuals? This question draws a direct link between the two litera-
tures discussed above, i.e., iterated language learning and the social 
origin of linguistic diversity: if larger communities tend to have more 
systematic languages (as was also shown in the research on linguistic 
diversity; e.g., Lupyan and Dale, 2010), and if more systematic lan-
guages facilitate language learning by the next generation of learners (as 
argued by iterated language learning theories; e.g., Kirby, Cornish, & 
Smith, 2008), then the languages of larger communities should be more 
easily acquired by naïve adults. 

We also set out to investigate whether there may be additional ad-
vantages to languages developed in bigger groups, above and beyond 
their degree of systematicity. This question was motivated by two sets of 
findings. First, computational models of iterated learning have shown 
that languages adapt to fit agents’ cognitive biases over generations, 
such that agents’ weak individual tendencies become amplified as lan-
guages are transmitted by more and more individuals (Kirby, Smith, & 
Brighton, 2004, Kirby, Dowman, & Griffiths, 2007; Reali and Griffiths, 
2009; Smith, 2011). This result suggests that languages that evolved in 
larger populations may be even more fitted to individuals’ cognitive and 
learning biases, as they have passed the processing filter of more in-
dividuals and have been used by more people. As such, it is possible that 
languages developed in larger groups would have additional properties 
(e.g., word form, affect) that would facilitate their learning even when 
having similar degrees of systematic structure as languages of small 
groups. Second, earlier studies suggest that this is the case for non- 
linguistic visual signals, namely drawings. When groups of eight peo-
ple played multiple rounds of Pictionary, their final drawings were su-
perior to those developed by pairs in terms of their learnability and 
processing by new individuals, despite being comparable in visual 
complexity (Fay et al., 2008; Fay and Ellison, 2013): adult learners were 
more accurate in guessing the meanings of drawings that evolved in 
larger groups, and were able to learn them faster, recognize them faster, 
recall them faster, and reproduce them with better fidelity compared to 
drawings that evolved in pairs. This advantage was attributed to the 
large groups’ drawings being more iconic, i.e., having more transparent 
form-to-meaning mappings. Fay et al. (2008) concluded that the greater 
“fitness” of signs developed by big communities was derived from the 
increased diversity of potential signs: larger groups have a greater pool 
of variants to draw from, allowing for the selection of simpler signs. If 
such reasoning extends to language, then the greater input variability in 
the big groups in Raviv et al. (2019b) may similarly benefit learners in 
the long run by favoring the selection of more transparent signs. 
Although there is no direct evidence that languages of larger commu-
nities are easier to learn, one study tested the effect of group size on the 
complexity and transparency of linguistic conventions that were created 
by two vs. three individuals (Atkinson et al., 2018a). In that study, dyads 
and triads used English to describe novel icons to each other, and their 
final descriptions were transmitted to naïve learners who had to match 
them to their referents. Atkinson et al. (2018) found that matching ac-
curacy did not differ significantly between the two- and three-person 
conditions, providing no evidence that larger communities create 
more transparent descriptions. However, it is possible that the group size 
manipulation used in that study (i.e., comparing two to three people) 
was not sufficiently strong, and/or that examining descriptions in 

1 This is, of course, not the only source of language change in the real world. 
There are many other paths and motivations for language change that do not 
involve second language learners (e.g., random drift, prestige bias, reanalysis, 
grammaticalization, etc.). 
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participants’ pre-established language does not give rise to transparency 
differences. Therefore, it is still possible that novel communication 
systems developed in big groups are easier to learn after all. Again, this 
would not imply that languages of bigger communities are in any sense 
better than those of small communities. 

2. The current study 

The goal of the current study was to experimentally test the causal 
relationship between language complexity and language learnability, as 
well the role of community size in shaping such patterns. To this end, we 
used an artificial language learning paradigm in which adults needed to 
learn a new miniature language with labels for describing different types 
of novel scenes (see Procedure). After training, participants were tested 
on their knowledge of the input language in two ways: (a) a memory 
test, testing participants’ reproduction accuracy on the scene-label 
pairings; and (b) a generalization test, testing participants’ ability to 
label new, unseen scenes. 

Participants were trained on different input languages, all of which 
had been created in a previous experiment by real groups of either four 
or eight interacting participants playing a communication game (Raviv 
et al., 2019b). We contrasted learning across several conditions by 
selecting ten different input languages, which varied in their degree of 
systematic structure and in their group size origin in a counter-balanced 
design, while being relatively similar in their average word length and 
internal confusability (see Materials). For example, a participant could 
learn a high-structured language, a medium-structured language, or a 
low-structured language, either of which could have been created by a 
big group or a small group. 

In order to promote open-science and increase the transparency and 
credibility of our research, the entire study (e.g., design, procedure, 
predictions, analyses plans, etc.) was pre-registered on OSF and is 
available online: https://osf.io/9vw86/. Additionally, all the data 
collected in this experiment and the scripts for generating all analyses 
can be openly found at https://osf.io/d5ty7/. 

For our confirmatory analyses, the main prediction was that lin-
guistic structure would significantly affect language learnability, such 
that more compositional languages with systematic form-to-meaning 
mappings would be easier to learn (i.e., more accurately learned). 
Therefore, we expected that participants who learned more structured 
languages would show higher reproduction accuracy. We also hypoth-
esized that group size would have an additional effect on language 
learnability, beyond the effect of linguistic structure: languages created 
by bigger groups were postulated to be easier to learn compared to 
languages created by small groups, above and beyond their degree of 
systematic structure. Therefore, we expected that across all structure 
levels, participants who learned languages that were created by big 
groups would show higher reproduction accuracy. We also planned to 
carry out exploratory analyses to examine the speed of learning across 
conditions, and to test the effect of linguistic structure and community 
size on participants’ ability to generalize the language to a new set of 
meanings. 

3. Methods 

3.1. Participants 

We analyzed data from 100 adults (79 women) between the ages of 
18 and 35 (mean age = 22.9y). This sample size was determined in 
advance using a power analysis based on pilot data and power simula-
tions for a range of possible effect sizes (see Appendix A). We tested two 
additional participants who did not complete the experiment, and so 
their data was not included in the analyses. Each participant was paid 
10€. All participants were native Dutch speakers, and had no reported 
visual or reading difficulties. Ethical approval was granted by the Fac-
ulty of Social Sciences of Radboud University Nijmegen. 

3.2. Materials 

We selected ten languages from a bigger database of artificial lan-
guages, which were created in a previous experiment (Raviv et al., 
2019b). The full database contained 144 languages that were created by 
individual participants in either small or larger groups after completing 
a group communication game. Each language consisted of 23 scene-label 
pairings. i.e., 23 written labels that corresponded to 23 dynamic visual 
scenes. The scenes varied along three semantic dimensions: shape, angle 
of motion, and fill pattern. Each scene consisted of one out of four 
possible shapes, moving repeatedly in a straight line from the center of 
the screen in a given direction. Additionally, each scene had a unique 
blue-hued fill pattern. There were three versions of the stimuli, which 
differed in the distribution of shapes and their associated angles. 

Each language in the database had a structure score, which reflected 
the degree of systematic mapping between labels and meanings in the 
language (Kirby, Cornish, & Smith, 2008; Kirby et al., 2015; Raviv et al., 
2019a). The structure score for each language was calculated as the 
correlation between the pair-wise semantic distances between scenes’ 
features and the pair-wise string distances between their labels. First, we 
calculated the semantic differences between different scenes, resulting 
in a similarity matrix for all pairs of scenes in the language. This was 
done using Hamming distances, in the following way: First, two scenes 
had a semantic difference of 1 if they differed in shape, and a semantic 
difference of 0 if they included the same shape. Second, the difference 
between two scenes’ angles was calculated and divided by the maximal 
distance between angles (180 degrees) to yield a continuous normalized 
score between 0 and 1. Then, the difference scores for shape and angle 
were added, yielding a possible semantic distance between 0.18 and 2 
for each pair of scenes in the language. Next, we calculated the string 
differences between all pairs of labels in the languages using normalized 
Levenshtein distances, which is the minimum number of character 
changes (insertions, deletions or substitutions) needed in order to 
transform one label into the other, divided by the length of the longest 
label. This resulted in a similarity matrix for all pairs of labels in the 
language. Finally, the two sets of pair-wise distances (i.e., string dis-
tances and meaning distances) were correlated using the Pearson 
product-moment correlation, yielding a measure of systematic structure, 
i.e., whether similar meanings were expressed using similar strings. 

This continuous measure was divided into five equally sized bins of 
possible structure scores2: low structure (0.0–0.2), low-medium struc-
ture (0.2–0.4), medium structure (0.4–0.6), medium-high structure 
(0.6–0.8), and high structure (0.8–1.0). Fig. 1 gives a general description 
of the structural properties of languages in each structural bin, along 
with an illustration. Low structure scores reflect the absence of sys-
tematic mapping between labels in the language and their correspond-
ing scenes, resulting in a holistic lexicon where labels seem to be 
randomly assigned to the scenes regardless of their semantic features 
(see Fig. 1 for an illustration). In low structured languages, each scene 
has an opaque label that cannot be decomposed into small components 
based on scenes’ shape or direction of motion. In contrast, high structure 
scores reflect the existence of systematic mappings between meanings 
and labels, resulting in compositional languages in which similar se-
mantic features are expressed using similar part-words (see Fig. 1 for an 
illustration). Specifically, a highly systematic language would include a 
consistent part-word for describing each of the four shapes (e.g., “tup” 
for Shape 1 and “fest” for Shape 2), and a consistent part-word for 
describing the direction of motion (e.g., “o” for up, “i” for right, and 
“oi” for up-right). In addition to the structure score, we characterized 

2 Although correlations can potentially range from − 1 to 1, there were no 
languages with a correlation below 0 (i.e., a languages with “anti-systematic” or 
“counter-systematic” mapping between labels and scenes). The structure scores 
of the languages in the data set ranged from 0.07 (i.e., an unstructured, holistic 
language) to 0.9 (i.e., a fully systematic, compositional language). 
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each language using two other measures: average word length, i.e., the 
average number of characters in the language’s labels; and confusability, 
i.e., the average normalized Levenshtein distance between all possible 
pairs of labels in a language, capturing the phonological similarity 
across all labels in a given language. 

We then selected ten languages from the database to be used as input 
languages for the current study (Fig. 1; see Appendix B for the full list of 
stimuli). Specifically, we picked two languages from each of the five 
structure score bins described above: one language that was created by a 
small group, and one language that was created by a big group. This 
resulted in a 2 × 5 factorial design, with the two factors being group size 
(with two levels: big vs. small) and structure score (with five levels of 
structure, ranging from low to high). Note that although we used these 
descriptive bins to select our input languages, structure score was 
treated as a continuous variable in all our analyses (ranging from 0.07 in 
the low structure bin, to 0.84 in the high structure bin). Ten participants 

were assigned to learn each of the ten input languages using a pre-made 
randomization list. 

Since we wanted to ensure that differences in language learnability 
can indeed be attributed to their structural properties and/or group size 
origin, we picked languages that were comparable in several ways. First, 
all languages fell within a reasonably similar range of average word 
length and confusability scores. Under the assumption that longer and 
more confusable words are harder to learn (Laufer, 2009; Willis and 
Ohashi, 2012), we chose languages from the lower half of the distribu-
tions of these two measures, i.e., languages with relatively short words 
(i.e., between 4 and 7 characters) and relatively low confusability (i.e., 
between 0.14 and 0.37). Second, languages in the same structure bin 
were comparable in terms of their descriptive grammatical properties 
and had similar types of consisted mappings (as judged by the authors; 
see Fig. 1 and Appendix B). Third, languages within the same structure 
bin had similar numbers of irregulars, as counted by the authors. Fourth, 

Fig. 1. An illustration of the structure levels of input languages learned by participants in the experiment. The axis represents languages’ structure scores, ranging 
from 0 to 1. For descriptive purposes, this continuous measure can be divided into five equally sized bins: low structure (0.0-0.2), low-medium structure (0.2-0.4), 
medium structure (0.4-0.6), medium-high structure (0.6-0.8), and high structure (0.8-1.0). Each bin can be characterized by a different degree of systematicity, 
which is described verbally below it. We included illustrations of three miniature lexicons: a language with low structure in light green, a language with medium 
structure in green, and a language with high structure in dark green. For example, in the low structured language, there is no similarity between the labels for scenes 
with similar shapes (e.g., moof, wuit) or for scenes with similar directions (e.g., wuit, pofs). In the high structured language, part-labels are consistently associated 
with a given shape (e.g., fest, tup) or with a given direction (e.g., ui, oi). The direction morphemes are also compositional, and are comprised of two meaningful parts: 
for example, the morpheme for the direction up-right (oi) is a combination of the morpheme for up (o) and the morpheme for right (i). The grey dots on the axis point 
to the structure scores of ten specific languages originally created in a group communication game (Raviv et al., 2019b) which were selected as the input languages 
for this experiment. From each of structure bin, we selected one language that was created by a small group and one language that was created by a big group. 
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across the different structure bins, differences in structure scores were 
balanced with group size, so that it was not the case that one group size 
condition was consistently higher/lower in structure compared to the 
other. The structure scores of the selected languages can be seen in 
Fig. 1. For the full set of input languages and their detailed descriptions, 
see Appendix B. 

Finally, we created 13 new scenes for each stimuli version. These 
additional scenes were not included in the learning phase and the 
memory test, and were presented to participants for the first time during 
the generalization test. The new scenes varied along the same semantic 
dimensions as the 23 original scenes in the input languages, and were 
comprised of one of the four possible shapes moving in one of the 
possible directions. Each new scene included a new combination of 
shape and angle of motion (with each of the four shapes appearing in at 
least two new scenes), and a completely different blue-hued fill pattern. 
That is, the new scenes matched the general meaning space of the lan-
guage, but included new combinations of shape, direction, and fill 
pattern which were unfamiliar to the participants and not present 
beforehand. 

3.3. Procedure 

Participants were told they were about to learn a new fantasy lan-
guage (“Fantasietaal” in Dutch) to describe different scenes of moving 
shapes, and that their goal was to learn the language as best as they 
could in order to succeed in a subsequent test. The experiment consisted 
of two phases: (1) a learning phase, which was comprised of three 
leaning blocks with a similar procedure; And (2) a test phase, which was 
comprised of two parts, i.e., a memory test and a generalization test. 
Example screenshots of each phase of the experiment, along with 
detailed descriptions of the accompanying instructions and procedure, 
can be found at https://osf.io/mkv5r/. 

The learning phase consisted of three blocks. The first learning block 
included half of the language (12 scene-label pairings), the second 
learning block included the other half of the language (11 scene-label 
pairings), and the third learning block included the entire language 
(23 scene-label pairings), effectively combining the first and second 
learning blocks. Each input language was randomly divided into two 
halves in advance, so that the set of target scenes in the first two blocks 
was identical for all participants in a given condition. We decided to 
divide the languages in half following the results of a pilot study, which 
suggested that participants can get overwhelmed and demotivated when 
exposed to all 23 scene-label pairings at once. The order of appearance 
of target scenes within a given block and during the test phase was 
randomized separately per participant at the beginning of the 
experiment. 

Each learning block comprised of three tasks: passive exposure, 
guessing, and production. During passive exposure, participants were 
exposed to scene-label pairings one by one in a random order, with each 
target label appearing on the screen together with its corresponding 
scene for the duration of 10 s. In this task, participants only had to look 
at their screen and try to remember the scene-label pairings. In the 
guessing task, participants were presented with the target labels one by 
one in a random order, and needed to select the scene to which that label 
referred to from a set of possible scenes. In the first two blocks, this set 
included four scenes (i.e., the target scene and three distractors), while 
in the third block this set included eight scenes (i.e., the target scene and 
seven distractors). The distractors were randomly selected for each 
participant and for each trial from the set of possible scenes in that 
block. Participants received feedback after each guess indicating 
whether they were right or wrong, along with the target label, the cor-
rect scene, and the scene they selected in case it was different than the 
correct scene. In the production task, participants were presented with 
the target scenes without labels one by one in a random order, and 
needed to type their correct labels using their keyboard. Participants’ 
letter inventory was restricted, and matched the letter inventory of the 

original input languages from Raviv et al. (2019b): it included a hyphen, 
five vowel characters (a,e,i,o,u), and ten consonants characters (w,t,p,s, 
f,g,h,k,n,m), which participants could combine freely. Participants 
received feedback after each production, along with the target scene, the 
correct label, and the label they typed in case it was different than the 
correct label. 

In the first two learning blocks, which included only half the lan-
guage, each of the three tasks (i.e., passive exposure, guessing, pro-
duction) was repeated twice with all the available target scenes-label 
pairings for that block, so that each scene-label pairing appeared twice 
in each task and six times in total. In the third learning block, which 
included the entire language, each task was repeated once, so that all 
scene-label pairings appeared once in each task and three times in total. 
This resulted in a total of nine exposures per scene-label pairing during 
the entire learning phase: three times during the passive exposure task, 
three times during the guessing task, and three times during the pro-
duction task. 

Following the learning phase, participants completed a test phase. 
The first part of the test phase was a memory test, in which participants 
demonstrated how well they had learned the input language. During the 
memory test, participants were presented with each of the 23 target 
scenes without labels one by one in a random order, and typed in a label 
for them. The second part of the test was a generalization test, in which 
participants were asked to use the language they had just learned to 
label new scenes that they had not seen before. Participants were pre-
sented with 13 unfamiliar scenes (see Materials) without labels one by 
one in a random order, and typed in a label for each of them based on 
their acquired knowledge of the Fantasy language. Participants were 
asked to label the new scenes as if they were communicating to another 
person, who had learned the same Fantasy language as they did but 
knew no other language (i.e., no use of Dutch, English, or any other 
language was allowed). No feedback was provided during the memory 
and generalization tests, and participants’ letter inventory was restricted 
in the same manner as in the production phase. 

After the test phase, participants filled out a questionnaire about 
their performance in the experiment, including questions such as “How 
hard was it to learn the Fantasy language?”, and “Did you notice any-
thing about the structure of the Fantasy language during the experi-
ment?”. Finally, all participants were debriefed by the experimenter. 

4. Measures 

4.1. Binary Accuracy 

This measure reflects whether participants were correct or incorrect 
on a given trial during the learning phase or the memory test, and is 
calculated as binary response accuracy. If participants produced/ 
guessed the target label correctly, accuracy equaled 1; otherwise, it 
equals 0.3 

4.2. Production similarity 

This continuous measure reflects how closely participants repro-
duced their input language by measuring the similarity between a target 
label (i.e., an original label as it appeared in the input language) and the 
corresponding label produced by a participant in production trials 
(during the learning phase and during the memory test). For each pro-
duction trial, we calculated the normalized Levenshtein distance be-
tween the label produced by the participant and the original input label. 
The normalized Levenshtein distance is the minimum number of 

3 In cases where the target label described more than one scene (i.e., hom-
onym), participants’ accuracy in guessing trials (during the learning phase) 
would equal 1 if they had guessed any one of the possible scenes associated with 
that target label. 
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character changes (insertions, deletions or substitutions) needed in 
order to transform one label into the other, divided by the length of the 
longest label. This distance was subtracted from 1 to represent string 
similarity, i.e., how much the labels participants produced resembled 
the labels they had learned. High production similarity indicates good 
reproduction fidelity, with participants producing labels that are similar 
to those they learned (i.e., a score of 1 indicates that the produced label 
matched the target label exactly). Low production similarity indicates 
poor reproduction fidelity, with participants producing labels that are 
very different from those they learned. 

4.3. Guessing similarity 

This continuous measure reflects how well participants learned the 
label-scene mapping in the input language by measuring the similarity 
between the target scene (i.e., the correct scene given a specific label) 
and the scene selected by the participant during guessing trials. We used 
Hamming distances to quantify the semantic differences between the 
selected scene and the target scene based on the differences in scenes’ 
shapes and direction of motion. This measure was calculated in a similar 
way to the semantic distances used for calculating the structure score 
(see Materials). High guessing similarity indicate that, given a target 
label, participants guessed a scene which was similar to the target scene 
in terms of its features (i.e., a similarity score of 2 indicates that the 
selected scene matched the target scene exactly). Low guessing simi-
larity indicates that, given a target label, the participant’s guess was very 
different from the target scene (i.e., a similarity score of 0 indicates that 
the participant selected a maximally different scene with a different 
shape going to the opposite direction). 

4.4. Generalization score 

This continuous measure reflects the degree of similarity between 
the labels participants produced for each new scene during the gener-
alization test, and the labels they produced for familiar scenes during the 
memory test. A high generalization score reflects the fact that, given an 
unfamiliar scene, participants produced a label which was as similar as 
possible to the labels they produced for familiar scenes with similar 
features (e.g., the same shape and/or the same direction). That is, their 
labels during the memory and the generalization test followed the same 
principles. A low generalization score reflects the fact that, given an 
unfamiliar scene, participants produced a label which was different from 
the labels they produced for familiar scenes with similar features. That 
is, the labels they produced for unfamiliar scenes did not resemble those 
they produced in the memory test. Quantifying participants’ general-
ization behavior was not a trivial task: this measure was a first attempt to 
quantify the complex realm of generalizations in artificial languages, 
and as such should be interpreted with caution. For a detailed discussion 
of this measure see Raviv (2020, pp. 189–191). 

For each participant, the generalization score is the normalized 
correlation between (a) the pair-wise semantic distances between each 
new scene and all familiar scenes, and (b) the pair-wise string distances 
between each new label produced in the generalization test and all la-
bels produced for familiar scenes during the memory test. This corre-
lation was normalized to account for the fact that high-structure 
languages offer more possibilities to generalize to begin with. The 
generalization score is calculated in the following way: For each new 
scene in the generalization test, we first calculated the semantic differ-
ences between that new scene and all familiar scenes using Hamming 
distances, in the same way as described above for structure score and for 
guessing similarity. Second, we calculated the string differences be-
tween the new label produced for this scene and the labels produced for 
familiar scenes during the memory test using normalized Levenshtein 
distances, in the same way as described above for structure score and for 
production similarity. We repeated this calculation for all new scenes 
and their corresponding labels. Then, these two sets of pair-wise 

distances (i.e., string distances and meaning distances between new and 
familiar scenes/labels) were correlated using the Pearson product- 
moment correlation. Finally, this correlation was scaled using a pro-
cedure inspired by the min-max normalization procedure (also called 
unity-based normalization and feature-scaling), yielding the final 
generalization score per participant. This normalization procedure was 
implemented in order to ensure that all conditions show similar ranges 
of generalization scores, and that we do not bias against low structured 
languages, which by default would show lower generalization scores 
given that participants’ productions for familiar items are likely to be 
less structured in such languages. Specifically, we linearly transformed 
the correlation scores to fit in the range [0,1], and scaled across different 
conditions so that the final generalization score was proportionate to the 
range of achieved values in that condition: low generalization scores 
relative to the range of possible scores are mapped to values closer to 0, 
and high generalization scores relative to the range of achieved scores 
are mapped to values closer to 1. This was done using the formula x’ =
(x-min(x))/(max(x)-min(x)), where min(x) in the lowest value for x 
achieved by a participant across all conditions (− 0.069), and max(x) is 
the highest value for x achieved by a participant in a specific condition 
(i.e., max(x) varied for different input languages, with each input lan-
guage having a different maximal value). For example, the highest value 
achieved by a participant in a low-structure language was 0.5, while the 
highest value achieved by a participant in a high-structure language was 
0.88. 

4.5. Generalization convergence 

This continuous measure reflects the degree of similarity between 
the labels produced during the generalization test by different partici-
pants who learned the same input language. For each of the new scenes 
in the ten input languages, we calculated the normalized Levenshtein 
distances between all pairs of labels produced by different participants 
for the same new scenes. The average distance between all pairs of labels 
was subtracted from 1 to represent string similarity, i.e., how much the 
labels of different participants resembled each other. A high conver-
gence score indicates that participants who learned the same language 
also produced similar labels for the unfamiliar scenes during the 
generalization test. A low convergence score indicates that participants 
who learned the same language produced different labels for unfamiliar 
scenes during the generalization test. 

5. Analyses and Results 

We analyzed the data using mixed effects regression models gener-
ated by the lme4 package in R (Bates et al., 2016; R Core Team, 2016). 
All reported p-values were generated using the pbkrtest package 
(Halekoh and Højsgaard, 2014), which uses the Kenward-Roger 
Approximation to calculate conservative p-values for models based a 
relatively small number of observations. All analyses are reported in 
Appendix C using numbered models, which we refer to here. The data 
and the R code to generate all analyses can be openly accessed at htt 
ps://osf.io/d5ty7/. 

5.1. Confirmatory analysis: Final Binary Accuracy (Fig. 2a) 

As declared in the preregistration (under “Analysis Plan”), our main 
model had final binary accuracy (i.e., whether participants were right or 
wrong in the memory test) as the dependent variable, and included fixed 
effects for GROUP SIZE ORIGIN (dummy-coded, with small groups as refer-
ence level) and STRUCTURE SCORE (continuous, centered), as well as random 
intercepts for participants and scenes. Since we suspected that the effect 
of STRUCTURE SCORE would be non-linear (Beckner et al., 2017; Raviv et al., 
2019b), we used Likelihood ratio tests to compare models with 1- and 2- 
degree polynomials (generated using the poly() function in R to avoid 
collinearity). These model comparisons revealed that the best fitting 
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model (Model 1) included both a linear and a quadratic term (see Ap-
pendix C). 

Results from this model showed that STRUCTURE SCORE was a positive 
significant predictor of participants’ binary accuracy during the memory 
test (Model 1: β = 31.47, SE = 6.93, z = 4.54, p = 0.00001), and that this 
effect was non-linear (Model 1: β = 31, SE = 6.87, z = 4.51, p =
0.00001). Specifically, the effect of STRUCTURE SCORE on accuracy followed 
a U-shape: participants’ binary accuracy was poorer when trained on 
medium structure languages than when trained on low structured lan-
guages, but the highest when trained on high structured languages 
(Fig. 2a). The U-shape pattern is evident in the global minimum of the 
polynomial function predicted by the model, which can be directly 
calculated when running the same model without the orthogonal poly-
nomials and comparing its derivative to 0. After re-centering, we found 
that the minimum value for binary accuracy was obtained when struc-
ture equals 0.36, which is within the medium structure bin. In other 
words, participants’ performance was worst when learning semi- 
structured languages, and the increase in structure only benefited ac-
curacy as languages became highly systematic. The effect of GROUP SIZE 

ORIGIN was not significant, with languages originating from big and small 
groups eliciting similar levels of accuracy (Model 1: β = 0.48, SE = 0.29, 
z = 1.67, p = 0.096). 

5.2. Exploratory analysis: Final Production Similarity (Fig. 2b) 

Originally, we believed that binary accuracy was a good measure to 
examine learning, considering an “all or nothing” approach. However, 
during data collection we observed that this measure was too crude, and 
did not reliably reflect how well participants learned the languages. 

Specifically, many participants were able to reproduce the language 
with relatively high fidelity - but not perfectly - which the binary ac-
curacy measure did not capture. For example, if a participant correctly 
typed five letters out of a six-letter label, the binary accuracy measure 
would treat this one-letter error as if the entire label was incorrect. This 
led to an overestimation of errors, with some participants receiving low 
scores despite making very minor mistakes (e.g., one letter difference 
between the label they learned and the label they reproduced). As such, 
we decided to use a more subtle measure of participants’ learning ac-
curacy, namely, production similarity (see Measures). This continuous 
measure reflects the degree of reproduction accuracy more reliably by 
quantifying the similarity between participants’ input and output lan-
guages, and is broadly used in iterated language learning paradigms 
(Kirby, Cornish, & Smith, 2008; Kirby, Tamariz, Cornish, & Smith, 
2015). We therefore ran an identical model to that described in the 
confirmatory analysis section, but used production similarity during test 
as the dependent variable instead of binary accuracy during test. 
Importantly, the predictions for this measure were identical to those of 
binary accuracy: more structured languages should be reproduced more 
accurately, i.e., show more production similarity. Accordingly, the 
model for production similarity had the same effect structure as the 
binary accuracy model reported above, and included fixed effects for 
GROUP SIZE ORIGIN (dummy-coded, with small groups as reference level) 
and STRUCTURE SCORE (continuous, centered), and random intercepts for 
participants and scenes. As in the confirmatory analysis, Likelihood ratio 
tests favored the 2-degree polynomial model (Model 2) with a linear and 
a quadratic term for the effect of STRUCTURE SCORE (see Appendix C). 

Results from this model showed that STRUCTURE SCORE was a positive 
significant predictor of production similarity during the memory test 

Fig. 2. (A) Binary Accuracy and (B) Production Similarity at the final memory test, as a function of learned languages’ structure score and group size origin. Each 
point represents the average accuracy of a single participant. The thick line represent the model’s estimate, and its shadings represent the model’s standard error. 
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(Model 2: β = 4.41, SE = 0.68, t = 6.49, p < 0.0001). This effect was also 
non-linear (Model 2: β = 1.6, SE = 0.68, t = 2.34, p = 0.02), yet in an 
exponential way: participants produced labels that were increasingly 
more similar to those they learned as structure increased, so that the 
advantage of structure was stronger in highly structured languages 
(Fig. 2b). That is, the increase in structure benefited accuracy most as 
languages became more systematic. As for binary accuracy, we calcu-
lated the global minimum of the polynomial function predicted by the 
model for production similarity, and found that the minimum value for 
reproduction fidelity was obtained when structure equaled 0.18, which 
is within the low structure bin. That is, participants’ performance was 
worst when learning unstructured languages. The effect of GROUP SIZE 

ORIGIN was not significant, with languages originating from big and small 
groups eliciting similar levels of production accuracy (Model 2: β =
0.007, SE = 0.03, t = 0.26, p = 0.8). 

5.3. Exploratory analyses: Learning Trajectory (Fig. 3) 

As declared in the preregistration (under “Analysis Plan”), we also 
planned to perform an exploratory analysis to examine participants’ 
learning trajectory during the three blocks of the learning phase. Spe-
cifically, we were interested in seeing whether improvement in perfor-
mance during the first three blocks was modulated by structure score 

and/or group size (e.g., are highly structured languages learned faster?). 
To this end, we generated three models in which the dependent variable 
was either binary accuracy, production similarity, or guessing similarity 
(see Measures). All three models had the same effects structure, and 
included fixed effects for BLOCK NUMBER (continuous, centered), GROUP SIZE 

ORIGIN (dummy-coded, with small groups as reference level), STRUCTURE 

SCORE (continuous, centered), and the interaction terms BLOCK NUMBER X 
GROUP SIZE ORIGIN and BLOCK NUMBER X STRUCTURE SCORE. All models included 
by-participant and by-scene random intercepts, as well as random by- 
participant slopes with respect to the effect of BLOCK NUMBER. We used 
Likelihood ratio tests to compare 1- and 2-degree polynomial models 
with respect to the effect of STRUCTURE SCORE (see Appendix C), and found 
that models with a quadratic term were favored in the case of binary 
accuracy (Model 3) and guessing similarity (Model 5), but not for pro-
duction similarity (Model 4). 

All three models yielded similar results (Fig. 3), and showed that 
performance significantly improved over learning blocks, with partici-
pants showing higher binary accuracy (Model 3: β = 0.29, SE = 0.05, z 
= 5.99, p < 0.0001), higher production similarity (Model 4: β = 0.04, SE 
= 0.007, t = 5.57, p < 0.0001) and higher guessing similarity (Model 5: 
β = 0.04, SE = 0.01, t = 3.74, p = 0.0003) over blocks. There was also a 
significant effect of STRUCTURE SCORE for all measures, indicating that 
across blocks, performance was overall better on more structured 

Fig. 3. Changes in Mean (A) Binary Accuracy, (B) Production Similarity, and (C) Guessing Similarity over learning blocks as a function of learned languages’ 
structure score. The colored lines and their shadings represent the models’ estimates and standard errors, averaged over the five descriptive structure levels (i.e., 
collapsed over big and small groups’ languages). 
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languages (Model 3: β = 66.49, SE = 10.67, z = 6.23, p < 0.0001; Model 
4: β = 0.34, SE = 0.05, t = 7.35, p < 0.0001; Model 5: β = 14.65, SE =
2.13, t = 6.88, p < 0.0001). This effect was non-linear for binary ac-
curacy and guessing similarity, suggesting that the advantage of struc-
ture for these two measures was increasingly higher as structure 
increased (Model 3: β = 51.83, SE = 10.74, z = 4.83, p < 0.0001; Model 
5: β = 8.07, SE = 2.14, t = 3.76, p = 0.0003). Additionally, there was a 
significant interaction between STRUCTURE SCORE and BLOCK NUMBER for bi-
nary accuracy (Model 3: β = 25.88, SE = 4.32, z = 6, p < 0.0001; β =
14.46, SE = 4.76, z = 3.04, p = 0.0024) and production similarity 
(Model 4: β = 0.05, SE = 0.02, t = 2.83, p = 0.00564), indicating that the 
improvement in participants’ performance over blocks in these two 
measures was even faster for more structured languages, i.e., the 
learning slope was steeper for highly systematic languages. This inter-
action was not significant for guessing similarity (Model 5: β = 1.75, SE 
= 1.19, t = 1.48, p = 0.14), suggesting that the slope of improvement in 
participants’ guessing performance over blocks was similar across all 
structural levels. Finally, GROUP SIZE ORIGIN did not significantly affect 
performance on any of our three measures (Model 3: β = 0.23, SE = 0.19, 
z = 1.19, p = 0.23; Model 4: β = 0.001, SE = 0.03, t = 0.04, p = 0.97; 
Model 5: β = 0.01, SE = 0.03, t = 0.41, p = 0.69) or on participants’ 
learning trajectories (Model 3: β = 0.04, SE = 0.07, z = 0.54, p = 0.59; 
Model 4: β = − 0.01, SE = 0.01, t = − 1.37, p = 0.17; Model 5: β = − 0.01, 
SE = 0.02, t = − 0.86, p = 0.39). 

5.4. Exploratory analyses: Generalization Behavior (Fig. 4) 

As declared in the preregistration (under “Analysis Plan”), we also 
planned to examine participants’ behavior during the generalization 
phase. In particular, we wanted to see whether participants would 
generalize the linguistic patterns of their input language to new, unseen 

scenes. If participants learned a systematic language and learned its 
underlying structure, generalizations could potentially take place in the 
form of reusing the learned structural patterns (i.e., part-words) when 
producing new labels (e.g., combining existing morphemes for shape 
and motion to describe a new scene with a new combination of shape 
and motion). If participants learned an unstructured language, gener-
alizations could potentially take place in the form of reusing existing full 
words to describe scenes with similar elements (i.e., creating hom-
onyms), or combining exiting words. In both cases, if the participants 
generalized their input language and maintained its patterns, then their 
productions for each new scene during the generalization test should be 
similar to their productions of the input language during the memory 
test, resulting in a high generalization score (see Measures). If partici-
pants did not generalize and instead produced random, unrelated labels, 
then their generalization score should be lower. This score was also 
adjusted to take into account the fact that low-structured languages 
allow for less generalizations to begin with. To test participants’ 
generalization behavior, we used a general linear regression model with 
normalized generalization score as the dependent variable, and fixed 
effects for GROUP SIZE ORIGIN (dummy-coded, with small groups as refer-
ence level) and STRUCTURE SCORE (continuous, centered). We used Likeli-
hood ratio tests to compare 1- and 2-degree polynomial models with 
respect to the effect of STRUCTURE SCORE, and found that the model with 
only a linear term (Model 6) was favored (Appendix C). 

Results from this model showed that STRUCTURE SCORE was a significant 
predictor of generalization score: participants who had acquired more 
structured languages also generalized more (Model 6: β = 0.51, SE =
0.07, t = 7.22, p < 0.00001; Fig. 4). There was no significant effect of 
GROUP SIZE ORIGIN (Model 6: β = 0.01, SE = 0.04, t = 0.31, p = 0.76), 
suggesting that generalization behavior was similar for languages orig-
inating from big and small groups. 

Fig. 4. Generalization as function of learned languages’ structure score and group size origin. Each point represents the normalized generalization score of a single 
participant. The thick line represent the model’s estimate, and its shadings represent the model’s standard error. 
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5.5. Exploratory analyses: Generalization Convergence (Fig. 5) 

Finally, we looked for similarities in participants’ generalizations: do 
participants in the same condition make similar generalizations, i.e., 
produce similar labels for unseen scenes? We assumed that when lan-
guages are highly systematic and rule-governed, they allow for trans-
parent and productive labeling – resulting in different participants 
producing the same labels, i.e., generalizing in the same way. By 
contrast, when languages are unstructured or inconsistent in their 
mapping of labels to meanings, it may be less clear what or how to 
generalize (e.g., which features of the scenes are relevant?) and there-
fore less clear how to label new scenes. This may result in participants 
producing new labels more randomly, or attempting to make general-
izations based on the idiosyncratic features of scenes (i.e., fill-pattern). 
In other words, we predicted that highly structured languages would 
facilitate convergence amongst participants, potentially enabling them 
to understand each other even without previously interacting. To test 
this prediction, we generated a mixed effect model with generalization 
similarity (convergence) on each unfamiliar scene as the dependent 
variable. The model had fixed effects for GROUP SIZE ORIGIN (dummy-coded, 
with small groups as reference level) and STRUCTURE SCORE (continuous, 
centered), and random intercepts with respect to scenes. We used 
Likelihood ratio tests to compare 1- and 2-degree polynomial models 
with respect to the effect of STRUCTURE SCORE, and found that the model 
with only a linear term (Model 7) was favored (see Appendix C). 

Results from this model showed that STRUCTURE SCORE was a significant 
predictor of generalization score, so that participants who learned more 
structured languages also produced labels that were more similar to one 
another (Model 7: β = 0.74, SE = 0.03, t = 21.63, p < 0.00001; Fig. 5). 
There was no significant effect of GROUP SIZE ORIGIN (Model 7: β = − 0.03, 

SE = 0.02, t = − 1.71, p = 0.09), suggesting that languages originating 
from big and small groups did not differ in their convergence. 

6. Discussion 

In this pre-registered study, we used an artificial language learning 
paradigm to test the effects of systematic structure and community size 
on language learnability by adults. We compared participants’ acquisi-
tion of a broad yet controlled set of input languages for describing novel 
dynamic events (see Fig. 1). These input languages varied in their degree 
of linguistic structure (ranging from low to high systematicity) and in 
their group size origin (created by either big or small groups in a pre-
vious communication experiment, Raviv et al., 2019b). Language 
learnability was assessed by examining participants’ final reproduction 
accuracy, their learning trajectories over blocks of training, and their 
ability to generalize the language they learned to a new set of unseen 
events. 

Our main prediction was that participants would show better 
learning of languages with more systematic structures. This prediction 
was motivated by the literature reviewed in the Introduction (e.g., 
second language learning, iterated learning), which argued for a causal 
link between the grammatical structure of languages and their relative 
ease of learning, at least by adults. Specifically, more regular and 
transparent languages with more systematic form-to-meaning mappings 
are considered to be easier to learn. Therefore, we hypothesized that 
linguistic structure would positively affect learnability, such that lan-
guages with more systematic grammars would be better learned. We 
expected that this learning advantage would be reflected in higher ac-
curacy during a memory test, and potentially also in a faster improve-
ment in performance during the learning phase. Additionally, we 

Fig. 5. Generalization convergence across participants as function of learned languages’ structure score and group size origin. Each point represents the average 
convergence (i.e., label similarlity) between ten participants on each of the ten input languages. The thick line represent the model’s estimate, and its shadings 
represent the model’s standard error. 
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reasoned that systematic and rule-governed languages would allow for 
clear and productive labeling (Ackerman & Malouf, 2013; Kirby, 2002). 
Therefore, we predicted that more structured languages would be more 
easily generalizable to new meanings. To test this prediction, we 
assessed participants’ ability to generalize the language they learned in 
order to produce new labels for unseen events. All of these predictions 
were borne out: adults were better and faster at learning languages with 
highly systematic structure, and produced more generalizations when 
learning such languages. We discuss these results in details below. 

In addition, we asked whether there was an effect of group size 
beyond linguistic structure, such that languages that were created by 
bigger groups would be easier to learn even when equating for the de-
gree of systematicity. We found no evidence that this was the case: 
across all measures and all analyses, we found no significant differences 
between the languages created by big and small groups. Notably, we 
cannot draw any strong conclusions from this null result. On one hand, it 
is possible that once the level of linguistic structure is controlled for, 
there are no additional benefits to learning languages created by big 
groups. In other words, the most relevant difference between big and 
small communities may, in fact, be their tendency to develop different 
degrees of systematicity (Raviv et al., 2019b; Lupyan and Dale, 2010). 
On the other hand, it is also possible that community size does affect 
language learnability beyond linguistic structure, but that we did not 
capture this difference in the current study. Specifically, the lack of 
significant group size effects in our study may be attributable to our 
stimuli selection procedure: when selecting the input languages for this 
experiment, we intentionally controlled for several linguistic features 
that may make languages more or less learnable above and beyond their 
structure score (i.e., word length, confusability, number of irregulars). It 
is possible that these selection criteria incidentally washed away rele-
vant differences between the two group size conditions that could affect 
the languages’ learnability. For example, perhaps word length was, in 
fact, one of the features that differentiate the languages created by big 
and small groups, and by controlling for it we have eliminated relevant 
variation. We discuss these possibilities in detail in Raviv (2020, pp. 
192–195). In sum, it is currently unknown whether group size impacts 
learning beyond the effect of linguistic structure, and more research is 
needed in order to confirm or refute this possibility. 

With respect to our main prediction, the results from the confirma-
tory analysis showed that the relationship between language learn-
ability and linguistic structure followed a U-shape (Fig. 2a): although 
participants’ mean accuracy was, as predicted, highest when learning 
highly structured languages, it was poorest when learning medium 
structured languages, and not when learning low structured languages 
(as one would expect if the relationship between structure and learning 
was simply linear). That is, learners struggled most with learning lan-
guages that were partly or semi-structured, i.e., languages that con-
tained some patterns but also multiple irregulars and inconsistencies. 
This pattern, however, was not fully replicated in a similar exploratory 
model, where we examined participants’ learning by using a more subtle 
measure of reproduction fidelity (i.e., production similarity) that re-
flected the degree of similarity between the labels participants learned 
and the labels they eventually reproduced. Results from this model also 
supported a non-linear relationship between structure and learnability, 
albeit an exponential relation and not U-shaped: participants produced 
more similar labels to those they learned as linguistic structure 
increased, and especially so for highly compositional languages 
(Fig. 2b). In other words, the benefit of linguistic structure for learning 
was proportionate to the level of structure in the language, and 
increased as structure increased. Similar findings were obtained from a 
set of exploratory analyses that investigated participants’ learning tra-
jectories over the course of the experiment: participants’ performance 
was better on more structured languages throughout the training phase, 
and gradually improved across learning blocks. Moreover, the repro-
duction accuracy of participants who learned highly structured lan-
guages improved more quickly. 

Together, our results confirm that a higher degree of linguistic 
structure is advantageous for language learning, and show that lan-
guages with highly structured grammars are learned faster and more 
accurately by adults. These findings are in line with our main prediction, 
and corroborate the postulated link between the degree of systematicity 
in the language and its relative learnability by adult learners. This link is 
important for theories of language evolution and language diversity 
discussed in the Introduction, which rely on it as an explanatory 
mechanism. Although the non-linear nature of the relationship between 
language structure and language learnability warrants further explana-
tion (which we discuss below), our results do support a causal rela-
tionship between them: highly regular and systematic morphologies 
indeed seem easier to learn for adults. This conclusion strengthens the 
premise that not all grammatical systems are equally learnable (at least 
not by adults in a limited time), and has broader implications for the-
ories on second language learning. Specifically, our study supports the 
claim that cross-linguistic differences in structural complexity and 
morphological opacity can result in different proficiency levels for adult 
L2 learners learning different languages. 

In our view, these results can potentially extend to language acqui-
sition by children. This would imply that children’s language learning 
trajectories may also differ cross-linguistically depending on the degree 
of systematicity in their native language (Slobin, 1985). Even though 
children and adults differ substantially in their learning biases, learning 
strategies, and generalization patterns (Culbertson and Newport, 2015; 
Hudson Kam & Newport, 2005, 2009; Newport, 2020; Schuler, 2017), 
we predict that such differences would not cancel out the positive effect 
of systematicity on learning and memorization. Because the positive link 
between systematicity and learnability is based on general principles of 
compressibility and simplicity (e.g., Chater and Vitányi, 2003; Cul-
bertson and Kirby, 2016; Kortman, 1967), it is highly likely that children 
would also benefit from the presence of more regularity in their input. 
The possibility that children would not benefit from regularity at all (i.e., 
showing a flat learning curve across all levels of structure), or that they 
would show the opposite pattern altogether (i.e., better learning of low- 
structured languages) seems unlikely. If anything, the fact that children 
have a much stronger bias in favor of regularity and tend to generalize 
more than adults (e.g., Hudson Kam & Newport, 2005) suggests that 
children may benefit even more from systematic linguistic structure. 
Future work should test this hypothesis directly by examining whether 
more structured languages are also learned better by children. 

Our results also show that systematic structure can be advantageous 
for making generalizations: in an exploratory analysis, we found that 
participants generalized significantly more as linguistic structure in 
their input language increased. Specifically, participants who learned 
more systematic languages created new labels that matched the patterns 
of their input language more closely. This finding suggests that, in 
addition to being beneficial for learning and memorization, an impor-
tant advantage of linguistic structure is its productivity. That is, learners 
can potentially exploit transparent, systematic, and regular patterns 
found in their language to make informed guesses about unknown forms 
of words based on exposure to known forms, allowing them to effec-
tively produce new labels for unfamiliar meanings. However, given that 
these results were based on a preliminary, exploratory measure, they 
should be taken with caution and require further experimental valida-
tion. Specifically, there was no prior measure of generalizations in 
artificial languages that we could rely on, and as such it was not clear 
how best to quantify it (especially in low structured languages with no 
obvious structure). Moreover, we cannot be sure what the overall dis-
tribution of possible generalization scores was, and whether it was 
similar across different input language conditions. We discuss the po-
tential limitations of this measure in (Raviv, 2020, pp. 189–191). 
Nevertheless, the advantage of systematicity for generalizations was also 
evident when looking at participants’ self-reported behavior in the final 
questionnaire: all participants learning languages with high systematic 
structure indicated that they “knew” how to label the new scenes in the 
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generalization test, and some of them did not even notice that these 
scenes did not appear during training. 

In addition to being beneficial for individuals’ generalization 
behavior, high structure languages were advantageous for potential 
communication between individuals, i.e., convergence. When we 
examined the new labels produced for unseen events by different par-
ticipants who learned the same language, we found that participants 
who learned more structured languages produced labels that were 
significantly more similar. That is, systematic structure led different 
participants to produce similar labels for new meanings without previ-
ously learning them and without previously interacting with each other. 
This finding suggests that systematicity can allow strangers to converge 
effortlessly: people who never interacted before could potentially 
communicate successfully about new events – and immediately be un-
derstood. This finding supports the postulated mechanism behind larger 
communities’ tendency to develop more systematic languages (Meir, 
Israel, Sandler, Padden, & Aronoff, 2012; Meir and Sandler, 2019; Raviv 
et al., 2019b). Small communities typically have tightly connected 
networks of individuals who are highly familiar with each other 
(Granovetter, 1983), and can therefore rely on common ground and 
shared history when communicating about novel events. In contrast, 
bigger communities have more strangers (i.e., individuals rarely or 
never interact; Granovetter, 1983), who cannot rely on shared history to 
support mutual understanding. Nevertheless, they need to be able to 
understand each other when interacting for the first time. As such, it was 
argued that members of bigger communities are under a stronger pres-
sure to develop transparent, predictable, and systematic structures that 
aid convergence and allow strangers to successfully communicate 
(Nettle, 2012; Wray and Grace, 2007; Raviv et al., 2019b). Although we 
cannot draw any direct causal inferences from the current study, our 
findings support this hypothesis by showing that the benefits of sys-
tematic linguistic structure go beyond learnability, and that system-
aticity can aid communication and productivity in general language use. 

Notably, the relationship between linguistic structure and language 
learnability was not a straight-forward, linear relationship. Although we 
did predict that this relationship may be non-linear (e.g., that it would 
be stronger or weaker as structure increases), we were not expecting a U- 
shape pattern where completely unstructured languages are easier to 
learn than medium structured languages. Rather, we hypothesized that 
holistic languages with no systematic structure whatsoever would be 
harder to learn than languages that exhibit some systematic structure, i. 
e., that any increase in structure would be advantageous for learning. 
Counterintuitively, participants’ final binary accuracy suggested that 
the hardest languages to learn were those that exhibit some structure, as 
opposed to none. Even when looking only at participants’ final pro-
duction fidelity, it was not the case that completely holistic and un-
structured systems were harder to learn. Rather, low-structured 
languages and medium-structured languages showed similar production 
fidelity. However, this nonlinear pattern may not actually hold in nat-
ural languages, and might not faithfully represent speakers’ true 
learning biases. Real-world natural languages are never truly holistic or 
structure-free: there are no known languages which are fully suppletive 
or consist only of unpredictable inflections (Ackerman & Malouf, 2013). 
Instead, natural languages are inherently quasi-regular, and typically 
consist of some regular and transparent patterns alongside pockets of 
opacity and exceptions to the rule (Kempe & Brooks, 2008). Since the 
low-structure languages in our experiment do not really resemble nat-
ural languages, it is possible that the non-linear relationship we 
observed between language learnability and linguistic structure was 
caused by our artificial choice of stimuli, and does not extend to the real- 
world. If natural languages realistically range only from medium- 
structure to high-structure, then the actual relevant relationship be-
tween systematicity and learning may indeed be linear. 

While it is possible that a non-linear relationship between language 
learnability and grammatical structure is less relevant for natural lan-
guage environments as explained above, the nonlinear result obtained in 

this study (i.e., that partly structured languages are not easier to learn 
than unstructured languages) is still puzzling. In particular, our original 
expectation was based on findings from two artificial language learning 
studies that examined the benefit of systematic sound-mapping for 
learning (Brooks et al., 1993; Monaghan et al., 2011). In those studies, 
languages with partially consistent mapping between phonological 
features and noun classes were learned better than completely arbitrary 
languages. Importantly, the stimuli used in those studies can also be seen 
as unrepresentative of natural languages, given that all natural lan-
guages have some degree of iconicity and are never completely arbitrary 
(Perlman, Little, Thompson, & Thompson, 2018). Yet despite the equally 
artificial nature of their stimuli, those studies showed that partial sys-
tematicity did aid learning. As such, the unnaturalness of fully un-
structured languages does not exempt us from explaining this 
unpredicted pattern and the discrepancy from previous studies. 

A tentative explanation for the nonlinear relationship we found be-
tween learnability and systematicity is that, although partial structure 
can provide some regularity in the form of statistical cues for meaning, it 
might also result in more uncertainty and a high cognitive load for 
learners. The inconsistent patterns in medium structured languages may 
be similarly or even more confusing to learn than a set of unrelated 
words given (a) participants’ learning strategies, and (b) cue validity. 
First, let us consider that learners are trying (explicitly or implicitly) to 
build hypotheses about potential linguistic rules (MacWhinney, 1978). 
This idea is supported by studies showing that speakers automatically 
attempt to decompose pseudo-words and non-words into smaller com-
ponents in a lexical similarity task (Post et al., 2008): any stimulus that 
can be potentially interpreted as ending in an inflection, whether real or 
not, is responded to more slowly than an unambiguous stimulus. 
Moreover, adults tend to assume that unpredictable variation is, in fact, 
meaningful, and tend to treat random patterns as if they depend on 
factors not yet discovered (Perfors, 2016). Such findings suggest that 
speakers try to figure out the underlying structure of word forms, and 
that morphosyntactic ambiguity can therefore elicit processing costs and 
learning difficulties when these hypotheses are not met Consequently, 
participants’ learning strategy may differ across conditions. Let us as-
sume that all learners start out with an item-based learning strategy and 
initially rely on memorizing individual words. Learners exposed to 
highly systematic languages may gradually detect consistent patterns in 
their input (i.e., part-words that are reguarly associated with semantic 
features) and consequently form rules and abstractions (Kempe & 
Brooks, 2008; Tomasello, 2000). However, this switch from item-based 
learning to rule-learning can only occur when there are productive rules 
in the language, i.e., when forming a generalization is more efficient 
than storing lexical forms individually. In low-structured languages, 
there are no such productive rules: there are no meaningful or useful 
patterns in the language, and word forms appear at random. After 
several attempts to form abstractions, learners of completely unstruc-
tured languages may realize that there are always more irregulars than 
regulars no matter which rule they form, and therefore abandon the 
search altogether. In this case, learners of low structured languages may, 
by hypothesis, “give up” on looking for rules after a short period of time, 
and simply focus on memorizing the holistic lexicon in a purely item- 
based manner (i.e., rote learning). This process is evident in natural 
languages too, where some grammatical features are random and 
require learners to simply memorize them (e.g., the grammatical gender 
of names for inanimate objects in German). But crucially, learners of 
medium structured languages may face an especially challenging task 
since they need to realize that only some, but not all, of their input is 
systematic (e.g., shapes may have consistent markings, but angles 
don’t). Learners of such languages may be motivated to keep looking for 
systematic cues and abstractions, even when these do not exist. The fact 
that their input contains regularities with respect to some features (i.e., 
shape) but not others may lead to more confusion and even frustration 
when compared to learners of low structured languages. Note that even 
if we abandon such a rule-based learning model in favor of associative 
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learning, i.e., learning as gradual strengthening of the association be-
tween co-occurring elements of the language, the absence of valid and 
reliable cues would still hinder learning (Kempe & MacWhinney, 1998). 

In any case, our finding that the relation between linguistic structure 
and learnability was not linear in adult learners (i.e., so that holistic 
languages are not necessarily more difficult to learn for adults) poses a 
potential problem for iterated language learning models, which rely on a 
learning advantage of some structure compared to none (Kirby, Cornish, 
& Smith, 2008; Kirby, Tamariz, Cornish, & Smith, 2015; Smith, 2011). 
Specifically, studies on the cultural evolution of compositionality via 
iterated learning have shown that compositional linguistic structure 
gradually emerges from a state of a holistic lexicon over multiple gen-
erations of learners, be it simulated computer agents, adult participants, 
or children. Crucially, this slow accumulation in structure is typically 
attributed to learnability pressures, i.e., to agents’ difficulty in memo-
rizing a completely unstructured lexicon. Accordingly, such models 
predict that the learning advantage provided by linguistic structure 
should already be present in the very early stages of language evolution, 
such that even the smallest degree of added regularity in the input 
should facilitate learning. One way to reconcile these claims with our 
findings is to argue that creating linguistic structure has additional 
benefits to language users, above and beyond the benefits to memory. 
Indeed, our study suggests that this is the case: highly systematic lan-
guages are favored not only because they are more learnable by adults, 
but also because they are more predictable and allow for clearer gen-
eralizations and quick convergence between individuals. This idea res-
onates with early iterated learning models (Kirby, 2002; Smith et al., 
2003), which stress the benefit of linguistic structure for generalizations: 
although agents are usually not exposed to the entire repertoire of the 
language, they must be able to produce labels to new events despite their 
partial exposure. Another possibility is that the relationship between 
learnability and systematicity is only non-linear in adults but not in 
children: while adult learners do not seem to benefit from the existence 
of partial regularities in their input, children might. This hypothesis is in 
line with studies showing a stronger bias towards regularization and 
generalizations in children compared to adults (e.g., Hudson Kam & 
Newport, 2005): children might be even more sensitive to systematicity 
than adults and may generalize their input even more. 

7. Conclusions 

The current study tested the acquisition of different artificial lan-
guages that varied in their degree of systematic structure and in their 
community size origin. We found that more linguistic structure gener-
ally benefited adults’ language learning, with highly structured lan-
guages learned fastest and most accurately. At the same time, the 
relationship between language learnability and linguistic structure was 
not straight forward: high systematicity was indeed advantageous for 
learning, but adults did not seem to benefit from partly or semi- 
structured languages (i.e., languages that contained some patterns but 
also multiple irregulars and inconsistencies). Crucially, our results sug-
gest that systematic structure is not only beneficial for memory and 
learning, but also for generalizations and convergence. Participants who 
learned more structured languages were better at generalizing the lan-
guage they learned to new, unfamiliar meanings. Moreover, different 
participants tended to create similar new labels as structure increased. 
That is, more systematicity facilitated convergence and mutual under-
standing between strangers. Finally, we found no evidence that com-
munity size affected learnability beyond the degree of systematic 
structure: The languages that evolved in big and small groups were not 
significantly different in how accurately or how quickly they were 
learned. 
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