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This review article aims to summarise recent developments in Alfvén resonance

theory, with a focus on applications to magnetospheric ultra-low frequency

(ULF) waves, though many of the ideas are relevant for applications in other

fields as well. The key aspect we treat is how Alfvén resonance manifests in a

fully 3-D varying medium. The prerequisite ideas are developed in a reasonably

comprehensive introduction, which would be a good starting point for any

interested reader looking to gain an understanding of the Alfvén resonance

process, as well as where to find associated reading. Themain part of the review

is split into three sections. We firstly consider results from numerical simulations

of relatively simple magnetic field geometries, such as 2-D and 3-D dipoles, to

develop the fundamental properties of 3-D Alfvén resonances. Secondly, we

review previous simulations in more general magnetic field geometries,

reconciling these results with those from the simpler dipole cases. Thirdly, in

light of these numerical results, we review theoretical studies using various

analytical methods to find approximate solutions to the pertinent

magnetohydrodynamic (MHD) equations. The review is concluded with a

discussion of these different approaches, as well as linking these ideas to

their importance for observations. Finally, we discuss potential future

developments in this research area.
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1 Introduction

Magnetohydrodynamic (MHD) wave processes operate throughout the heliosphere,

from the solar corona to planetary magnetospheres. The MHD approximation requires

the assumption of large length and time scales, which suits the description of, for example,

low frequency plasma waves of a scale size on the order of the magnetosphere or a coronal

loop. Indeed, MHD has been successfully used for decades to further our understanding of

such oscillations. This review will predominantly be placed within the context of Earth’s

magnetosphere, however, theMHDwave process elucidated will have applications further

afield, to the other planetary magnetospheres and the low β solar corona. At Earth, the

lowest frequency, largest scale plasma waves are called ultra-low frequency (ULF) waves.

They have wide-ranging importance, from driving field-aligned currents which energise
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particles to precipitate into the upper atmosphere generating

aurora (e.g. Milan et al., 2001; Rankin et al., 2005), to the

interaction with energetic radiation belt particles causing

acceleration, transport or loss (Elkington et al., 1999, 2003;

Degeling et al., 2007; Zong et al., 2009; Claudepierre et al.,

2013; Mann et al., 2013; Zong et al., 2017).

We focus on a particular MHDwave process known bymany

names depending on the field in which it is studied: fast-Alfvén

wave coupling, Alfvén resonance, field line resonance and

resonant absorption. All of these terms describe the transfer

of energy from a global wave which can propagate across

magnetic field lines, the MHD fast wave (henceforth simply

called the fast wave/mode), to a local, strictly field-aligned wave,

the MHD Alfvén wave (Alfvén, 1942). This energy transfer

occurs when there is a frequency matching (i.e., resonance)

between the two waves. At Earth, Dungey (1955) first made

the connection between long period (a few minutes) magnetic

field oscillations observed by ground magnetometers, and Alfvén

waves standing along geomagnetic field lines. It was only later

explained that the observed spatial variation and occurrence of

these waves (Samson et al., 1971) could be attributed to the

previously described wave-coupling process known at Earth as

field line resonance (FLR) (Chen and Hasegawa, 1974;

Southwood, 1974).

The most natural way to describe the development of FLR

theory is to separate studies by the number of spatial dimensions

in which the model equilibrium is inhomogeneous. At first, only

a 1-D variation in the plasma equilibrium was considered,

allowing the Alfvén speed to vary radially across a uniform,

straight background magnetic field (Southwood, 1974; Kivelson

and Southwood, 1986; Inhester, 1987). Known as the

hydromagnetic box model, this is the simplest configuration

to provide the required inhomogeneity to couple fast and

Alfvén waves (in a uniform medium the waves are

decoupled). The resulting Alfvén wave has a displacement/

magnetic field perturbation in the azimuthal direction. By

convention this is termed a toroidally polarised Alfvén wave,

after the magnetic rather than electric field orientation.

In the 1-D regime, several important characteristics of FLR were

established; properties whichwere later also proved to hold in 2-D. In

the absence of dissipation (i.e., ideal MHD), assuming there exists a

consistent fast wave to drive the resonance, the Alfvén wave

amplitude will grow continuously in time. The spatial width of

the resonance will also decrease to a delta function, as is typical

of a driven harmonic oscillator without damping. Dissipation, in the

form of finite ionospheric conductivity, limits the resonance

amplitude, reaching the steady state where energy fed in to the

resonance from the fast wave balances that dissipated through

ohmic heating in the ionosphere (Southwood, 1974). At this

point, the resonance will have a finite width, which depends upon

the ratio of ionospheric and Alfvén conductances as well as the

gradient of the Alfvén frequency (Southwood and Allan, 1987; Mann

et al., 1995).

The persistence of FLR in 2-D was investigated by a plethora

of numerical studies using, for example, cylindrical (Allan et al.,

1985, 1986a,b) and dipole (Lee and Lysak, 1989, 1990) magnetic

field geometries to provide the required inhomogeneity.

Analytical efforts also proved fruitful. Wright and Thompson

(1994) considered orthogonal, curvilinear, field-aligned

coordinates, assuming a potential magnetic field which was

invariant in the azimuthal direction. Through Frobenius series

solutions the authors derived expressions for the resonance

amplitude in such a system. Further analytical studies have

been conducted using dipolar magnetic fields invariant with

azimuth (Chen and Cowley, 1989; Leonovich, 2001), also

showing the efficacy of FLR in this ‘2-D’ regime.

There are many other works which focused more on the

effect of fast mode structure in the magnetosphere, than on the

addition of extra inhomogeneous spatial dimensions. For

example, Wright and Rickard (1995) discuss how a broadband

source at the magnetopause excites fast eigenmodes of a MHD

waveguide, which then excite discrete FLRs. The medium

however, only varies radially and it is equivalent to the ‘1-D’

scenario discussed above. In this review, we will focus on the

resulting Alfvén wave structure, as opposed to the details (albeit

very important) of the fast mode temporal and spatial structure.

It should also be stated that observations will not be discussed

comprehensively in this review, with the focus being on

theoretical and modelling efforts. There are several other

reviews on the more general topic of ULF waves which

provide a vast amount of information for the interested

reader. Hughes (1994) gives an excellent historical perspective

on the development of the field, discussing the combination of

observations, theory and modelling which developed our

collective understanding. Nakariakov et al. (2016) looks to

consolidate MHD wave research across the heliosphere,

highlighting the similarities and differences between previous

research in the solar corona and Earth’s magnetosphere. Wright

andMann (2006) review the structure of the fast modes of Earth’s

outer magnetosphere (global eigenmodes) and discuss the

implications for FLRs. A very comprehensive review of the

field of magnetospheric ULF waves (at the time) is given by

Southwood and Hughes (1983).

The aim of this review is to present recent findings on the

extension of the FLR process to 3-D non-uniform plasma

environments. To this end, it is worth introducing studies

which broke the often used assumption of azimuthal

symmetry (i.e. no variation of the equilibrium with magnetic

local time), albeit in the hydromagnetic box geometry. Schulze-

Berge et al. (1992) investigated the problem analytically, allowing

the density to vary in all three directions with a straight

background magnetic field. They found Alfvén resonances

persist in such a setting, with the resonance condition being

satisfied on a surface which depends upon the chosen density

profile, but which does not necessarily align with the azimuthal

direction. That is to say, Alfvén waves of an intermediate
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polarisation, between radial (poloidal) and azimuthal (toroidal),

would satisfy the resonance condition. The authors interestingly

comment on the consequence of this for satellite observations of

FLR, showing that both radial and azimuthal magnetic field

components would form the resonance. This concept will be

treated in detail in later sections.

Lee et al. (2000) used a numerical model with an Alfvén speed

profile which varied in both directions perpendicular to the

straight background magnetic field, to model FLRs on the

nightside. They found that rather than FLRs forming on a

given radial shell of field lines, they now formed tangential to

surfaces of constant Alfvén speed, similarly to the resonant

surface described by Schulze-Berge et al. (1992). Therefore,

FLRs were no longer strictly toroidally polarised, but polarised

to align with contours of the Alfvén speed. Similar results related

to the modelling of resonant absorption in a coronal loop were

presented by Terradas et al. (2008). Russell and Wright (2010)

considered an analogous problem, again showing the persistence

of FLR under non-uniform plasma conditions both numerically

and analytically. Figure 1 reproduces the fourth panel from

Figure 3 of Russell and Wright (2010) to help demonstrate

these ideas pictorially. Displayed is a contour plot of the

energy density in the equatorial (x, y) plane, which shows a

clear accumulation of energy around a particular curved path.

Field lines on this path support resonant Alfvén waves, and the

Alfvén frequency is constant along this path, i.e., it forms a

resonant contour. The Alfvén wave polarisation changes

smoothly along the contour, determined entirely by the

adopted density profile.

These studies have all used uniform, straight magnetic fields.

A critical aspect of more realistic magnetic geometries which is

therefore ignored in these works is that the Alfvén frequency of a

field line varies with the wave polarisation. That is to say, a

poloidal Alfvén wave and a toroidal Alfvén wave of the same field

line have different frequencies (Dungey, 1954; Radoski, 1967;

Cummings et al., 1969). This occurs due to the different

convergence of magnetic field lines in the directions

perpendicular to the field, and will become apparent from the

Alfvén wave equation developed later in this review. This

difference in frequency underpins most of the research which

is to follow, and therefore it is appropriate to introduce this idea

as thoroughly and explicitly as possible.

Consider a fixed global fast driving frequency, ωd. In a

straight background magnetic field, there will be a resonant

field line at a given L-shell (where L labels the set of field

lines which cross the magnetic equator at a radial distance

equal to L), say Lr, such that the resonance condition ωA

(Lr) = ωd, for Alfvén frequency ωA, is satisfied. This location

is unique i.e. the FLR exists at one radial location (assuming a

density profile such that there is a monotonic variation of ωA(L)).

However, in a dipole field the Alfvén frequency depends on the

wave polarisation, and permits many L-shells to satisfy the

resonance condition simultaneously. In other words, the

L-shell for which a toroidal Alfvén wave polarisation satisfies

the resonance condition will be different from the L-shell for a

poloidal Alfvén resonance. This enforces a resonant region

(rather than a single location), which is termed the Resonant

Zone, over which FLRs can exist (Wright and Elsden, 2016). The

polarisation of resonant Alfvén waves varies smoothly over this

region, and therefore there exists an infinite family of solutions to

the 3-D resonance problem. The question then becomes, which

of these solutions are relevant for a given equilibrium?

In the sections which follow, we will develop the different

models which have yielded answers to the above question,

building in complexity. The review is structured as follows:

Section 2 discusses the analysis of 3-D FLRs in 2-D and 3-D

dipole magnetic field geometries using orthogonal field-aligned

coordinate systems; Section 3 treats more general magnetic fields

using non-orthogonal field-aligned coordinates; Section 4

considers analytical efforts to find approximate solutions to

the 3-D FLR problem; Section 5 summarises the current state

of this field and discusses future research directions and

unanswered questions.

2 3-D Alfvén resonances in dipole
magnetic fields

2.1 2-D (Line) dipole with a 3-D density
profile

2.1.1 Model setup
We begin with the simplest modelling configuration to

highlight the implications of the Alfvén frequency variation

with polarisation. In this section, we consider a 2-D dipole

magnetic field which is invariant in z, together with a 3-D

FIGURE 1
Fourth panel from Figure 3 of Russell and Wright (2010).
Result from a numerical simulation of FLR, showing accumulation
of energy density along a resonant contour in the (x, y) plane.
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density variation to provide a 3-D inhomogeneous medium. A 2-

D dipole magnetic field provides a significant difference in the

toroidal and poloidal Alfvén frequencies of a field line (in fact

more than the 3-D dipole (see pg. 126 Elsden, 2016)). The 2-D

dipole can be pictured as a 3-D dipole which has been unfurled

and straightened out in the azimuthal direction, such that there is

no variation in the magnetic field with azimuth. A field-aligned

coordinate system can naturally be prescribed to such a potential

dipole field, by defining the magnetic field in terms of a scalar

potential ψ and vector potentialA such that B � ∇ψ � ∇× (Aez).
In standard cylindrical polar coordinates (R, ϕ, z) this yields

ψ � B0R
2
0

R
sin ϕ, (1)

A � A0R0

R
cos ϕ, (2)

with A as the z-component of the vector potential A and at

(R, ϕ) = (R0, 0), the background magnetic field strength B = B0
and A = A0 = B0R0. Unfortunately, these ‘standard’ 2-D dipole

coordinates are very poorly suited for numerical computations.

Equal steps in the value of each coordinate yield vastly different

distances in real space at different points along the field line.

Therefore a uniformly spaced numerical grid based on these

coordinates will dramatically under-resolve certain regions, and

over-resolve others, as very well explained and visualised by

Kageyama et al., 2006, Figure 2). To overcome this, alternative

spatial coordinates that are functions of the standard coordinates,

α(A), β = z, γ(ψ), can be adopted which maintain the dipole field

structure but greatly improve the resulting grid spacing used for

numerical modelling. The specific functions are listed in Wright

and Elsden (2016), Equation 5, where α is the meridional

coordinate labelling L-shells, β is the straight azimuthal

direction (z-axis in cylindrical coordinates) and γ is the field-

aligned coordinate. These coordinates (α, β, γ) form an

orthogonal field-aligned coordinate system. A view of a

meridional plane explaining the coordinates is displayed in

Figure 2A. The blue circles indicate lines of constant α

i.e., magnetic field lines. The field-aligned coordinate γ is

constant along the red lines. Choosing suitable minimum and

maximum values of these coordinates would specify the

numerical solution domain.

Figure 2B explains a thought experiment Wright and Elsden

(2016) used to begin formulating their understanding of the 3-D

Alfvén resonance process. The figure shows a view from above of

the equatorial (α, β, γ = 0) plane, with three distinct regions

labelled, where the plasma mass density (and therefore Alfvén

speed) varies between them. In regions one and three, the density

is constant but different between the regions, with a larger density

in region one than three. In region two, the density varies

smoothly to connect the different densities either side.

Consider applying a constant monochromatic driver, of

frequency ωd, or equally looking for normal mode solutions

proportional to eiωdt. In regions one and three, it is well known

from previous works that FLRs will form at locations α1 and α3 as

labelled (the red lines), where the local Alfvén frequency matches

the driving frequency. This occurs further radially inward at

region one due to the increased density there lowering the Alfvén

frequencies, and therefore the resonance will occur on shorter

field lines than in region three. Furthermore, the polarisation of

the magnetic and velocity fields associated with the Alfvén wave

FIGURE 2
(A) Schematic in a meridian plane of the 2-D dipole coordinates (α, β, γ) used in the model (Figure 2, Wright and Elsden (2016)). (B) View looking
down on the equatorial plane of the 2-D dipole, considering how the resonance location might vary for a medium which varies with azimuth (β),
further explained in the main text (Figure 1, Wright and Elsden (2016)).
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will be toroidal, i.e., in the azimuthal (β) direction. These are

labelled as ‘2-D’ FLRs, because in these regions there is no

variation in the medium with azimuth. However, the question

of interest is what occurs in region two? Here the medium is

varying azimuthally due to the density change and hence is

labelled 3-D. Where will FLRs form? What polarisation will they

have? Can they be excited as efficiently as their 2-D counterparts?

2.1.2 Normal mode simulations
To answer such questions, Wright and Elsden (2016) design

an equilibrium based on the variation of the density with azimuth

as shown in region two in Figure 2B, to provide a fully 3-D

medium. The linear, cold (low β), MHD equations, cast in the

field-aligned coordinate system previously described, are solved

numerically (see , Wright and Elsden (2016)). In the first

instance, steady-state oscillatory solutions (normal modes) are

considered, assuming a time dependence of the form eiωdt. The

field-lines are fixed into a perfectly conducting ionosphere,

imposed by setting nodes of displacement at each end of the

field line.

Figure 3A (reproduced from Figure 7 of Wright and Elsden

(2016)) displays a shaded surface plot of the time-averaged

energy density from the simulation, in the equatorial (α, β,

γ = 0) plane. This quantity is used as an indication of Alfvén

FIGURE 3
Reproduction of Figure 7 from Wright and Elsden (2016). (A) Shaded surface of the total energy density in the equatorial (α, β) plane from a
normal mode simulation. Red lines are the poloidal and toroidal Resonant Zone boundaries. (B) Resonance map with solid black lines representing
solutions satisfying the Alfvén resonance condition. Red, blue and green solid lines give the dominant solution paths for different boundary
conditions and boundary locations (dashed colored lines) as further explained in the main text. (C) Variation of Alfvén frequency ωA with
polarisation angle θ for four field lines at different radial distances labelled α1. . .α4. The red line gives the fast driving frequency ωd (adapted from
Figure 6 of Wright and Elsden (2016)).
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resonance formation, given the expectation that significant

energy should accumulate at resonant field lines. There is a

clear enhancement of the energy density along a particular

path. Furthermore, it was shown that the velocity and

magnetic fields are polarised along (or equally can be thought

of as being tangential to) this path (see Figure 4 of Wright and

Elsden (2016)). That is to say, the Alfvén waves forming the FLR

have an intermediate polarisation between poloidal and toroidal,

similar to the studies which used the box model (Lee et al., 2000;

Russell and Wright, 2010). Other hallmarks of Alfvén resonance

are also borne out, such as the amplitude and resonance width

scaling as expected with the provided dissipation in the model.

To analyse the results further, one requires the ability to

calculate the Alfvén frequency for an intermediate polarisation of

Alfvén wave. An Alfvén wave equation for the separate poloidal

and toroidal modes can be derived from the full linear MHD

equations by assuming negligible magnetic field compression, or

in the previously described system, bγ = 0. Several authors have

discussed these Alfvén wave equations (Radoski, 1967;

Cummings et al., 1969; Singer et al., 1981) but we present

them here in the form given by Wright and Thompson

(1994) as:

z

zγ

1
hγ

zUα

zγ
( ) + 1

hγ

z

zγ
ln

hα
hβ

( )( ) zUα

zγ
+ ω2

A

V2
A

hγUα � 0, (3)

z

zγ

1
hγ

zUβ

zγ
( ) + 1

hγ

z

zγ
ln

hβ
hα

( )( ) zUβ

zγ
+ ω2

A

V2
A

hγUβ � 0 (4)

Where the quantities Uα and Uβ, used in the simulations of

Wright and Elsden (2016), are related to the transverse velocity

components (uα and uβ) by Uα = uαhβB, Uβ = uβhαB. The scale

factors are given by hα, hβ, hγ such that a length element dr in real

space can be written as

dr � hαdαeα + hβdβeβ + hγdγeγ. (5)

The background magnetic field strength is B and the Alfvén

speed is VA. The Alfvén frequency for a field line depends on the

transverse coordinates, i.e., ωA (α, β). Notice that the derivatives

are purely with respect to the field-aligned direction, γ. The

discrepancy in the poloidal and toroidal equations arises from the

difference between the perpendicular scale factors hα and hβ. If

these were the same (e.g. in a straight background magnetic

field), then the poloidal and toroidal Alfvén frequencies would be

equal. In the 2-D dipole geometry however, hα and hβ differ

substantially along a field line which creates the different poloidal

and toroidal frequencies.

A key extension of these equations was derived by Wright

and Elsden (2016) to allow for the calculation of the frequency of

Alfvén waves of intermediate (between poloidal and toroidal)

polarisation. The authors showed how to calculate the scale

factors for a new transverse coordinate system (α′, β′) that is
rotated about the field-aligned direction in the equatorial plane

by the polarisation angle, θ. In this way the β′ coordinate could be

oriented along the resonance and so align with the Alfvén wave

displacement. This permits the rewriting of the Alfvén wave

equation as:

z

zγ

1
hγ

zUβ′

zγ
( ) + 1

hγ

z

zγ
ln

hβ′
hα′

( )( ) zUβ′

zγ
+ ω2

A

V2
A

hγUβ′ � 0, (6)

where hα′, hβ′ are the scale factors for the rotated coordinate

system (specific forms given by Eqs. 22, 20 respectively, ofWright

and Elsden (2016)) and Uβ′ = uβ′hα′B is related to the velocity

perturbation along the resonant contour (uβ′). The Alfvén

frequency can now be regarded as a function of not only the

field line it is on (i.e., α and β), but also the orientation of the

resonance (θ), i.e., ωA (α, β, θ).

Figure 3B and the red lines in Figure 3A may now be

explained. We can pose the question: if the polarisation angle

θ is fixed to be poloidal (θ = π/2) or toroidal (θ = 0), for the given

equilibrium, where will the resonance condition (Alfvén

frequency equal to fast driving frequency) be satisfied? The

solutions are the red lines in Figure 3A. Along the outer

(right) red line, a toroidal Alfvén wave polarisation will satisfy

the resonance condition, or in the previously stated notation ωA

(α, β, θ = 0) = ωd. Along the inner (left) red line, a poloidal Alfvén

wave polarisation will be be resonant (ωA (α, β, θ = π/2) = ωd).

These lines bound what is termed the Resonant Zone (Wright and

Elsden, 2016), as only within this region can FLRs occur. Equally,

outside of this region no polarisation of Alfvén wave exists such

that the Alfvén frequency matches the driving frequency.

This can be well visualised by plotting the Alfvén frequency

(ωA) variation with polarisation angle (θ), as shown in Figure 3C.

The black lines show this variation for four field lines at different

radial locations in the equatorial plane (labelled α1. . .α4) but in

the same meridian plane (i.e., β is constant). The constant fast

driving frequency (ωd) is given by the red line. The Alfvén

frequency smoothly decreases from a maximum for a toroidal

polarisation (θ = 0) to a minimum for poloidal (θ = π/2). For field

line α1, it can be seen that a poloidal polarisation is required to

match the driving frequency, while a toroidal polarisation is

needed for α2 to be resonant. These requirements mark these field

lines as the locations of the poloidal (α1) and toroidal (α2)

Resonant Zone boundaries for this magnetic local time (β =

const.), where α1 < α2 i.e. α1 is further radially inward.

Considering the field line labelled α4, radially inward of α1,

the Alfvén frequency is greater than the driving frequency ωd

for all polarisations. Therefore, for field lines radially inward of α1
and radially outward of α2, no polarisation exists to satisfy the

resonance condition (assuming a suitable monotonic variation of

ωA with α). The maximum/minimum frequencies coinciding

with the toroidal/poloidal polarisations is a feature of the purely

dipolar magnetic field and does not occur for more general

magnetic field geometries, as will be treated in later sections.

Inside the Resonant Zone, at any given point, what polarisation

of Alfvén wave is required to satisfy the resonance condition?
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Choosing a starting field line, for example α3 in Figure 3C, one can

find the polarisation (θ) which gives an Alfvén frequency matching

the driving frequency. Wright and Elsden (2016) explain how the

FLR follows a path in the equatorial plane whose tangent coincides

with this polarisation. If, in the equatorial plane, the coordinates α

and β correspond to physical space, then the path of the FLR there

will satisfy the equation

dα
dβ

� tan θ( ), (7)

which follows from the definition of the polarisation angle θ

being measured from the β axis. Inverting the resonance relation

ωA α, β, θ( ) � ωd (8)

to give θ(α, β, ωd), it is evident that Eq. 7 can be solved for a

given ωd. The solutions correspond to resonant paths and are

shown by the black lines in Figure 3B. There are in fact an infinite

number of solutions within this domain, and the lines drawn are

chosen to represent the overall character of the solutions. It can

be seen that these lines emerge from the poloidal boundary with

zero gradient in the (α, β) plane, and approach the toroidal

boundary with infinite gradient. This reflects the fact that the

transverse magnetic and velocity perturbations are polarised

tangential to these paths, so emerge from the poloidal

boundary with, unsurprisingly, a poloidal polarisation and

similarly for the toroidal boundary. Between these boundaries,

all solutions have an intermediate polarisation between poloidal

and toroidal, as per the solution found for the particular field line

as in Figure 3C. For any field line in the Resonant Zone of a dipole

field there exist solutions for both positive and negative

polarisation angles (±θ) and this leads to the crossing of

contours where such paths are drawn. Otherwise, the contours

are nested.

Any one of these solutions paths is mathematically viable, so

how can the preferred path shown by the enhanced energy

density in Figure 3A be explained? This path is overlaid as the

solid green line in panel (b). For this simulation, the inner

boundary was placed at α = 0.5, denoted by the dashed green

line. At this boundary, a condition of perfect reflection or no flow

across the boundary (uα = bα = 0) was applied. This means that

any perturbation existing at the boundary can only have a

toroidal perturbation. Therefore the dominant resonant path

is the one which emanates from the location where the toroidal

boundary intersects the simulation boundary, i.e., the solid green

line. This theory was tested by performing two other simulations

with different boundary locations. Moving the inner boundary to

α = 0.7 (blue dashed line) enforces a toroidal polarisation there,

resulting in the blue path being the location of enhanced energy

density (energy density plot not shown here). When the

boundary in β is moved to β = 0.67 (red dashed line), with

the condition of a zero azimuthal perturbation there, this

enforces a poloidal perturbation, such that the solid red line

becomes the favoured solution path. Therefore it is clear that

boundary conditions play an important role in the FLR selection

process.

Another important feature identified in the simulations of

Wright and Elsden (2016) was the effect of locally 2-D regions

where the azimuthal derivatives of the equilibrium vanish.

Figure 4 is a reproduction of Figure 10 from Wright and

Elsden (2016), showing results from a simulation with an

equilibrium designed to highlight this. The background Alfvén

speed profile has been tailored to be invariant in azimuth for |β| >
0.2, and increases smoothly towards β = 0, where azimuthal

derivatives are also zero. This increases the Alfvén frequency in

this region (|β| < 0.2) and forces the Resonant Zone further

radially outwards to longer field lines. The peaks in the energy

density in Figure 4A clearly show a strong toroidally polarised

FLR in the 2-D regions, evident by the dark peaks on the toroidal

(outer red line) boundary. These solution paths then connect to

3-D FLRs (of intermediate polarisation) in the middle region

where VA varies azimuthally. The contours appear to be reflected

off the toroidal zone boundary, switching between solutions (as

was also evident in Figure 3A). At the peak of the toroidal

boundary at (α, β) = (0.92, 0.0), the Alfvén frequency is invariant

with azimuth (z/zβ = 0), and further seems to seed solution paths

which emanate from this point. Indeed, in simulations where the

extended 2-D, azimuthally invariant regions are not included, it

is the locally 2-D regions which seed all of the excited resonant

paths (see Figure 8, Wright and Elsden, 2016). Therefore such

locally 2-D regions appear to be important for selecting the

dominant solution, a theory which is generalised later in this

review. Figure 4B displays the Resonance Map for this

equilibrium and driving frequency. There is a clear

convergence of solutions onto those selected in the simulation

shown in panel a).

The governing equations may be cast as coupled wave

equations, as shown in Equation 9 of Wright (1992). The left

hand side is the Alfvén wave operator (in their case for bβ) and

the right hand side represents a driving term associated with

magnetic pressure. From a mathematical perspective, the Alfvén

wave equations shown in Eqs. 3, 4, 6 are the homogeneous form

of the driven Alfven wave equations, and their oscillatory

solutions are Alfvénic normal modes representing the free

oscillations of field lines corresponding to the complementary

function. Overall, it is clear that the Resonance Map (based on

these complementary functions) is an excellent indicator of the

location and polarisation of FLRs for a given driving frequency.

2.1.3 Time-dependent simulations
The previous section treated the steady-state solution, by

assuming that all components had a time dependence

proportional to eiωdt. However, it is of great interest to

understand how the system evolves to reach such a state.

There has been a rich history in 1-D/2-D resonance theory of

the study of time-dependent features such as Alfvén wave phase

Frontiers in Astronomy and Space Sciences frontiersin.org07

Elsden et al. 10.3389/fspas.2022.917817

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.917817


mixing (Burghes et al., 1969; Heyvaerts and Priest, 1983) and

resonance widths (Mann et al., 1995; Smith et al., 1998).

Therefore an important step is to examine these properties in

the 3-D resonance setting. Figure 5 displays results from time-

dependent simulations by Elsden and Wright (2017), using the

same equations and 2-D dipole coordinates as discussed above.

The equilibrium is set up similarly to that presented in Figure 2B,

where there are two azimuthally invariant regions either side of

the ‘3-D’ region where the density varies with azimuth. The outer

boundary of the simulation is driven continuously through

monochromatic perturbations of the field-aligned magnetic

field component, bγ. This simulates driving with magnetic

pressure, modelling the effect of the solar wind buffeting the

magnetopause.

The grey plots in Figure 5 each display a shaded surface of

the flux tube energy density (FTED, i.e., the energy contained

in a flux tube of unit cross section in the equatorial plane) from

different orientations and simulation times. Panel (a) shows a

snapshot at an early time in the simulation in the equatorial

plane, with the driven outer boundary being at the back right

hand edge of the plot at α = 1.0. A peak in the energy density

has formed, clearer in panel (b) which simply shows a rotated

view of (a). The amplitude decreases away from the driven

boundary and nested ‘ridges’ appear either side of the main

peak. Panel (c) shows a view from above which further

highlights these ridges in the energy density. Panel (d)

displays the simulation domain in real space, with the

orange surface representing the sheet of field lines

corresponding to the energy density peak.

The bottom panels (e) and (f) are taken from near the end of

the simulation, once a steady state has been reached after

continuous monochromatic driving. This state is the same as

the normal modes described in the previous subsection. The

shaded surface plots clearly show that the ridges in the energy

density have disappeared, with one preferred solution path

remaining. We can summarise the results from this plot and

further analysis by Elsden and Wright (2017) not shown here as

follows:

• The amplitude peak is indeed a resonant response, as can

be determined by the secular growth in time (prior to

saturation) of the velocity/magnetic field components

polarised along the main ridge.

• The path selected by the resonance agrees with the theory

from the previous section, that it is precisely the path which

connects the toroidally polarised regions at β < 0.15 and

β > 0.6, as can be seen from the red dashed line in

Figure 5F.

• The ridges in the energy density (best observed in

Figure 5C) form due to phase mixing - the process by

which oscillations of field lines of different natural

frequencies drift out of phase over time. At early times,

the bandwidth of the established fast mode in the domain is

large due to the short duration of driving. Therefore many

field lines respond resonantly to this broadband signal. By

later times, once the fast frequency bandwidth within the

domain has narrowed, only the surface of field lines (panel

(d)) matching this frequency are resonant (panel (f)).

FIGURE 4
Figure 10 from Wright and Elsden (2016). (A) Shaded surface of the total energy density in the equatorial plane. Red lines are the boundaries of
the Resonant Zone. (B) Resonance Map for simulation equilibrium and chosen driving frequency.
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• The spatial separation of the ridges, and indeed the steady

state resonance width, are shown to be governed by the

phase mixing length and the dissipation time. The phase

mixing length is an estimate of the local wavelength

perpendicular to the ridges in energy density, and a 3-D

extension to this is provided by Elsden and Wright (2017)

(their Eq. 19). There will further be a phase motion from

high to lowAlfvén frequency (Wright et al., 1999), which in

FIGURE 5
Composite of Figures 4, 5, Elsden and Wright (2017). (A) Shaded surface of flux tube energy density (FTED) at an early simulation time. (B)
Rotated view of (A). (C) Aerial view of (A). (D) Surface of resonant field lines (orange) in real space within the dipole simulation domain skeleton. (E)
Shaded surface of FTED for a later simulation time. (F) Aerial view of (E) together with the Resonant Zone boundaries (yellow) and favoured resonant
path (red dashed).
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the case of Figure 5C can be pictured as the ridges

propagating outward, normal to the ridges.

• Elsden and Wright (2017) provide a formula for the 3-D

resonance amplitude (see their Eq. 25), as an extension to

the previous 2-D theory. The amplitude has an inverse

dependence on the perpendicular Alfvén frequency

gradient, perhaps counter-intuitively, such that sharper

gradients lead to smaller resonance amplitudes. The

amplitude is limited by the presence of dissipation in

the system.

Thus far, focus has only been given to the 3-D Alfvén

resonance structure and not to the other key aspect of FLR,

which is the fast mode which drives it. In a series of papers,

Elsden and Wright (2018); Wright et al. (2018); Elsden and

Wright (2019) considered the effect of the temporal and spatial

structure of the fast mode on the resulting Alfvén resonance,

again in the 2-D dipole magnetic field geometry. This is not the

focus of this review, but it is worth mentioning the generalisation

of the fast mode driving condition to 3-D. In 2-D, azimuthal

gradients are required in the fast mode to drive Alfvén

resonances (e.g., see the right hand side of Equation 2 of

Wright (1994)). This is equivalent to the statement that the

fast and Alfvén modes are decoupled for fast modes with

azimuthal wavenumber m = 0. In 3-D, this condition for

Alfvén resonance becomes that gradients in the fast mode are

required in the direction tangential to the resonant path.

2.2 3-D Dipole

The natural extension to the studies in the previous section is

to consider a background 3-D magnetic dipole, such that more

realistic equilibria may be studied. Wright and Elsden (2020)

have designed a numerical model based on such a field structure,

in a similar manner to the 2-D dipole. They cast the linear MHD

equations in field-aligned coordinates based on the 3-D dipole,

again optimised for numerical efficiency. The workings and

equations are omitted here for brevity, but Eqs. 27–31 of

Wright and Elsden (2020) list the partial differential equations

solved in their model.

Figure 6A displays the equilibrium Alfvén speed from the

simulation. A depression in the Alfvén speed has been included

on the dusk flank to model the effect of a plasmaspheric plume:

an extension of the dense plasmasphere around dusk associated

with geomagnetic disturbances (e.g., Goldstein et al., 2005). Such

azimuthal inhomogeneity should provide the perfect conditions

for 3-D Alfvén resonances based on the ideas developed in the

previous section. An impulsive broadband variation to the field-

aligned magnetic field component bγ, is applied to the

magnetopause (the outer simulation boundary) to drive the

model. A late-time snapshot of the resulting field-aligned

current density jγ close to the ionospheric end of the field

lines, mapped to the equatorial plane for visualisation, is

displayed in Figure 6B. The field-aligned current density is

used as a proxy for the Alfvén wave, since fast waves do not

carry a strong field-aligned current. There is a clear dawn-dusk

asymmetry induced by the asymmetry in the equilibrium. At

dawn, where the equilibrium is locally 2-D, the phase-mixed

resonant ridges align with the dashed black reference circles at

constant L-shell. From the previous section, we know that this

implies toroidally polarised FLRs in this region (velocity/

magnetic field perturbations are tangential to the circles). At

dusk however, upon encountering the change in the equilibrium

with azimuth, the ridges of Alfvén wave current are diverted

radially inwards, crossing around two L-shells (as is clear from

the black dashed circles). The Alfvén frequency is constant along

any one of these ridges, and the polarisation changes in such a

manner to maintain this same frequency.

3 Compressed dipole and more
general magnetic fields

The purpose of this section is to extend our consideration

from the 3-D dipole background magnetic field to more general

and realistic field line geometries in which azimuthal (and

ultimately all) symmetries are removed. This is necessary to

consider the effects of the increased distortion of magnetic field

lines from a dipole configuration under equilibrium conditions as

L-shell is increased. For example, field lines become distorted as

their proximity to the magnetopause is reduced along the dayside

and dawn/dusk flanks, and magnetotail stretching becomes

important on the nightside. As before, we wish to use a

coordinate system in which one of the coordinates is aligned

with magnetic field lines. To do this, we require coordinates

(α, β, γ), such that γ measures position along field lines, while α

and βmeasure position strictly across field lines. This is given by

Euler Potential coordinates (Stern, 1970) α(x, y, z) and β(x, y, z),

such that the vector potential for the background magnetic field

is A = α∇β, in which case B = ∇ ×A = ∇α ×∇β. The field-aligned

coordinate can in principle be any function that strictly increases

along all closed magnetic field lines from the foot-point at one

hemisphere to the other.

Globally defined field-aligned coordinate systems are in

general non-orthogonal for magnetic fields that lack specific

physical/topological properties (Salat and Tataronis, 2000).

The key ingredients required for orthogonal field-aligned

coordinates are: a) There are no field-aligned currents (in

which case B ·∇×B = 0, and the magnetic field can be

expressed as B = σ∇γ where σ is a scalar variable, and hence

∇α ·∇γ = ∇β ·∇γ = 0), and b) there is no magnetic shear ŝ (where

ŝ∝ (B ×∇ψ) · ∇× (B ×∇ψ), and ψ = ∫SB · dS is the magnetic flux

passing through a defined surface S). If the magnetic field

topology is such that field lines with the same ψ form nested

surfaces, then these can be used as the Euler potential coordinate
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α, and β can be defined as an angle-like coordinate (for example,

the azimuthal angle ϕ). In this case it can be shown that

ŝ∝ z/zγ(∇α · ∇β/∇α · ∇α), therefore a necessary condition for

the existence of orthogonal α and β coordinates (such that ∇α

·∇β = 0) is that ŝ � 0. This precludes, for example, magnetic field

models that seek to account for day-night asymmetry within

Earth’s magnetosphere from being described globally by an

orthogonal coordinate system, even vacuum magnetic field

models (Mead, 1964; Stern, 1985), since these have nonzero

magnetic shear.

Two different approaches have historically been used to deal

with the MHD wave equations in non-orthorgonal curvilinear

coordinate systems. One approach developed by Cheng et al.

(1993); Cheng (2003); Cheng and Zaharia (2003) is to use the

directions given by B, ∇ψ and B ×∇ψ to define locally orthogonal

vector components. These are then used to express the governing

MHD wave equations. Some simplifications are provided by

identifying terms relating to magnetic field properties, such as

magnetic shear, and components of the field line curvature

(κ � B̂ · ∇B̂ � ∇⊥(μ0P + B2/2)/B2, where B̂ � B/|B|, B2 = B ·B
and P is the equilibrium pressure). Some of the analytical results

for field line resonances using this method are discussed in .

The other common approach has been to use the

contravariant/covariant formalism (Lysak, 2004; Rankin et al.,

2006; Kabin et al., 2007; Degeling et al., 2010; 2018), which is

described in D’haeseleer et al. (1991). Briefly, a vector (sayV) can

be described in terms of either covariant or contravariant

(reciprocal) basis vectors, denoted ei = zR/zui and ei = ∇ui

respectively, where R is the position vector and ui denote

coordinate labels, e.g., α, β and γ (as i increases from 1 to 3).

For example, V = Vie
i = Viei (note that repeated indices imply

summation), and the covariant (contravariant) components are

given by Vi =V ·ei (Vi =V ·ei). The two sets ei and ei are known as
reciprocal basis vector sets, and satisfy the relation ei · ej � δij
(the Kronecker delta function, equal to one if i = j and zero

otherwise). It can be shown that one set of basis vectors can be

FIGURE 6
Reproduction of Figure 11 from Wright and Elsden (2020). (A) Contour of Alfvén speed in the equatorial plane. (B) Contour of field-aligned
current density jγ close to the ionospheric end of the field line,mapped to the equatorial plane. Black dashed lines are at constant L-shell, at 6 and 8RE

for reference.
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used to give the other, with ei = ej ×ek/(ei ·ej ×ek) and similarly ei =

ej ×ek/(ei ·ej ×ek) (where i, j, k cycle through 1,2,3). The terms

appearing in the denominators are Jacobians of the forward and

reverse transformations between ei and ei, hence they have a

reciprocal relationship: J � ei · ej × ek � (ei · ej × ek)−1. The

geometric properties of the coordinate system are

characterized by the covariant (contravariant) metric

coefficients gij = ei ·ej (gij = ei ·ej), and allow one set of vector

components to be determined from the other, for example Vi =

gijV
j and Vi = gijVj. This also implies that gijgij � δij; hence

(treating these as 3 × 3matrices) that [gij] � [gij]−1, and it can be
shown that det([gij]) ≡ g � J2. With these definitions, B =

∇α ×∇β = Bγeγ, where Bγ � eα × eβ · eγ � 1/
��
g

√
, and the other

contravariant components of B are zero. Note that if the

coordinate system is orthogonal, then [gij] is diagonal, with

the nonzero terms giving the square of the orthogonal

coordinate scale factors: gii � h2i , and also
��
g

√ � hαhβhγ.

The works of Rankin et al. (2006); Kabin et al. (2007) and

Degeling et al. (2010, 2018) stem from the linearized ideal MHD

equations for a cold plasma, given by:

zb
zt

� −∇× E (9)
1
V2

A

zE
zt

� ∇⊥ × b − μ0J × b( ) × B
B2

(10)

where b and E are the first order perturbations of the magnetic

and electric fields, and μ0J =∇×B is the background current density.

Note that the above equations are strictly valid from the point of

view of maintaining an MHD equilibrium in background

conditions only when J ×B = 0, in which case either ∇ ×B ∝B

(only field aligned currents) orB =∇γ (“vacuum”magnetic field; no

currents allowed), otherwise a background pressure gradient is

required for equilibrium, which allows coupling to MHD slow

mode waves. (This is taken into account in the comprehensive work

of Cheng (2003) mentioned earlier).

Writing Eqs. 9, 10 in (α, β, γ) component form gives (Rankin

et al., 2006) a set of five first-order partial differential equations

(PDEs) for E and b (with Eγ = 0 for ideal MHD). Setting bγ = 0 and

assuming variations of the form exp (−iωt) reduces these to ordinary

differential equations (ODEs) with respect to γ for shear Alfvén

wave (SAW) eigenmodes of frequencyω in which the polarization is

unspecified a-priori, but is a function of the local magnetic field

topology, specified by the metric coefficients gij. This is explored in

detail in Kabin et al. (2007) for the fundamental modes and Kabin

et al. (2009) for higher harmonics, using an analytic compressed

dipole magnetic field (for which the Euler potential coordinates and

metric coefficients can be expressed in closed form). For these

studies the plasma density is axisymmetric and the loss of

axisymmetry in the wave equations is only due to the magnetic

field model, not the plasma density.

Examples of the results of this calculation for the two lowest

frequency eigenmodes on each field line are shown as maps in the

equatorial plane in Figure 7. Both of these modes correspond to

fundamental transverse oscillations with respect to the field-aligned

direction, with the left (right) column corresponding to the nominal

toroidal (poloidal) SAW eigenmodes for r < 3RE where the

background magnetic field is approximately dipolar. As radius

increases, the top row of plots show that the eigenfrequencies of

both modes lose their axisymmetry, becoming misaligned with

contours of constant |B| (indicated by solid black lines).

Meanwhile the bottom row shows that the polarization

directions of these modes become increasingly altered from the

dipolar case with increasing L-shell, especially on the dayside where

the background magnetic field is compressed. Along the noon

meridian, the polarization changes discontinuously at r ≈ 5 from

radial to azimuthal in Figure 7C) and visa-versa in Figure 7D). This

corresponds with a point of degeneracy in the eigenfrequencies of

the two modes. In plots c) and d), the eigenmode calculations are

carried out at locations corresponding to contours of constant |B|

(the midpoint of each double-headed arrow in the plots). Following

such a contour starting at noon for r > 5 and proceeding to

midnight, the polarization is shown to smoothly rotate by π/2

radians in both figures.

A similar rotation of polarization for eachmode would be found

following a surface of constant eigenfrequency. This is important

because it indicates a limit in the physical applicability of the

eigenmode solutions in a global context: Each eigenmode remains

independent of oscillations on neighboring field lines, as long as bγ is

zero. However, given the eigenmode polarizations specified by the

magnetic topology are in general not aligned with contours of

constant eigenfrequency, phase mixing of oscillations between

these surfaces will lead to equatorial electric field patterns that are

unable to remain curl-free - and give rise to a first order bγ. This

strongly suggests that an additional constraint on the polarization

(namely, that the equatorial electric field remains curl-free) must be

be applied in the calculation of 3-D Alfvénic eigenfunctions.

This is borne out in the model results of Degeling et al.

(2010), in which the coupled wave equations (Eqs. 9, 10) are

expressed using the covariant/contravariant formalism and

solved numerically. In this work the background magnetic

field is defined by B = σ∇γ, in which case gαγ = gβγ = 0

(although gαβ is not necessarily zero) and it can be shown that

the covariant components of the electric field are given by solving

the following system of two coupled PDEs:

1
σ
G · Eα

Eβ
( )′( )′ − ��

g
√
v2A

G · €Eα
€Eβ

( ) � 1
σ

−z/zβ _bγσ( )
z/zα _bγσ( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (11)

where Eγ = 0 for ideal MHD, dashes and dots represent

partial differentiation with respect to γ and t respectively andG is

a 2 × 2 tensor given by:

G � gαα gαβ

gαβ gββ( ) (12)
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The field-aligned component of Faraday’s law gives:

_bγ � −σ zEβ/zα − zEα/zβ( ) (13)

which provides closure to Eq. 11. The global response to a

narrow-band driver wavepacket of frequency ω applied at the

outer boundary is calculated, using the so-called slowly varying

envelope approximation (such that E(t) � E0(t)e−iωt, where

|€E0|≪ |ω2E0|, hence €E ≈ − (ω2E0 + 2iω _E0)e−iωt). Setting the

right-hand-side of Eq. 11 (or bγ) equal to zero gives the SAW

eigenmode equations of Rankin et al. (2006) (under the

restriction of no field-aligned currents in the background

field) expressed in a generalized Sturm–Liouville form, which

can be solved numerically to give discrete eigenfrequencies ωn

and vector-valued eigenfunctions Sn = Eαn∇α + Eβn∇β. A small

imaginary part is added to the driver frequency (ω→ ω + iωi) to

represent ionospheric dissipation of power due to a finite (but

assumed large) ionospheric Pederson conductance (Allan and
Knox, 1979). Solutions to coupled Eqs. 11, 13 for E0 are obtained
using a spectral method for the γ and β directions, to give a set of
coupled PDEs in α and t, which are solved using an implicit time-
stepping method. An example of the result of this simulation is
shown in Figure 8 (a reproduction of Figure 7 of Degeling et al.
(2010)), in which a 1.5 mHz driver at the outer boundary with
antisunward phase propagation along the morning/afternoon
flanks and limited time-duration is used to excite waves within
the simulation. While the driver is operating, an FLR is excited at
high L-shell on the morning and afternoon flanks of the
magnetosphere, which remains in place after the transient fast
mode has propagated tailward and left the system. Grey contours
in the figure indicate the equatorial amplitude of Eα at a time
corresponding to this stage, and shows a narrow peak
corresponding to the FLR (between 8RE and 9RE in L-shell),
over a wide range in MLT. The equatorial electric field

FIGURE 7
Eigenperiods and electric field polarizations in the equatorial plane for the two lowest frequency Alfvénic eigenmodes, taken from Figures 3, 6 of
Kabin et al. (2007): (A) Period and (C) polarization of the mode with radial electric field polarization at midnight; (B) Period and (D) polarization of the
mode with azimuthal electric field at midnight. Thick solid lines show the contours of constant B initiated at r = 3, 5, and 7 at noon. Dashed lines are
circles of constant radius with r= 3, 5, and 7. Note the sudden change in the polarization along the noonmeridian at r ≈ 5 in (C,D). This occurs at
a point of degeneracy in the eigenperiod in (A,B).
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polarization along the FLR peak at various wave phases (blue

vectors) indicates a predominantly linear polarization that is

approximately radial near post-noon and late-evening sectors,

however a deviation is seen over the afternoon sector. Resonant

surfaces (where the driving frequency ω = ωn) for the

fundamental mode eigenfunctions are indicated by red curves

(labelled mode “a” and “b”), with red arrows indicating their local

polarization. Interestingly, both the FLR peak and its polarization

align well with mode “a” near noon MLT, and mode “b” in the

late evening sector. However in the afternoon sector, both the

FLR peak and its polarization transit smoothly from mode “a” to

mode “b” with increasing MLT.

The discrepancy in the FLR location and polarization

between the simulation and the unconstrained SAW

eigenmodes of Kabin et al. (2007) is significant, indicating a

constraint must be applied on the polarization of the SAW

eigenmodes in order to correctly predict the FLR location.

The results of Wright and Elsden (2016); Wright et al. (2018)

demonstrate that the polarization direction in velocity

perturbations should be aligned with contours of constant

eigenfrequency. This effectively prevents the possibility of

compressions or rarefactions in magnetic flux due to phase

mixing, which is equivalent to requiring that the wave electric

field for the SAW eigenmodes remains curl-free in order to

remain compatible with the Alfvénic condition that bγ = 0. An

interesting feature of the red curves for modes “a” and “b” in

Figure 8 is that they appear to correspond with the inner and

outer L-shell boundaries of the FLR excited in the simulation.

This may indicate that these red curves correspond with the inner

and outer boundaries of the Resonant Zone ofWright and Elsden

(2016) in a more general magnetic topology. For the dipole field

equilibria in Section 2 these were identified through the

requirement that the toroidal or poloidal ωA equal the normal

mode/driving frequency ωd (Wright and Elsden, 2016). In more

complex fields Wright et al. (2022) show this criterion need to be

generalised to Max (ωA) = ωd and Min (ωA) = ωd. This suggests

that the Alfvén eigenfunction calculation used to obtain Figure 7

corresponds to determining the modes with a special polarisation

such that the maximum or minimum ωA on the chosen field line

matches the driving frequency. This contrasts with the solution

to Eq. 8 where the polarisation is not constrained to correspond

to the maximum or minimum ωA, and suggests the Kabin et al.

(2007) Alfvén eigenmodes may be used to determine the

boundaries of the Resonant Zone, but cannot be used to

generate the resonant paths within the Resonant Zone

described by Eq. 7. The correspondence between Kabin’s

Alfvén eigenmodes and the boundaries of the Resonant Zone

is still to be established rigorously and warrants further

investigation.

In order to more realistically model the coupling of SAWs

with MHD fast mode waves launched by perturbations along the

magnetopause boundary, the 3D MHD wave model of Degeling

et al. (2010) was upgraded to incorporate the paraboloid

magnetopause outer boundary of the Stern (1985) magnetic

field model. In the new model (Degeling et al., 2018), Eqs. 11,

13 are solved using a finite element and a Galerkin spectral

method respectively for the cross-field and field-aligned

directions. Degeling et al. (2018) used the model to investigate

the effect of a plasmaspheric density plume in the afternoon

sector on the penetration of ULF wave power to the inner

magnetosphere. The study demonstrated that the enhanced

plasma density associated with the plume created a localized

cavity in Alfvén speed, allowing the ducting, or trapping of fast

mode waves that were able to penetrate deeply into the

magnetosphere. This resulted in the strong excitation of FLRs

at low L within the plume, with clear peaks associated with the

fundamental mode resonance surfaces (calculated using the

approach of Kabin et al. (2007)), and clear polarization shifts

corresponding with changes in the local orientation of the

surfaces. These effects are evident in Figure 9, which shows

(in panels a–c) equatorial maps of the amplitude of radial and

azimuthal electric field, as well as the field-aligned magnetic field.

White dotted contours overlaid on these plots indicate the cold

plasma density distribution, and resonant surface calculations are

indicated by the magenta and dashed cyan lines.

These results are consistent with the expectations from the 3-

D Alfvén resonance theory of Wright and Elsden (2016) and the

plume FLRs shown in Figure 6. Indeed, the strong deviations

from axisymmetry in a plume makes it a prime location to find

FIGURE 8
Reproduction of Figure 7 of Degeling et al. (2010). Grey
contours: equatorial amplitude of Eα showing the FLR, taken 3 h
after the start of the run, bywhich time the solution approximates a
normal mode; blue vectors: equatorial electric field along the
FLR peak, at various phases; red vectors: equatorial electric field
polarization of the generalized SAWeigenfunctions (modes “a” and
“b”) along their resonance surfaces (solid red lines); dashed line:
the magnetopause boundary.
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unambiguous observations of 3D FLRs. Elsden and Wright

(2022) have shown the principal signature will be an Alfvén

wave with both toroidal and poloidal fields, and there are already

published case studies with these attributes that would be worth

reinterpreting in terms of 3D FLRs (Clemmons et al., 2000; Hao

et al., 2020; Le et al., 2021; Di Matteo et al., 2022). The Resonant

Zone boundaries in Figure 9 suggested by the SAW eigenmode

calculations are too narrow (and the model resolution is

insufficient) to allow a detailed investigation of the role played

by the magnetic topology in this scenario, indicating the need for

a more detailed experiment.

A more specific investigation of the effect of changes in

magnetic topology on the properties of the Resonant Zone using

the 3-D MHD wave model of Degeling et al. (2018) has recently

been carried out in Wright et al. (2022). In this work, the

background magnetic field is provided by an “image dipole”

vacuum magnetic field model, in which two dipole fields are

summed together, with their axes separated by 30RE and the

strength of the second (image) dipole approximately 9.6 times the

strength of the first, to give a compressed dipole field with

subsolar magnetopause at x = 10RE. A tailored equatorial

density profile is used to provide a Resonant Zone with

substantial width in L at high L-shell, where deviations in

magnetic topology from a dipole field are more significant.

The resulting Resonance Map for SAW normal modes with a

specified driver frequency of 0.8 mHz is shown in Figure 10A. A

clear asymptotic convergence of one class of Resonance Map

trajectories is evident (marked by the green dashed line), starting

at the inner boundary at local noon and moving smoothly to the

outer boundary with MLT towards local midnight. According to

Wright and Elsden (2016) this predicts the surface upon-which

an FLR peak excited at the driver frequency with lowm will have

it is maximum amplitude. Near noon (midnight) MLT, Resonant

Map trajectories are shown to approach the inner (outer)

boundary of the Resonant Zone with near tangential

polarization. The opposite is true for trajectories reaching the

outer (inner) boundaries near noon (midnight) with near-

perpendicular polarization. This is shown more clearly in

10(b), which shows the polarization angle (θr) as a function of

MLT along the minimum (blue curve) andmaximum (red curve)

L-shell boundaries of the resonant zone. Note that θr is periodic

over 180° because of the bi-directionality of the polarization.

Interestingly, this corresponds very well with the polarization

behavior of modes “a” and “b” shown in Figure 8 (with the

polarization rotated through 90°, because electric

field polarization used in Figure 8 is perpendicular to that

of the velocity field used in Figure 10 under ideal MHD

conditions).

FIGURE 9
(A–C) (Reproduced from Degeling et al. (2018), Figures 2J–L): Equatorial amplitude maps of the ULF wave components Eϕ, bz/B0 and Er
computed using themodel of Degeling et al. (2018) for continuous externally driven 4 mHzwaves along the daysidemagnetopause boundary, under
conditions where a plasmaspheric drainage plume has developed (over the preceding 9 h) in the afternoon sector. Magenta and dashed cyan lines in
each plot indicate resonant surfaces calculated using the method of Kabin et al. (2007) for the fundamental, 3rd and 5th

field-aligned harmonic
eigenmodes; white dotted contours indicate cold plasma density (10,100 and 1,000 amu/cm3).

Frontiers in Astronomy and Space Sciences frontiersin.org15

Elsden et al. 10.3389/fspas.2022.917817

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://doi.org/10.3389/fspas.2022.917817


The same density profile, magnetic field and driver frequency

are used to calculate the coupled solutions to Eqs. 11, 13, using

the 3DMHDwave model of Degeling et al. (2018). An equatorial

map produced from the results, showing the amplitude of the

field-aligned MHD flow vorticity |(∇ ×v)‖| component for the

case of a continuous outer boundary source withm = 2, is shown

in Figure 10C. The narrow amplitude peak indicating the FLR

location shows excellent agreement with the asymptote of

converging trajectories in the Resonance Map (black lines

overlaid in the plot), which proceeds smoothly from the inner

boundary of the Resonant Zone at noon to the outer boundary at

midnight (reproducing the behavior from Degeling et al. (2010)

shown in Figure 8).

Figure 10 illustrates the utility of the Resonance Map in

predicting the location of low m FLRs excited by an external

MHD fast mode driver in compressed dipole magnetic field

geometries. In situations where an asymptote of converging

paths within the Resonant Zone exists and forms a closed

surface, the FLR peak lies along this path, because essentially

all paths within the Resonant Zone lead to the asymptote in this

case (possibly after apparent reflections from the inner or outer

boundaries). It is not clear, however, whether such an asymptote

FIGURE 10
Summary of Resonant Zone investigations in a compressed dipole configuration (Taken fromWright et al. (2022), Figures 3A,B and Figure 4): (A)
Calculation of Resonant Zone boundaries (solid red curves) and resonant paths (black curves) using the method of Wright and Elsden (2016). The
green dashed line indicates the predicted peak location of a lowm FLR; (B) Red (Blue) curves show the variation with MLT of equatorial polarization
for the boundaries of the Resonant Zone corresponding to Max (ωA) = ωd (Min (ωA) = ωd); (C) Equatorial map of the parallel vorticity amplitude,
|(∇ ×v)‖|, (associated with SAWs) produced by the coupled MHD wave model of Degeling et al. (2018), for an externally driven 0.8 mHz wave source
with m = 2 at the outer boundary. Solid black and red lines respectively indicate Resonance Map trajectories and Resonant Zone boundaries (using
the same calculation method as plot (A).
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must exist in all cases, in which case it is important to consider

whether the coupling fromMHD fast modes to some paths at the

Resonant Zone boundary is preferred over others.

As discussed in Section 2, in cases where the “azimuthal”

derivatives of the equilibrium vanish, then the local polarization

properties at the Resonant Zone boundary are reduced to 2D, and are

strictly toroidal (poloidal), and tangential (normal) to the Resonant

Zone boundary. Lowm fast mode waves dominated by toroidal field

line perturbations will most readily couple with the toroidal

polarization at the symmetry axis of the Resonant Zone

boundary, hence this selects the most strongly excited paths

within the Resonant Zone. In more general configurations where

no symmetry axis exists, it is shown in Wright et al. (2022) that a

more general condition for optimum coupling between MHD fast

mode waves and SAWs in the Resonant Zone is that the Resonant

Zone boundary is locally tangential to the polarization at the

boundary (referred to as the “tangential-alignment” criterion).

This is demonstrated by a numerical experiment in Wright et al.

(2022) in which an isolated local enhancement in cold plasma density

in the afternoon sector is added to the density profile used to produce

Figure 10, resulting in the equatorial Alfvén speed profile shown in

Figure 11A. The Resonance Map (for waves with driver frequency

0.9 mHz in this case) is shown in Figure 11B. At this frequency the

Resonant Zone is marked by a single boundary (the red solid line),

which is localized in MLT to the afternoon sector. The resonance

paths shown indicate that no line of asymptotic convergence (a

separatrix) exists within the Resonant Zone in this case. Two blue

points overlaid on the plot mark locations where the tangential-

alignment criterion is satisfied (it could also be argued that these are

points - rather than lines - of convergence of all resonance paths after

multiple boundary reflections). Simulation results showing the

absolute value of field-aligned vorticity in the equatorial plane are

shown in Figure 11C, and demonstrate that the blue points in panel b

correctly identify the location of strongest coupling, supporting the

tangential-alignment criterion.

4 Analytical theory

This review is focused on the resonant coupling of fast waves to

Alfvén waves. As shown in the previous sections, the simulation

results tend to have a gentle ‘low-m’ variation with the FLRs forming

FIGURE 11
(Reproduced from Wright et al. (2022), Figure 5): (A):
Equatorial Alfvén speed profile in the afternoon sector, showing an
alteration due to the addition of a localized peak in density
centered at (5, 5); (B): The Resonance Map in this case for a
driver frequency of 0.9 mHz, showing a single closed boundary
(red curve) and resonance paths from various boundary points

(Continued )

FIGURE 11
(black curves). Blue points show locations on the boundary
satisfying the tangential-alignment criterion (points along the
Resonant Zone boundary where the mode polarization is
tangential to the boundary); (C): Equatorial map of the parallel
vorticity amplitude (log scale), showing peaks in amplitude that
correspond well with the tangential-alignment condition (blue
points). Also overlaid on the plot are the Resonant Zone boundary
and resonance paths from panel b (red and white curves,
respectively).
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a narrow ridge (aligned with the Alfvén wave plasma displacement)

that can cross L-shells. Thus it may, at first sight, appear surprising

that theoretical ideas developed for ‘high-m’Alfvén waves have utility

here. As explained in Elsden andWright (2018), the common feature

to both lines of study is that the Alfvén waves have a narrow

transverse structure in the direction perpendicular to the

background magnetic field and the Alfvén wave plasma

displacement. To understand the development of related concepts

developed elsewhere we divert briefly to high-m Alfvén waves.

4.1 High-m alfvén waves in 2-D

High-m Alfvén waves are termed ‘poloidal’ as the wave’s

plasma displacement and field perturbation are confined to

meridian planes and are perpendicular to B. These waves are

normally thought to be excited by a resonant interaction with

drifting ions (Southwood et al., 1969; Southwood and

Kivelson, 1981, 1982). Leonovich and Mazur (1993)

considered an alternative mechanism where extraneous

ionospheric currents excited the waves. The equilibrium

they considered was axisymmetric and similar to an

axisymmetric dipole. To assist with interpreting their

normal mode solution they constructed the diagram shown

in Figure 12A, which is sketched in the equatorial plane. The

outer circle represents the shell of field lines for which a

toroidally polarised Alfvén wave (i.e. one with plasma

displacement and perturbation field in the azimuthal

direction) has a frequency matching that of the normal

mode. It is termed the Toroidal surface or boundary.

FIGURE 12
(A) shows the toroidal and poloidal boundaries (as circles) in the equatorial plane with two paths connecting them for an axisymmetric
equilibrium (Leonovich and Mazur, 1993); (B) similar to (A) but only showing one set of paths between the boundaries; (C) shows the effect non-
axisymmetry which makes system 3-D (Klimushkin et al., 1995); (D) a close up of the topology of paths and the separatrix surface in 3-D (Mager and
Klimushkin, 2021).
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Two sets of curved lines are shown in 12(a) that asymptote to

the Toroidal boundary, and are labelled 1 and 2. These lines start

at an inner circle where they are oriented perpendicular to the

circle. The inner circle is termed the Poloidal surface or

boundary, and is where the frequency of a poloidal Alfvén

wave matches that of the normal mode. Leonovich and Mazur

(1993) explain that the perpendicular group velocity of the

Alfvén wave will cause it to change from having a poloidal

polarisation (on the poloidal boundary) and move along the

curved paths (1 or 2) to the toroidal boundary. As the wave

travels its polarisation rotates smoothly such that its local k⊥ is

normal to the curved path. The authors used the term

‘transparency region’ to describe the region containing these

paths. The scenario described above may appear to have some

surprising properties. For example, Alfvén waves are renowned

for having a field-aligned group velocity and their energy staying

on one field line–so how can they travel across field lines?

There is certainly evidence from the time dependent

simulations of Mann and Wright (1995) that an initially

poloidal Alfvén wave will phasemix and have its polarisation

rotate to toroidal. However, their study used a uniform magnetic

field meaning the toroidal and poloidal frequencies on a given

field line are identical–i.e., the toroidal and poloidal boundaries

coincide. Thus, this work did not require the Alfvén wave to

follow a path that crossed field lines. Sarris et al. (2009) have also

reported observational evidence for the change of polarisation.

A more recent study by Elsden andWright (2020) used a 2-D

dipole field for which the poloidal and toroidal surfaces are well

separated and form the boundaries of the Resonant Zone as

described in the Resonance Map formulation of Figure 3. The

time-dependent results of this study showed that as high-m

poloidal Alfvén waves evolve they do indeed follow the paths

in the Resonant Zone as they phasemix and turn towards a

toroidal polarisation. Indeed the transparency region of

Leonovich and Mazur (1993) and the Resonant Zone of

Wright and Elsden (2016), and the paths therein are the same

construction. It is interesting that the paths were derived by

Leonovich and Mazur (1993) as contours of an asymptotic phase

that initially poloidal Alfvén waves would move along. In

contrast Wright and Elsden (2016) were looking at low-m

resonant Alfvén waves excited by the fast mode. Their

simulations led to the formulation of the Resonance Map

based on the recognition that the Alfvén frequency depends

on the wave’s polarisation angle (which is aligned with the

plasma displacement) and is tangential to the resonant paths.

Thus we have two complementary and independent ways of

deriving the resonant paths within the Resonant Zone/

Transparency Region.

Whilst the asymptotically narrow nature of the Alfvén wave

solutions is explicity stated in the formulation of Leonovich and

Mazur (1993), it is also implicit in the description of Wright and

Elsden (2016): their generalisation of the Alfvén wave equation

(Singer et al., 1981, their Equation 9) to an arbitrary polarisation

required the width across the resonance be much less than the

scale length along the resonant path. There were also related

orderings that the size of the Alfvén wave’s magnetic and velocity

fields along these paths be much greater than the components

perpendicular to the path. There is also an even smaller

compressional magnetic field. In this sense these Alfvén waves

are not a decoupled free oscillation in the way that an

axisymmetric m = 0 toroidal Alfvén wave is. However it is

valid to say that a 3-D Alfvén wave can be regarded as an

‘asymptotically’ decoupled free mode.

The presence of asymptotically small fields perpendicular to

the resonant paths (and also a small compressional field) can

account for the fact that the group velocity and energy flow is no

longer strictly field aligned. Indeed Elsden and Wright (2020)

explain how the process operates in a time-dependent setting: the

leading Alfvén wave fields produce an asymptotically small

magnetic pressure that oscillates with the same frequency as

the main Alfvén wave. This creates a pressure gradient that will

act on all the surrounding plasma and can potentially excite

waves on these field lines (Elsden andWright, 2017). There is one

neighbouring field line that will respond particularly efficiently to

such a pressure gradient–it is the field line a small distance down

the resonant path. The Alfvén wave on this field line with plasma

displacement tangential to the path will have a resonant response

to the magnetic pressure driver. Other field lines will have a non-

resonant response. In this fashion the Alfvén wave can travel

along the resonant paths, as predicted by Leonovich and Mazur

(1993).

4.2 High-m alfvén waves in 3-D

The behaviour of high-m poloidal Alfvén waves was

generalised to 3-D by Klimushkin et al. (1995). Figure 12B

shows the axisymmetric 2-D case and is similar to panel (a)

except that only one set of the resonant paths is shown. The

equilibrium is made 3-D by retaining the axisymmetric magnetic

field, but allowing the density to vary with all three coordinates.

The resulting Resonance Map is shown in 12(c), again for just

one set of the resonant paths. The boundaries of the Resonant

Zone are still the toroidal and poloidal boundaries and the

density is chosen so that these are still concentric circles,

however they are no longer centered on the magnetic axis (O).

The inner bold circle in Figure 12C (the poloidal boundary)

has paths connecting to it that are aligned with the radial

direction (i.e., directed away from O). There are paths (like

those labelled 1 and 2) that connect the inner (poloidal)

boundary to the outer (toroidal) boundary, where they adopt

an azimuthal alignment. However there is now a new class of

paths (like 6) that start and finish on the toroidal boundary. The

two topologically distinct regions are defined by a separatrix as

described by Klimushkin et al. (1995) andMager and Klimushkin

(2021). Figure 12D is taken from the latter paper and is a close up
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of a section of the Resonant Zone. The local coordinates x and y

are based on the poloidal and toroidal boundaries. Note that

these boundaries are not aligned with the radial or azimuthal

directions. The radial direction can be inferred from the

alignment of the resonant paths connecting to the poloidal

boundary. Similarly the azimuthal direction aligns with the

paths as they connect to the toroidal boundary. Whilst one set

of paths can cross from the poloidal to the toroidal boundary,

there are now two other types of paths. They are connected to

either the toroidal or poloidal boundary and then asymptote to

the separatrix. This behaviour is seen very clearly in Figure 3B.

4.3 Field line resonances in 3-D

More recently the study of Mager and Klimushkin (2021) has

considered asymptotic solutions of FLRs. However, their

formulation is still for the high-m limit, which means the fast

mode is evanescent and so neglected from their solutions.

Therefore, they are still focusing on Alfvénic normal modes,

which they describe in terms of travelling along the resonant

paths shown in Figure 12D. They note that the Alfvén wave

energy will accumulate at the separatrix surface as the wave

energy travels along the resonant paths which converge towards

the separatrix. Thus they identified the resonant surface as

coinciding with the separatrix.

In the classic 1-D FLR of Southwood (1974) the solution has

a singularity where the azimuthal velocity and magnetic field of

the Alfvén wave vary as (x − xr)−1, where ωA (xr) matches the

normal mode frequency. The radial components are also infinite

at xr, but vary as ln (x − xr). These properties are also present in

FLRs in 2-D axisymmetric equilibria (Wright and Thompson,

1994). It is interesting that the 3-D FLR solutions of Mager and

Klimushkin (2021) retain the simple pole singularity in the

velocity and magnetic fields tangential to the resonant path,

but the logarithmic singularity in the components normal to the

path is no longer present. Indeed they find that these fields

remain finite as the resonant surface is approached and undergo

increasingly rapid spatial oscillations. This behaviour is quite

different to simpler models of FLRs and worthy of further

investigation.

Mager and Klimushkin (2021) also derived the solutions of

resonant Alfvén waves along the resonant paths as they approach

the boundaries of the Resonant Zone. They found that the

solution took the form of an Airy Function: it had a

propagating (oscillatory) nature within the Resonant Zone

which turned to an exponentially decaying form on crossing

the boundary to the Non-Resonant Zone. This is qualitatively

supported by the simulations shown in Figure 3A. It is evident

that as the resonant ridge in the lower right corner approaches

the left-hand boundary (shown as a red line) it becomes

evanescent on crossing the boundary. This is physically

reasonable behaviour since the field lines to the left of the

boundary will be non-resonant. Moreover, the further a field

line is from the Resonant Zone boundary the larger the

discrepancy between its Alfvén frequency and that of the

normal mode–hence the smaller the Alfvén waves established

there. Thus we anticipate a non-resonant response on these field

lines, which is consistent with the rapid fall in amplitude. This

behaviour is also reminiscent of quantummechanical tunnelling.

An alternative analytical formulation is presented by Cheng

(2003) for a plasma having nonzero pressure and equilibrium

current. The formulation uses Euler potentials ψ and αc as

transverse coordinates, B = ψ ×αc. The radial-like

coordinate ψ is the flux function and αc an azimuthal-like

coordinate. (We have added a subscript ‘c’ to avoid confusion

with the use of α in previous sections.) The modelling described

in solved for the components of the wave fields projected onto the

coordinate directions, which may have orthogonal or non-

orthogonal unit vectors. Cheng (2003) sidesteps this issue by

constructing local orthogonal directions by using the vectors B

and ψ to form B ×ψ and complete the orthogonal basis (see

Figure 13A). Cheng expresses the plasma displacement in the

B ×ψ direction in terms of the quantity ξs which represents the

Alfvén wave.

Figure 13B shows contours of ψ in the equatorial plane as

dashed lines. Cheng (2003) explains how the natural Alfvén

frequencies may be calculated in the equatorial plane. It is

noteworthy, in light of the importance of wave polarisation

stressed throughout this review, that these frequencies

correspond to Alfvén waves with plasma displacement

tangential to the dashed lines in Figure 13B. For these

polarisations, ωA (ψ, αc) may be determined and contours of

this frequency are shown as the solid lines in Figure 13B.

In general contours of ωA (ψ, αc) and ψ do not coincide.

Cheng suggests that the line ωA (ψ, αc) = ωd will be the resonant

Alfvén wave surface when driven with frequency ωd, and to

facilitate the analysis further introduces new coordinates (which

we denote by ψ1 and αc1) such that the contour ψ1 = ψ0 labels the

resonant field line surface, i.e., ωA (ψ1 = ψ0, αc1) = ωd. For

example, if we were interested in the case for ωd = 6, then the line

ψ1 = ψ0 coincides with the solid black line Figure 13B with value

6. It is not obvious that this will be the resonant surface as

evaluating ωA (ψ1 = ψ0, αc1) will be the frequency of an Alfvén

wave with displacement tangential to the ψ1 contours–i.e., the

solid black lines. This will be a different Alfvén wave to that

calculated with the original ψ, which had displacement tangential

to the dashed lines. As the polarisation has changed so will ωA.

This means black lines will not be contours of ωA for Alfvén

waves with displacement tangential to these lines. It may be

possible to iterate this process to converge on a suitable solution.

For resonant Alfvén waves, what is needed is a path in the

equatorial plane such that when ωA is calculated for an Alfvén

wave with displacement tangential to the path we find ωA = ωd.

These are the very paths described by Wright and Elsden (2016)

and examples of these paths are shown in Figures 3, 4, 12. Note
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that these figures show a Resonant Zone with an infinite number

of possible resonant paths for a given driving frequency, in

contrast to Figure 13 which shows a single line for a given

frequency. Cheng (2003) goes on to derive the nature of the

singularity along a resonant path and finds the ξs Alfvén field

(aligned with B ×ψ1) scales as 1/(ψ1 − ψ0) and the displacement

normal to the resonant path (aligned with ψ1) scales as ln (ψ1 −

ψ0). These properties are in accord with the results in 1-D (e.g.,

Southwood (1974)) and 2-D (e.g., Wright and Thompson (1994)

and Russell andWright (2010)), but contrary to the 3-D results of

Mager and Klimushkin (2021) who claim the logarithmic

singularity is removed in a 3-D system.

A final analytical study addressing 3D FLRs was undertaken

by Inhester (1986) and took an alternative approach by

FIGURE 13
(A) The model field and directions of the unit vectors used by Cheng (2003); (B) a view in the equatorial plane of ψ contours (dashed lines) and
contours of ωA (solid lines) for Alfvén waves polarised with plasma displacement tangential to the dashed lines.
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identifying FLRs as field lines where the Poynting vector

indicated the resonant absorption of energy. Whilst the 1-D

and 2-D limits of Inhester’s formulation are in accord with the

relevant literature, it identifies unusual features when applied to a

3-D equilibrium. The paper notes that a lack of axisymmetry in 3-

D will cause a conflict with the requirement that the FLR be

(essentially) incompressible, and this will prevent resonant

absorption occuring. Inhester goes on to estimate, for realistic

magnetospheric parameters, that fundamental FLRs whose

polarisation deviates by more than 14° from toroidal will be

suppressed. This claim is contradictory to the simulation results

in Figure 6 which shows an FLR polarisation on the edge of a

plume turning though around 60° yet still undergoing strong

resonant excitation.

5 Discussion and conclusion

In this section, we briefly summarise the results presented in

the three main sections above for ease of reference. We also

discuss the implications of 3-D FLRs in terms of observations and

wave-particle interactions, as well as highlighting current

unknowns and areas of contention which require further

research.

5.1 Simulations

Given the difficulty of finding analytical solutions to the full

3-D Alfvén resonance problem (as highlighted in the next

subsection), numerical simulations have proven to be a critical

tool in furthering our understanding of this phenomena. The

‘simpler’ simulations presented in section 2 based on 2-D and 3-

D magnetic dipole geometries, have shown great utility in

providing fundamental new answers regarding 3-D FLRs. This

review has summarised:

• Simulations showing the resonant excitation of

intermediate polarisation (between poloidal and

toroidal) Alfvén waves in a 3-D non-uniform plasma.

• How to calculate the Alfvén frequency for a mode of such

intermediate polarisation (see Eq. 6).

• Where FLRs form in 3-D - introduction of the Resonance

Map (Figure 3B) to depict mathematically permissible

solutions.

• Extension of established theories in 1-D/2-D to 3-D e.g.

estimates of time-dependent resonance widths and

amplitudes, and the requirement of a fast mode

magnetic pressure gradient tangential to the resonance.

• The potential utility of the solutions of Kabin et al. (2007)

in directly determining Resonance Map boundaries and the

boundary polarization in 3-D magnetic fields (an area of

continuing study).

There are several problems to which these simulations can be

applied in future studies. To fully understand where FLRs will

form and how efficient the fast-Alfvén wave coupling will be, the

spatial and temporal structure of the global fast waves must be

determined. Previous simulation studies have considered how

the fast mode will behave in a 3-D non-uniform magnetosphere

(Degeling et al., 2018; Wright et al., 2018; Elsden and Wright,

2019; Wright and Elsden, 2020). These works show that the

inclusion of such non-uniformity (e.g., through a plasmaspheric

drainage plume on the dusk flank) act to create significant spatial

structure in the fast mode. For example, the enhanced density

cavity of a plume can itself support local cavity modes (Degeling

et al., 2018). These could contribute significantly to the excitation

of 3-D FLRs within the plume. Azimuthal gradients in the plasma

density further cause refraction of the fast mode, affecting where

sufficient gradients in the fast mode exist to effectively drive FLRs

(Wright et al., 2018). More simulations of these features are

certainly required to better understand the full picture of 3-D

magnetospheric fast-Alfvén wave coupling.

5.2 Analytical theory

Key properties of the resonant paths and Resonance Maps

that are central to understanding 3-D FLRs were first applied to

high-m poloidal Alfvén waves driven by extraneous ionospheric

currents (Leonovich and Mazur, 1993; Klimushkin et al., 1995).

These authors showed how poloidal Alfvén waves could drift

across field lines and change their polarisation. The simulations

of Elsden and Wright (2020) show this is possible because the

poloidal waves are not pure decoupled Alfvén waves, but

“asymptotically decoupled” Alfvén waves. Leonovich and

Mazur (1993) give formulae for the speed with which the

waves travel along the resonant paths, and it would be useful

to demonstrate the use of these expressions through interpreting

simulation results.

Developing analytical theory for 3-D FLRs is a considerable

challenge and generally requires some simplifying assumptions.

For example, Mager and Klimushkin (2021) seek solutions with a

large azimuthal wavenumber, and note this means the fast mode

is evanescent and may be neglected. This may cause some to

question whether their solution corresponds to an Alfvén wave

that is driven resonantly by a fast mode as in the normal picture

of an FLR.

The simulations of 3-D FLRs reviewed in the previous

sections show that FLRs are narrow (and so, in some sense,

are ‘high-m’) but also have a large radial-like wavenumber. In

contrast, the fast mode driving the FLRs is not a high-m wave.

Generally we do not expect a low-m fast mode to couple

effectively to a high-m FLR. However, the variation of FLR

properties along special paths (the resonant paths) does not

have a high wavenumber, but a gentle variation over large scales.

Indeed, in the formulation of Mager and Klimushkin (2021) the
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resonant paths are contours of their WKB phase. Moreover

Elsden and Wright (2017) have shown how the gradient of

the fast mode magnetic pressure resolved along the resonant

paths is responsible for driving the FLR response. Motivated by

the simulations, it would be worth investigating the possibility of

combining these ideas to generate an analytical solution where a

low-m fast mode is used to drive an Alfvén wave response that is

narrow perpendicular to the resonant path, but has a gentle

variation along it.

The analytical solution of Mager and Klimushkin (2021)

stress the importance of the separatrix in the Resonance Map and

claim that of all the possible resonant paths it is the one

coinciding with the separatrix where the resonant FLR is

excited. It is true that the separatrix is a special path and

resonant paths converge to it, meaning that it is likely to have

substantial Alfvén wave energy on or near it in certain places.

However, it is also possible for other resonant paths to carry the

main FLR. Wright and Elsden (2016) show that if the Resonant

Zone intersects a simulation boundary, then the boundary

conditions there will determine which resonant path the FLR

is on. In general this is different to the separatrix path. Of course,

as the FLR resonant path is traced away from the boundary it may

converge to the separatrix and for practical purposes be

indistinguishable from it in some locations.

It would be desirable to have a more detailed understanding

of identifying which resonant paths the FLRs coincide with. No

doubt identifying the separatrix and locations where the

“tangential alignment” condition is met will be key

ingredients. However, other resonant paths can support FLRs

through other processes. For example, in Figure 4A the FLR

produced at the strong coupling location at (0.9,0) zig-zags as it

bounces between encounters with the boundary of the Resonant

Zone, where it switches to resonant paths that do not satisfy

either the “separatrix” or “tangential alignment” conditions. The

nature of the interaction of an FLR with the Resonant Zone

boundaries is not understood well and warrants further

investigation.

The formulation of Cheng (2003) is closer to the singular

series solution of FLRs used in 1-D and 2-D (e.g., Southwood

(1974) and Wright and Thompson (1994)) than the asymptotic

theory of Mager and Klimushkin (2021). However, the new

feature in 3-D of the Resonant Zone containing a continuum

of possible resonant paths is not considered by Cheng (2003) – as

evidenced by a single driving frequency corresponding to a single

resonant path in Figure 13B rather than a Resonant Zone.

Although there are questions concerning how Cheng (2003)

determines the path of the FLR (see ), there is much merit in

the paper. For example, if the resonant path was determined by

using Eq. 7 and simulations, then this path could be used to

define Cheng’s transverse coordinates and we can benefit from

their subsequent analysis. In particular, Cheng (2003) finds that

the transverse fields have the usual single pole and logarithmic

singularities familiar from the 1-D and 2-D limits. Interestingly,

Mager and Klimushkin (2021) claim the logarithmic singularity

is not present in 3-D, and whilst there is a jump in amplitude on

crossing the FLR, the amplitude remains finite. It is likely that

simulations can be used to confirm the true nature of the

singularity. Indeed, developing the challenging theory of 3-D

FLRs has taken substantial steps when simulations are used to

guide the development of theory, and this approach will likely

prove efficacious in future studies.

5.3 Implications of 3-D field line
resonances

In the final part of this review, we would like to discuss (and

leave open for readers to think about) what we believe are/could

be the key implications from the 3-D aspect of FLRs. It is of

course important to understand this process from a pure physics

standpoint, but there are also several areas of immediate

application in the magnetosphere.

Firstly let us treat the potential observation of 3-D FLRs.

With the recent developments in the theory of 3-D FLRs, it has

now become possible to identify clear features which should be

visible in spacecraft and ground-based data. Elsden and Wright

(2022) present simulations which analyse what a satellite would

observe passing through a 3-D FLR. Very evident is the

contribution of the FLR to both radial and azimuthal

components of the fields. When the FLR amplitude is

sufficiently greater than that of the fast mode (which can be

checked by confirming an appropriately small parallel magnetic

field component near the equatorial plane), the following features

should identify a 3-D FLR:

• Local amplitude increase (same as classical FLR criteria).

• Radial and azimuthal field components (magnetic, velocity

or electric) will be in/out of phase. This will result in an

approximately linear hodogram.

• The systematic variation of FLR polarisation angle with

azimuth (MLT) across the density gradients present in a

plasmaspheric plume should be identifiable in ground

magnetometer and satellite data.

The 3-D nature of FLRs should also affect the spatial

structure of the FLR driven aurora. A toroidal FLR can

generate poleward moving auroral arcs (Milan et al., 2001;

Rankin et al., 2005; Gillies et al., 2018), with the excitation

occurring about a central latitude corresponding to the central

field line of the FLR in space. For a 3-D FLR, one would expect to

see an auroral arc crossing magnetic latitude, which can be

pictured as the ground footprint of the curved FLR which

crosses L-shells shown in Figure 6B.

The predominant interest in ULF wave research in recent

years has been their influence on particles in the Earth’s radiation

belts. Since the periods of ULF waves can coincide with the drift
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period of energetic particles in the radiation belts, there can exist

a drift-resonant interaction between the waves and particles

(Southwood and Kivelson, 1981). When considering multiple

ULF waves across a range of frequencies, the interaction leads to

the radial diffusion of particles, violating the third adiabatic

invariant. Assuming that the first adiabatic invariant

associated with particle gyromotion is conserved, this also

results in a change in the particle energies (Fälthammar, 1965;

Elkington et al., 2003).

Of interest for this review is the effect that mixed polarisation

FLRs could have on particle energisation. Elkington et al. (2003)

reports on the effect of poloidal and toroidal mode ULF waves on

particles, showing that when included in a compressed dipole

magnetic field model with a convection electric field, both modes

can contribute significantly to particle energisation. It would

therefore be expected that modes of intermediate polarisation

should also have an effect. Indeed, Ozeke et al. (2012) invoke

exactly this explanation when calculating the electric field

diffusion coefficient. They consider that in a symmetric dipole

magnetic field, only the azimuthal component of the electric field

(parallel to the electron drift direction) associated with the FLR

should be used in the diffusion coefficient calculation. This would

correspond to a poloidal mode, but interestingly the authors

argue that such a poloidal component could be contributed by a

mixed polarisation FLR, as observed by Clemmons et al. (2000)

and analysed as an FLR by Ozeke et al. (2005). The framework of

3-D FLRs lends credence to this idea, and it would therefore be

expected that the contribution to the azimuthal electric field

component from 3-D FLRs should be important in this context.

The highly localized radial structure of narrow band FLRs may be

expected to have a limited impact on radial transport, however

Degeling et al. (2019) has shown that alterations in drift

resonance dynamics due to strongly peaked FLRs act to

extend the L-shell range of the interaction. The radial span of

the resonant zone for 3-D FLRs in compressed dipole geometries

potentially provides a further extension in their effective range in

L-shell. Further investigation into these effects using test-particle

simulations like those of Elkington et al. (2003); Hudson et al.

(2017); Degeling et al. (2007); Degeling and Rankin (2008);

Degeling et al. (2014) using mixed polarisation ULF waves

should be addressed in future studies.
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