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ABSTRACT

1. Animals can respond to climate change through changes in behaviour, mor-
phology or life- history traits. Changes in life- history traits do not occur in-
dependently, as they trade off or co- evolve with other traits.

2. Hibernation is a life- history trait used to cope with periods of low resource 
availability. The energetic and survival benefits of hibernation depend on 
environmental conditions. Climate change- induced changes in hibernation 
patterns are therefore likely to affect other life- history traits through 
trade- offs.

3. We systematically reviewed the literature to: 1) identify studies testing for 
associations between climatic variables and life- history traits in mammalian 
hibernators; and 2) assess variation in responses between species.

4. Air temperature was the most commonly measured climatic variable, and 
phenology of hibernation emergence was the most commonly studied life- 
history trait. In most studies and species, emergence date became earlier, 
litter size increased and the number of interbout arousals increased with 
increasing air temperature.

5. Despite being considered key life- history traits due to their potential to influ-
ence population dynamics, our search returned no studies on the effects of 
climatic variables on the age of primiparity or on the age distribution of 
reproduction.

6. Directions of associations between climatic variables and life- history traits 
often differed between species, and both species-  and sex- specific variations 
occurred in response to climatic variables for some traits.

7. We highlight the importance of long- term, species- specific research, and the 
need for further studies on indirect effects of climatic cues on co- adapted 
traits to understand the potential for mammalian hibernators to respond to 
ongoing and future climate change.
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INTRODUCTION

Climate change is affecting species and ecosystems world-
wide and contributing to global biodiversity loss 
(IPBES 2019). As long- term environmental change con-
tinues, understanding how climate change affects species’ 
characteristics will be increasingly important for wildlife 
conservation (Paniw et al. 2021).

Many species’ characteristics evolved to maximise fitness 
by influencing the allocation of resources towards survival 
and reproduction; these characteristics are life- history traits 
(Endler 1986). Organisms’ life- history strategies are shaped 
by trade- offs in patterns of resource allocation between 
sets of co- adapted life- history traits (Box 1; Williams 1966, 
Stearns 1989). Trade- offs in resource allocation between 
reproduction and survival are key mechanisms of life- history 
evolution (Williams 1966). These trade- offs may occur at 
the genotypic or phenotypic level, or via mechanisms con-
necting the two (Stearns 1989). Phenotypic trade- offs 
concern traits that directly influence reproduction or sur-
vival and for which whole- organism measurements can 
be made (e.g. behavioural or morphological traits; 
Stearns 1989). Key traits measurable at the phenotypic 
level include number of offspring, offspring size, frequency 
of reproduction, body size at maturity and the age dis-
tribution of reproductive effort (Stearns 1976).

Adjustment of life- history traits is a key route by which 
species may respond to environmental change (Root 
et al. 2003). Long- term changes in environmental cues, 
such as weather patterns, are associated with changes in 
phenological traits in a range of species (Walther 
et al. 2002), and may subsequently influence population 
demographics (Sæther et al. 2013). Environmental change 

may also act indirectly, for instance by influencing resource 
availability at different times of year (Burgess et al. 2018). 
This may be particularly important for income breeders, 
where costs of reproduction are drawn from the imme-
diately available resources (Jönsson 1997). However, 
changes in one trait in response to these cues may affect 
trade- offs with co- adapted traits, meaning that shifts in 
a single trait could influence an individual’s entire life 
history.

Hibernation is a life- history trait found in approximately 
half of mammalian orders (Turbill et al. 2011). During 
hibernation, endothermic animals respond to poor envi-
ronmental conditions with multiday (>24 h) periods of 
torpor (Geiser & Ruf 1995), in which they reduce their 
body temperature, metabolic rate and other functions to 
conserve energy. Physiological and metabolic characteristics 
of hibernation can vary broadly between species, leading 
to differences in the trade- offs experienced (Humphries 
et al. 2003, Nowack et al. 2019). There remains debate 
in the literature whether hibernation and daily torpor 
constitute a continuum of heterothermy (e.g. Boyles 
et al. 2013) or distinct physiological states (e.g. Ruf & 
Geiser 2015). This review is focussed on mammals that 
show greatly depressed core body temperatures (often to 
below 10°C) and metabolism for prolonged periods, with 
each period lasting for on average more than a week, but 
up to several months. We refer to these as ‘prolonged 
hibernators’ (Geiser & Ruf 1995).

The use of hibernation is associated with slow life- history 
strategies and can directly increase survival by reducing 
risks of predation in some species, such as edible dormice 
Glis glis, or starvation when resources are limited (Turbill 
et al. 2011, Ruf & Bieber 2023). Although hibernating 
species appear to have a lower extinction risk than non-
hibernators, future effects of climate change on hibernators 
may depend on species’ contexts (Geiser & Turbill 2009). 
Hibernation may also indirectly affect fitness via influences 
on other life- history traits. For instance, many species mate 
shortly after emerging from hibernation; thus, changes in 
the timing of hibernation emergence may influence the 
parturition date, with potential subsequent effects on fit-
ness (Dobson & Michener 1995).

However, hibernation is also costly. Such costs may be 
ecological, such as increased vulnerability to predation in 
some taxa such as bats (Estók et al. 2010), immunological, 
such as reduced immunocompetence (Prendergast 
et al. 2002), or physiological, such as telomere degradation 
at low temperatures (Nowack et al. 2019). Costs can be 
reduced through periodic returns to euthermy during hi-
bernation, known as interbout arousals (IBAs; reviewed 
by Humphries et al. 2003). However, IBAs are themselves 
energetically costly, depleting fat reserves and/or food re-
sources, and can occur nonadaptively in response to 

Box 1. Glossary of key terms used in this review

Life- history trait— an aspect of behaviour, physiology 
or anatomy that influences an organism’s energy al-
location to reproduction and/or fitness (Endler 1986).
Life- history strategy— a genetically based set of deci-
sion rules that control the expression of traits.
Prolonged hibernator— animal that demonstrates 
multi- day (>24 h) periods of torpor and associated large 
depressions in body temperature and metabolism.
Emergence— an individual’s physical exit from a hi-
bernaculum (e.g. burrow or cave) following a final 
return to euthermy (i.e. normal rates of body tem-
perature and metabolism).
Immergence— an individual’s entry into prolonged 
torpor (hibernation).
Inter- bout arousals (IBAs)— periodic, short- term re-
turns to euthermy that are experienced by hibernators 
between bouts of torpor.
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disturbance (Speakman et al. 1991). This depletion may 
affect overwinter survival probability and resource avail-
ability for the early active season. Hence, IBAs may also 
directly and indirectly affect other life- history traits.

Prolonged hibernation is largely a seasonal trait. 
Therefore, aspects of its expression, such as the timing 
of emergence, can be influenced by climatic cues (Turbill 
& Prior 2016) in conjunction with internal mechanisms 
such as a circannual endogenous clock (Körtner & 
Geiser 2000). In seasonally active species, climatic factors 
are also likely to influence other life- history traits, either 
directly or indirectly. Hibernation behaviours are thought 
to have evolved as energy- saving mechanisms, often in 
response to adverse environmental conditions (Geiser 2013); 
therefore, changing environmental conditions have the 
potential to strongly impact energy allocation patterns in 
hibernators. Changes in energy allocation may influence 
a range of other life- history traits, with subsequent impacts 
on individual fitness, and hence population viability (e.g. 
Lane et al. 2012, Maldonado- Chaparro et al. 2017). To 
predict how hibernators will react to future climatic changes, 
it is vital to understand the effects of climatic cues on 
life- history traits, individual fitness and population viability, 
and how these differ between species.

We systematically review the literature to identify: 1) 
studies testing for associations between climate and phe-
notypically measurable life- history traits in mammalian 
hibernators; and 2) the direction of these associations and 
whether they differ between species, sexes and age classes. 
We also discuss how climatic variables could influence 
life- history traits that have not been studied and highlight 
the importance of integrative studies on multiple traits. 
These are necessary to understand fully the effects of cli-
mate change on hibernating mammals and to inform 
conservation planning.

METHODS

We used the Preferred Reporting Items for Systematic 
Reviews and Meta- Analyses (PRISMA) framework (Liberati 
et al. 2009) to systematically search three databases (Web 
of Science, Scopus and Academic Ultimate) using terms 
related to key phenotypic life- history traits as described 
above and listed by Stearns (1989), and to climate change: 
hibernat* AND ‘climate change’ OR climat* change OR 
global warming AND age at first reproduction OR ‘first 
reproduction’ OR primiparity OR age distribution of re-
production OR reproductive effort OR litter size OR off-
spring quality OR social OR immergence OR ‘body size’ 
OR emergence OR reproduction OR body mass OR ‘body 
mass’ OR fitness OR age structure OR age structure of 
reproduction OR ‘reproductive effort’ OR life- history. 

Searches were carried out on 23 September 2020. Abstracts 
were reviewed and articles excluded if they did not concern 
1) extant mammal species; or 2) prolonged hibernators 
(based on the criteria of Geiser & Ruf 1995; Fig. 1). Review 
articles were also excluded.

Full manuscripts were accessed for the remaining articles, 
and details of species, response variables and explanatory 
variable(s) were extracted. Where single articles contained 
data on multiple species or life- history traits, each unique 
‘species -  response variable -  explanatory variable’ combina-
tion was considered separately and is hereafter referred to 
as a ‘study’. In two articles, the responses of different species 
were analysed together, and we therefore treat them as a 
single study. Studies with the response variables ‘survival’ 
or ‘fitness’ were excluded as these variables were not con-
sidered to be specific phenotypically measurable traits under 
our definition based on Stearns (1989; Box 1), but rather 
the outcome of trade- offs and stochastic processes.

Our literature search returned 313 unique articles. Due 
to the broad nature of our search, over half of the unique 
articles did not concern extant hibernating mammals, and 
many others mentioned climate change without testing 
for associations with climatic variables. Following screening 
(Fig. 1), 57 studies from 26 articles were extracted (Table 1).

RESULTS AND DISCUSSION

Taxonomic and topical focus of hibernation 
research

Of the 57 studies we reviewed, 55 examined relationships 
between climatic variables and life- history traits (Table 1; 
Appendix S1), whilst two were focussed on indirect effects 
on other life- history traits. Sixteen different climatic vari-
ables and 16 different response trait variables were 
measured.

To give a broader overview of responses, similar traits 
and climatic variables were grouped into response trait 
categories with similar variables (Table 1; Appendix S1). 
Studies were also classified by taxonomic order. Among 
the 16 specific climatic variables, ordinal snowmelt date 
was the most commonly measured climatic variable, as-
sessed in 23% of studies, followed by mean autumn air 
temperature (18%; Appendix S1). Mean annual air tem-
perature, mean monthly soil temperature, total annual 
precipitation, start date of lying snow, duration of snow 
cover and hourly wind speed were each studied only once 
(2%). When similar variables were considered together 
(air temperature, soil temperature, barometric pressure, 
precipitation, snow depth, timing of snow cover and wind 
speed), air temperature was the most commonly measured, 
occurring in 47% of studies.
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Rodentia was the most commonly studied order (71%), 
followed by Chiroptera (25%), Eulipotyphla (2%) and 
Monotremata (2%; Fig. 2). This is consistent with the 
number of hibernating species in each order (Constant 
et al. 2020; Fisher’s Exact Test, P = 0.03). Rodents were 
studied in relation to traits from all nine trait classes, in 
contrast to Chiroptera (three trait classes) and Eulipotyphla 
and Monotremata (one trait class each; Fig. 2). Two of 
the 57 studies examined ‘indirect’, that is the effect of a 
trait affected by climate on trait Y. One of these examined 
the effects of body mass on the probability of successfully 
producing a litter, the other the effects of emergence date 
on parturition date.

Hibernation phenology

Hibernation has both fitness benefits and costs 
(Humphries et al. 2003), and the timing and expression 
of hibernation immergence and emergence, and IBA 
frequency, should therefore be optimised to maximise 
benefits and minimise costs (Boyles et al. 2020). 
Emergence traits were the most commonly studied re-
sponse trait category in our review (21% of studies), 
and emergence date was the most commonly studied 

response trait. For both orders in which they were stud-
ied, Rodentia and Chiroptera (Fig. 2), emergence dates 
became earlier in association with higher air temperatures 
in all but one study, where no effect was seen; however, 
in this study, a positive association was found between 
emergence date and snowmelt date (Lane et al. 2012). 
This suggests that the specific climatic variables most 
strongly associated with emergence timing may differ 
between species. For instance, yellow- bellied marmots 
Marmota flaviventris in Colorado, USA, emerged pro-
gressively earlier over the course of 20 years, in conjunc-
tion with increases in spring air temperatures. This was 
despite no change in average snowmelt date (Inouye 
et al. 2000). Conversely, female Columbian ground squir-
rels Urocitellus columbianus in Alberta, Canada, progres-
sively delayed their emergence between 1992 and 2011 
(Lane et al. 2012) as ordinal snowmelt dates also became 
later. There was a trend towards increasing spring tem-
peratures during this period, but it was not statistically 
significant. Similar responses to delayed snowmelt (a 
one- month delay in emergence after extreme weather) 
occurred in female Arctic ground squirrels Urocitellus 
parryii (Williams et al. 2017). Female Arctic ground 
squirrels had previously been shown to time emergence 

Fig. 1. Preferred Reporting Items for Systematic Reviews and Meta- Analyses (PRISMA) diagram showing the process of article identification and study 
selection. Literature searching was carried out using the Web of Science, Scopus and Academic Ultimate databases. Articles were excluded if they did 
not concern 1) extant mammals, 2) prolonged hibernators (Box 1), 3) phenotypically measured life- history traits (Box 1), and/or 4) climatic variables, 
based on the abstract or the full text. From each article, unique species- response variable- explanatory variable combinations were extracted and 
treated as separate studies.

Unique ar s iden
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of relevance based on 
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Table 1. Studies on associations between climatic variables and life- history response traits returned by the systematic literature review. Numbers in 
brackets represent the total number of studies for each response trait and response trait category (studies are defined as unique species –  response 
variable –  explanatory variable combinations)

Response trait 
category Response trait Climatic variable Order Species Effect Reference

Adult body size 
or mass (12)

Body condition (1) Snowmelt date (1) Rodentia Urocitellus parryii Positive Sheriff et al. (2017)
Body mass (3) Air temperature (winter) (1) Rodentia Glis glis Variable Fietz et al. (2020)

Precipitation (winter) (1) Cricetus cricetus Negative Tissier et al. (2016)
Snowmelt date (1) Urocitellus parryii Positive Sheriff et al. (2013)

Body size (2) Air temperature (monthly) (1) Rodentia Spermophilus 
xanthoprymnus

Negative Gür (2010)

Soil temperature (monthly) (1) Spermophilus 
xanthoprymnus

Negative

Pre- hibernation 
body mass (6)

Air temperature (autumn) (6) Chiroptera Barbastella barbastellus Positive Ignaczak et al. (2019)
Myotis bechsteinii Positive
Myotis daubentonii No effect
Myotis myotis Negative
Myotis nattereri Negative
Plecotus auritus Negative

Hibernation 
emergence 
(18)

Emergence 
date (14)

Air temperature (autumn) (1) Rodentia Zapus hudsonius Negative Frey (2015)
Air temperature (spring) (1) Chiroptera Myotis lucifugus No effect Meyer et al. (2016)
Air temperature (spring) (4) Rodentia Glis glis Negative Adamík and 

Král (2008)
Glis glis Negative Fietz et al. (2020)
Marmota flaviventris Negative Edic et al. (2020)
Marmota flaviventris Negative Inouye et al. (2000)

Barometric pressure (spring) (2) Chiroptera Myotis lucifugus Positive Czenze and 
Willis (2015)

Myotis lucifugus No effect Meyer et al. (2016)
Snowmelt date (4) Rodentia Marmota flaviventris Positive Blumstein (2009)

Marmota flaviventris Positive Edic et al. (2020)
Urocitellus columbianus Positive Lane et al. (2012)
Urocitellus parryii Positive Sheriff et al. (2013)

Soil temperature (spring) (2) Rodentia Urocitellus parryii Negative
Urocitellus parryii (males) No effect Sheriff et al. (2011)

Date of return to 
euthermy (4)

Snowmelt date (3) Rodentia Urocitellus parryii No effect Sheriff et al. (2013)
Urocitellus parryii 

(females)
Variable Williams et al. (2017)

Urocitellus parryii (males) No effect
Soil temperature (spring) (1) Rodentia Urocitellus parryii No effect Sheriff et al. (2013)

Hibernation 
duration (1)

Hibernation 
duration (1)

Air temperature (annual) (1) Rodentia 16 rodent species Negative Turbill and 
Prior (2016)

Inter- bout 
arousal  
(IBA; 8)

IBA frequency (8) Air temperature (autumn) (1) Monotremata Tachyglossus aculeatus 
setosus

Negative Nicol and 
Andersen (2002)

Air temperature (winter) (3) Chiroptera 9 bat species Positive Barros et al. (2017)
Myotis lucifugus Variable Czenze et al. (2017)
Myotis nattereri Positive Hope and 

Jones (2013)
Precipitation (winter) (1) Chiroptera 9 bat species Negative Barros et al. (2017)
Snowmelt date (2) Rodentia Urocitellus parryii 

(females)
Positive Williams et al. (2017)

Urocitellus parryii (males) No effect
Wind speed (1) Chiroptera 9 bat species Positive Barros et al. (2017)

Immergence (3) Immergence 
date (3)

Air temperature (autumn) (2) Eulipotyphla Erinaceus europaeus Positive Rasmussen 
et al. (2019)

Rodentia Zapus hudsonius No effect Frey (2015)
Timing of snow cover (1) Rodentia Urocitellus parryii (males) Positive Sheriff et al. (2011)

(Continues)
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with rising soil temperatures (Williams et al. 2012), 
highlighting the importance of considering the use of 
multiple climatic variables.

Emergence dates may also be indirectly influenced by 
climate. Whilst associations between rising spring tem-
peratures and earlier hibernation emergence were found 
in edible dormice Glis glis by Adamík and Král (2008), 
Fietz et al. (2020) observed that the strength of the 
relationship between emergence date and temperature 
strongly depended on food availability in the previous 
summer. Individuals of this fat- storing species with higher 
pre- emergence mass emerged later than lighter 

conspecifics, having lost a greater proportion of body 
mass (Fietz et al. 2020). This suggests that edible dor-
mice use excess energy stores to remain in hibernation 
for longer. In little brown bats Myotis lucifugus and 
yellow- bellied marmots, by contrast, heavier individuals 
emerge from hibernation earlier (Czenze & Willis 2015, 
Edic et al. 2020), based on mid- winter and postemer-
gence masses, respectively. These species reproduce earlier 
in the season than edible dormice, so that emerging 
with higher energy availability, in the form of greater 
body mass, may allow individuals to withstand changing 
weather conditions or low food availability early in the 

Response trait 
category Response trait Climatic variable Order Species Effect Reference

Offspring 
growth (4)

Juvenile mass 
gain (2)

Proxy of environmental 
quality (1)

Rodentia Marmota flaviventris No effect Paniw et al. (2021)
Marmota marmota Positive Canale et al. (2016)

Snow depth (1) Rodentia Marmota marmota Negative
Juvenile structural 

growth (2)
Proxy of environmental 

quality (1)
Rodentia Marmota marmota Positive

Snow depth (1) Rodentia Marmota marmota Positive
Offspring 

recruitment 
(2)

Juvenile 
recruitment (2)

Proxy of environmental 
quality (1)

Rodentia Marmota flaviventris No effect Paniw et al. (2021)

Snow start date (1) Rodentia Urocitellus parryii Positive Sheriff et al. (2017)
Litter size (5) Litter size (3) Air temperature (spring) (1) Rodentia Glis glis Positive Fietz et al. (2020)

Snow depth (1) Rodentia Marmota marmota Negative Tafani et al. (2013)
Snowmelt date (1) Rodentia Urocitellus parryii No effect Sheriff et al. (2017)

Litter size 
(variation) (2)

Air temperature (monthly) (1) Rodentia Marmota flaviventris Positive Schwartz and 
Armitage (2005)Precipitation (annual) (1) Rodentia Marmota flaviventris Positive

Timing of 
parturition 
(2)

Parturition 
date (2)

Air temperature (spring) (1) Rodentia Glis glis No effect Fietz et al. (2020)
Snowmelt date (1) Rodentia Urocitellus parryii 

(females)
Positive Williams et al. (2017)

Table 1. (Continued)

Fig. 2. Number of studies of each life- history response trait category in each mammalian order returned by the systematic search and included in the 
review. The overall proportion of studies found in each order was consistent with the number of known hibernating species in each order (Fisher’s 
Exact Test, P = 0.03).
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season better. Early emergence may also increase mating 
opportunities for species that mate following hibernation 
(Bernard 1985, Schwartz & Armitage 2005). In a food- 
storing hibernator, the European hamster Cricetus cricetus, 
experimentally supplementing food stores led to earlier 
hibernation emergence in both males and females, which 
also suggests that increased food availability may allow 
earlier emergence (Siutz et al. 2018). Nonetheless, this 
evidence suggests a mediating role of prehibernation 
food availability, which impacts on energy availability 
during and following hibernation. Prehibernation energy 
availability and food stores could also be influenced by 
weather conditions affecting resource availability or for-
aging ability prior to hibernation.

The differences in the direction of the relationships 
between body mass and emergence date might be related 
to the mating systems of the species concerned. Most 
seasonally reproducing hibernators benefit from parturition 
early in the active season (Dobson & Michener 1995), 
which maximises time for offspring growth before hiber-
nation, and early emergence allows earlier mating and/or 
parturition. Hibernators benefitting from early parturition 
include species that mate preceding or during hibernation 
(Sandell 1990). Heavier individuals may be able to deal 
with climatic and resource uncertainty better following 
early emergence, whilst lighter individuals are more likely 
to starve if they emerge before sufficient resources are 
available. However, this is not the case in all species; for 
example, edible dormice reproduce late in the active season 
to synchronise with seed masting events, and forego re-
production in nonmast years (Ruf & Bieber 2020). 
Therefore, unlike many early- reproducing species, they do 
not gain a fitness advantage from early emergence.

Differences in mating systems and social structure be-
tween species may also influence emergence timing in 
other ways. The structure of hibernation groups may affect 
emergence timing in yellow- bellied marmots (Blumstein 
et al. 2004). Hibernation groups containing more adult 
males emerge earlier than those with fewer males, the 
number of males in a group representing a metric of 
reproductive competition (Blumstein 2009). In solitarily 
hibernating Arctic ground squirrels, male hibernation 
emergence is related to dates of emergence of females, 
despite males appearing to use soil temperature as a cue 
for physiological exit from hibernation (i.e. return to eu-
thermy; Sheriff et al. 2013). This pattern of male- before- 
female hibernation emergence is common among solitary 
hibernators, due to sexual selection (Michener 1983). 
Whether this pattern is influenced by sex- specific use of 
environmental cues is unknown for most species. However, 
in communally hibernating little brown bats, although 
females emerge before males due to differences in the 
timing of reproductive investment (Willis 2017), both sexes 

appear to use falling barometric pressure as an emergence 
cue (Czenze & Willis 2015).

Far fewer studies (5%) in our review tested associations 
between climate and hibernation immergence than tested 
associations with emergence (Table 1; Appendix S1), prob-
ably due to the difficulty of accurately recording immergence 
dates. The existing studies provide limited evidence that 
climatic factors directly influence immergence date. Studies 
on juvenile Arctic ground squirrels (Sheriff et al. 2015) and 
New Mexico jumping mice Zapus hudsonius luteus 
(Frey 2015) reported no association between climatic condi-
tions and immergence dates. Conversely, juvenile European 
hedgehogs Erinaceus europaeus were recorded immerging 
later than previously recorded during an exceptionally mild 
autumn, which was attributed to food being available later 
than usual (Rasmussen et al. 2019). However, no relation-
ship between body mass and hibernation immergence date 
was found, and prehibernation masses of individuals in this 
study were above the suggested lower threshold of ~450– 
600 g for surviving hibernation (Bearman- Brown et al. 2020). 
Additionally, effects of an endogenous circannual clock pre-
venting immergence until a set time after birth for juveniles, 
as suggested by Sheriff et al. (2015), cannot be ruled out. 
Such circannual rhythms could delay immergence of late- 
born juveniles irrespective of body mass, but experimental 
research is required to disentangle these effects.

There is, however, suggestive evidence for indirect effects 
of climatic factors on immergence date, primarily via effects 
on body mass. Negative associations have been reported 
between ordinal immergence date and body mass prior to 
hibernation in edible dormice, irrespective of whether in-
dividuals reproduced that year (Bieber et al. 2014). Water 
stress may also play a role in triggering hibernation 
(Bintz 1984), although to our knowledge, this has not been 
experimentally tested. For herbivores and granivores in par-
ticular, climatic effects on food and water availability could 
therefore indirectly affect immergence date via influences 
on body mass. Such indirect connections between immer-
gence and climatic factors warrant further study.

Frequency of IBAs was the second most common re-
sponse trait returned in our review. Interbout arousals 
can be measured in the wild using implanted temperature 
dataloggers (e.g. Williams et al. 2011), temperature- sensitive 
collars (e.g. Dausmann et al. 2004) or thermal- imaging 
cameras (Hayman et al. 2017). As nonfossorial hiberna-
tors, bats may be a more convenient subject for the study 
of IBAs. Indeed, bats accounted for 83% of IBA studies 
(Table 1). Studies of winter activity in 10 bat species found 
increased activity levels (and, by extension, IBAs) at higher 
ambient temperatures (Hope & Jones 2013, Barros 
et al. 2017). This was particularly apparent as temperatures 
crossed thresholds for insect flight, providing feeding op-
portunities. Although IBAs were not specifically measured, 
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negative associations between torpor bout duration and 
ambient temperature in adult little brown bats were found 
to be reversed in young- of- the- year, suggesting a condition-
  or age- dependent relationship by Czenze et al. (2017). 
Most studies we reviewed on IBAs in bats measured activity 
(i.e. flight) as a proxy for arousals. Nevertheless, IBAs are 
not always associated with physical activity (Trachsel 
et al. 1991, Hoelzl et al. 2016), and future research should 
consider such stationary IBAs, for example through the 
use of temperature telemetry (Czenze et al. 2017) or ther-
mal imaging (Hayman et al. 2017), to understand the 
effects of winter weather on IBAs fully.

Reproduction

Several phenotypic traits can contribute to reproductive 
success, key among which are individual reproductive ef-
fort and reproductive timing. Individual reproductive effort 
has been defined as the proportion of resources invested 
into reproduction (Williams 1966), including production 
of sex cells, gestation and provision of nutrition 
(Trivers 1972). Measuring individual reproductive effort 
can therefore be complex, which is reflected in the range 
of response traits seen in our results. In the 13 studies 
concerning aspects of reproduction or offspring, six dif-
ferent response trait variables were measured. These fell 
into four response trait categories: ‘offspring growth’, in-
cluding offspring growth rates and mass gain, ‘offspring 
recruitment’, ‘litter size’, including variation in and absolute 
litter size, and timing of parturition (Table 1). Litter size 
was the most commonly studied reproductive response 
trait. In our results, reproductive traits were only studied 
in Rodentia.

Associations between climatic variables and litter size 
appear to be largely mediated by climatic effects on body 
mass. Successful parturition rates, offspring mass, litter 
size and juvenile winter survival rates are all positively 
associated with maternal body mass in a range of hiber-
nators (Dobson & Murie 1987, Tafani et al. 2013, Rubach 
et al. 2016). Long- term increases in litter size in yellow- 
bellied marmots (Maldonado- Chaparro et al. 2015) and 
declines in litter size in Alpine marmots Marmota marmota 
(Tafani et al. 2013) have both been attributed to the ef-
fects of warmer winters on body mass during hibernation. 
This demonstrates that effects can occur in opposing di-
rections even in closely related species experiencing similar 
changes in weather patterns.

Studying multiple aspects of reproductive effort within 
individuals or populations may help discern effects of 
climate change on reproductive success more clearly. For 
instance, within the same population and study period, 
Tafani et al. (2013) observed decreases in the litter sizes 
of Alpine marmots, while Canale et al. (2016) found no 

change in juvenile body mass. Although the findings of 
Tafani et al. (2013) may imply negative consequences for 
Alpine marmots, those of Canale et al. (2016) suggest 
that Alpine marmots may preferentially allocate resources 
to offspring quality over quantity. Maternal mass upon 
emergence also showed a declining trend during this period 
(although this was not statistically significant; Tafani 
et al. 2013), suggesting that fewer resources were available 
for investment. Such preferential investment in offspring 
quality could aid overwinter survival by allowing juveniles 
to immerge at higher body masses. Declines in juvenile 
overwinter survival of Alpine marmots (Rézouki et al. 2016) 
are associated with more severe winters and decreases in 
marmot group sizes, as larger group sizes help to offset 
the energetic costs of hibernation for juveniles 
(Arnold 1990). Juveniles in better body condition may 
therefore have an increased chance of overwinter survival 
in smaller groups, as they have greater energy reserves 
than juveniles in poorer body condition. This suggests 
strong selection pressures on body condition (body size 
to mass ratio; Canale et al. 2016) of juvenile Alpine mar-
mots for winter survival. Unfavourable weather conditions, 
such as high precipitation following hibernation emergence, 
are associated with unsuccessful breeding or offspring 
abandonment in some bat species (Ransome 1990, Grindal 
et al. 1992). As many bat species only produce a single 
offspring per breeding attempt, unsuccessful breeding or 
abandonment may incur a high fitness cost, particularly 
if climate change increases the incidence of such weather 
conditions.

In seasonal breeders, early- breeding females generally 
have higher reproductive success than late breeders (Dobson 
& Michener 1995). As parturition date is closely related 
to emergence date in many hibernating species (e.g. Lane 
et al. 2011), delayed emergence of adult females from 
hibernation may lead to reduced overwinter survival of 
their juveniles (Neuhaus 2000, Frick et al. 2010, Monclús 
et al. 2014) and lower maternal fitness (Frick et al. 2010, 
Lane et al. 2012). Some species, particularly of Chiroptera, 
may also use daily torpor when pregnant during the ac-
tive season, either due to inclement weather or due to 
low food availability. This may further delay parturition 
(Ransome 1990). Even in species that delay parturition 
until late in the active season, such as edible dormice 
and hazel dormice Muscardinus avellanarius, earlier- born 
juveniles often show increased survival during hibernation 
(Pilastro et al. 1994, Bieber et al. 2012).

Where relationships between the dates of parturition 
and hibernation emergence exist, costs of climate- induced 
delays in parturition can be offset by changes in repro-
ductive investment. Females of both Richardson’s ground 
squirrels Urocitellus richardsonii and Uinta ground squirrels 
Urocitellus armatus show differential allocation of maternal 
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resources depending on the parturition date, with late 
reproducers producing fewer and larger offspring than 
early reproducers (Dobson & Michener 1995, Rieger 1996). 
Offspring survival during hibernation increases with body 
condition in many ground squirrel species (Murie & 
Boag 1984, Rieger 1996); therefore, a tactic of investment 
in fewer, larger offspring late in the season maximises the 
winter survival probabilities of late- born offspring. Climate 
change may reduce the resource investment required to 
survive hibernation, for example through shorter or milder 
winters. Females may then be able to shift away from 
this tactic and towards larger litter sizes regardless of par-
turition date. However, the number and size of neonates 
is physiologically limited unless adult size also increases.

There is also evidence of phenotypic differences in post-
weaning growth rate and mass gain between early-  and late- 
born juveniles in garden dormice Eliomys quercus and 
European hedgehogs (Bunnell 2009, Stumpfel et al. 2017). 
Late- born juveniles grow faster than early- born juveniles in 
both species. However, potential long- term fitness conse-
quences of such early investment in rapid growth are un-
known. In hazel dormice, no long- term negative effects of 
late birth on lifetime reproductive success have been found 
among individuals who survived to reproductive age. However, 
late- born juveniles are less likely to survive to reproductive 
onset than early- born juveniles (Bieber et al. 2012).

Long- term changes in reproductive effort may manifest 
themselves in many forms, as seen by the range of re-
sponse variables measured in the studies in our review 
(Table 1). Both inter-  and intraspecific variation was found 
in the direction of responses, making it difficult to predict 
responses without species- specific observational data. In 
particular, species that generally produce only a single 
offspring per reproductive attempt, for example many 
hibernating bats, may be more strongly affected by climate- 
linked reductions in mean fitness than species producing 
larger litters. This may be particularly evident if climatic 
changes also negatively affect survival rates (e.g. Rézouki 
et al. 2016, Schorr & Siemers 2021), although the greater 
longevity and slower life history of insectivorous bats than 
rodents might compensate for this. Additionally, our results 
suggest that the mechanisms linking climate to reproduc-
tive traits are not well- studied in hibernating mammals. 
Changes in, for example, parturition date or offspring size 
have the potential to impact population dynamics strongly, 
and so further studies in this area are warranted.

Body size and mass

The terms body size and mass are often used interchange-
ably, but the variables can have different relationships with 
life history. Structural body size (e.g. length from snout 
to tail) initially increases over time in mammals and 

remains stable once structural growth is complete, whereas 
mass fluctuates within and between seasons. We found 
body mass to be measured much more frequently than 
body size (in 16% vs. 4% of total studies; Table 1) in 
relation to climate. Although body mass and body condi-
tion (e.g. mass to size ratio) are not themselves considered 
life- history traits, they are strongly related to a number 
of life- history traits and demographic processes (Ozgul 
et al. 2010, Paniw et al. 2021); these relationships are 
discussed in previous sections.

Changes in body size as a response to climatic change 
have been suggested in a range of mammalian orders (e.g. 
Rode et al. 2010, Sheridan & Bickford 2011), but the 
magnitude and direction of observed changes differ across 
species (Gardner et al. 2011). Our review includes three 
studies on body size, two of which examined body size 
in relation to spatial differences in air or soil temperature 
in Anatolian ground squirrels Spermophilus xanthoprymnus 
(Gür 2010) and one of which examined longitudinal changes 
in juvenile body size in Alpine marmots (Canale et al. 2016). 
The need for experimental studies to disentangle the ef-
fects of climate on body size and mass was highlighted 
by Canale et al. (2016), who found negative associations 
between juvenile body size and date of vegetation onset, 
and juvenile body size and date of weaning. Date of veg-
etation onset and date of weaning may both be influenced 
by climatic factors. In spite of a sustained decline in Alpine 
marmot body size over 22 years, no corresponding change 
in juvenile body mass was detected. If juvenile body size 
and mass were examined individually, different conclusions 
could be drawn; taken together, they suggest an increase 
in juvenile mass- to- size ratio during the study. This result 
could be interpreted as a positive effect on juvenile body 
condition. Conversely, smaller body sizes present a greater 
surface area- to- volume ratio, which may negatively affect 
energy retention during hibernation (Arnold 1990). It 
remains to be seen whether climate- associated declines in 
body size will affect long- term fitness.

Age distribution of reproductive effort

A key life- history trait of many hibernating species is de-
layed maturation, with offspring not reproducing until 
their second or third year. The age of primiparity can 
influence lifetime reproductive success and mean fitness, 
potentially impacting population dynamics (Sæther 
et al. 2013). Some hibernators show intraspecific variation 
in age at primiparity (e.g. Dobson et al. 1999, Bieber 
et al. 2012), which often appears to be related to envi-
ronmental conditions. Despite this, our review includes 
no studies on associations between climate and the age 
distribution of reproductive effort or age of primiparity 
in hibernators.
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The most apparent route by which climate change may 
influence age at primiparity is through indirect effects on 
body mass, for instance through changing resource avail-
ability. The probability of yearling breeding in Columbian 
ground squirrels, European hamsters, Daubenton’s bats 
Myotis daubentonii and Natterer’s bats Myotis nattereri 
appears to be positively related to resource availability 
(Dobson & Murie 1987, Tissier et al. 2016, Linton & 
Macdonald 2020). For all of these species, and others, 
climate could affect both the quality and the quantity of 
food available in the future (Rosenblatt & Schmitz 2016). 
Differential effects of climate on adult and juvenile over-
winter survival, as seen in Uinta ground squirrels, could 
also indirectly allow more yearling breeding. Warmer 
winters reduce adult survival but not juvenile survival, 
giving yearling Uinta ground squirrels a better chance of 
occupying a high- quality, resource- rich territory (Falvo 
et al. 2019). Such potential indirect effects of climate on 
the age distribution of reproduction warrant further 
research.

To predict effects of climate change on age at primi-
parity, a greater understanding of the underlying causes 
and consequences of variation in the majority of hiberna-
tors is required. Current research suggests that body mass 
prior to first reproduction, as discussed above, is likely 
to be positively correlated with on the age of primiparity. 
Therefore, in species where climatic conditions are leading 
to changes in body mass (e.g. Ozgul et al. 2010, Tissier 
et al. 2016), it is likely that contributions of younger age 
classes to population growth will also change. 
Understanding the relative importance of these contribu-
tions is therefore important for accurate projection of the 
effects of climate change on long- term population 
dynamics.

Social factors

Many hibernators display a degree of sociality. For instance, 
among 12 hibernating marmot species where social or-
ganisation has been classified, only woodchucks Marmota 
monax are ‘solitary’ (Armitage 2007). Increased complexity 
in social organisation and structure is positively correlated 
with large body size, late primiparity and short vegetation 
growing seasons (Armitage 1981). These traits are also 
often associated with harsher climates and lower resource 
availability (e.g. Bronson 1979, Dobson & Murie 1987). 
Hence, aspects of social structure, such as group size and 
cohesion (Kappeler 2019), could be influenced by climate 
change. Despite this, our results found no studies examin-
ing the effects of climate change on social structure.

Social hibernation of extended family groups occurs in 
some marmot species (Armitage 2007). Evidence for some 
benefits of social thermoregulation during hibernation, 

particularly for juveniles, has been found in Alpine and 
hoary marmots Marmota caligata (Arnold 1990, Patil 
et al. 2013). In general, larger group sizes have been as-
sociated with lower overwinter mass loss and improved 
overwinter survival in juveniles. However, in hoary mar-
mots, the positive correlation between group size and 
juvenile overwinter survival is weaker than the negative 
correlation between juvenile overwinter survival and the 
Pacific decadal oscillation index, an indicator of winter 
severity (Patil et al. 2013). Additionally, the benefits of 
social hibernation may be affected by climate- induced 
changes in other traits, as discussed above. For instance, 
long- term declines in litter size of Alpine marmots lead 
to fewer subordinates in socially hibernating groups, which 
negatively affects juvenile overwinter survival. This further 
reduces subordinate numbers in the following year, form-
ing a negative feedback loop (Arnold 1990, Rézouki 
et al. 2016). These studies suggest that the benefits of 
social thermoregulation may not outweigh the costs of 
unfavourable winter conditions under future climate 
scenarios.

Sex- specific life- history variation, including in hiberna-
tion patterns, occurs in several hibernating species (e.g. 
Sheriff et al. 2013, Norquay & Willis 2014). Where dif-
ferences are influenced by environmental conditions, 
climate change could drive sex- specific phenological 
mismatches. For instance, in male Arctic ground squir-
rels, a pre- emergence return to euthermy is associated 
with soil temperature in concert with an endogenous 
circannual clock (Sheriff et al. 2013), whilst physical 
emergence in males is related to female emergence tim-
ing (Williams et al. 2017). However, female emergence 
date is associated with snowmelt date (Williams 
et al. 2017). Although soil temperature and snowmelt 
date are often correlated, associations with different cues 
could lead to asynchronous change between male and 
female emergence dates. In turn, this could lead to in-
creased reproductive competition, or delayed parturition 
if males are not fully reproductively competent when 
females are in oestrus. As this pattern of male- before- 
female emergence is common among hibernating species 
(Michener 1983), understanding variation in cue use is 
important for anticipating changes in reproductive com-
petition and patterns.

Effects of climate change on social organisation, and 
potential mediating effects of social organisation on other 
life- history traits, are understudied. However, they may 
be crucial for predicting how population dynamics respond 
to changing environmental conditions. In particular, due 
to the greater ease of determining maternity than paternity, 
many studies focus solely on female life histories. This 
provides an incomplete understanding. For instance, al-
though female Columbian ground squirrels are emerging 
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from hibernation progressively later in association with 
delays in winter snowmelt (Lane et al. 2012), whether 
males are experiencing a similar delay has not been studied. 
If, as in Arctic ground squirrels, male emergence is as-
sociated with a different cue, emergence timing of the 
sexes could become mismatched.

CONCLUSIONS AND FUTURE DIRECTIONS

Associations between many climatic variables, most com-
monly air temperature, and life- history traits have been 
demonstrated in hibernating mammals (Table 1). Dates 
of hibernation emergence are related to air temperature 
and date of snowmelt in several hibernators, although 
these climatic factors often have opposing relationships 
with emergence date, showing negative and positively re-
lationships, respectively. Changes in emergence dates can 
have subsequent impacts on fitness- related traits such as 
litter size, parturition date and offspring survival rates. 
Several studies also demonstrated connections between 
climatic variables and fitness- related traits. Notably, litter 
size and variability in litter size showed positive relation-
ships with air temperature, precipitation and snow depth 
in two marmot species (Table 1, Appendix S1). The some-
times differing directions of associations between spring 
air temperatures and snowmelt dates with life- history traits 
in closely related species suggests that close consideration 
should be given to the ecology of the species in question, 
and generalisations should not be drawn without species- 
specific study. In particular, the mechanisms that individuals 
use to detect climatic signals, particularly for species that 
hibernate underground, require further study to fully un-
derstand climatic influences on hibernation patterns.

Rodents were the most commonly studied mammalian 
order in our review (Fig. 2). This is consistent with the 
number of hibernating species in this order compared 
with the others studied and may also reflect rodents’ gen-
erally short generation time and ease of manipulation in 
the field. Despite the differences in life- history strategies 
between rodents and insectivorous bats, the two most 
species- rich orders in our results, many potential effects 
of future climate change appear to be largely similar. For 
instance, parturition date affects reproductive success across 
species in both orders and can be strongly influenced by 
climate. However, the population- level impacts on these 
orders from such changes are likely to differ due to their 
different life- history strategies.

Most long- term studies of rodent hibernators occur at 
high elevations, such as in the Alps in Europe and the 
Rocky Mountains in North America. Although climate 
change may be leading to, for example, decreases in snow 
depth in these areas, snow is still more- or- less guaranteed 
at these high elevations. Much less research has been 

conducted on prolonged hibernators in more variable cli-
mates, where average winter temperatures often do not fall 
below zero, and snow does not fall every year. The benefits 
of hibernation other than saving energy, such as predation 
avoidance (Bieber et al. 2014), also warrant further research. 
Examining the causes and flexibility of differences in hi-
bernation patterns within wide- ranging species may aid in 
understanding the potential for hibernation patterns to buffer 
species against changing climatic conditions.
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SUPPORTING INFORMATION

Additional supporting information may be found in the 
online version of this article at the publisher’s website.

Appendix S1. Associations between climatic variables and 
life- history traits in mammalian hibernators returned by 
a systematic review. Line thickness is proportional to 
the number of studies on a particular climatic variable 
and life- history trait combination, and lines are labelled 
with the number of papers found for each variable. 
Monthly and annual values represent the mean value 
of the variable for this time period. ‘Proxy of environ-
mental quality’ represents a latent variable used to capture 
a number of climatic and environmental variables by 
Paniw et al. (2020).
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