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ABSTRACT

The potential to understand fundamental biological
processes from gene expression data has grown in
parallel with the recent explosion of the size of data
collections. However, to exploit this potential, novel
analytical methods are required, capable of discov-
ering large co-regulated gene networks. We found
current methods limited in the size of correlated gene
sets they could discover within biologically heteroge-
neous data collections, hampering the identification
of multi-gene controlled fundamental cellular pro-
cesses such as energy metabolism, organelle bio-
genesis and stress responses. Here we describe a
novel biclustering algorithm called Massively Corre-
lated Biclustering (MCbiclust) that selects samples
and genes from large datasets with maximal corre-
lated gene expression, allowing regulation of com-
plex networks to be examined. The method has been
evaluated using synthetic data and applied to large
bacterial and cancer cell datasets. We show that the
large biclusters discovered, so far elusive to identi-
fication by existing techniques, are biologically rele-
vant and thus MCbiclust has great potential in the
analysis of transcriptomics data to identify large-
scale unknown effects hidden within the data. The
identified massive biclusters can be used to develop
improved transcriptomics based diagnosis tools for
diseases caused by altered gene expression, or used
for further network analysis to understand genotype-
phenotype correlations.

INTRODUCTION

Gene expression datasets can now contain thousands of
samples, each measuring tens of thousands of genes. More-
over, the size of the currently generated sample-gene matri-
ces continues to increase dramatically with the advances of
more economical high throughput technologies. These ex-
tensive datasets hold the promise for the discovery of novel
regulatory networks underlying fundamental physiological
and pathological cellular processes governed by multitudes
of genes, such as cellular energy and redox metabolism, or-
ganelle biogenesis and integrated stress responses (1–5). In-
deed, while quantitative models of networks involving genes
on relatively small scale are now well established (e.g. see
(6–9) related to metabolism), bioinformatic discovery ap-
proaches capable of handling large datasets are in critical
need of development.

Currently, extracting information on biological processes
from genomic, transcriptomic and proteomic datasets relies
on a pipeline including (i) identification of frequent genomic
mutations or differentially represented transcripts or pro-
teins, followed by (ii) pathway and network analysis meth-
ods using gene-set, pathway or network databases (for a re-
cent review, see (10)). A number of effective approaches for
both stages of the analysis have been developed, but they
have considerable limitations.

First, differential expression algorithms (11,12) are used
to filter experimental data to find genes with significant al-
terations, producing lists that can be sorted into biologi-
cally relevant groups using gene set enrichment analyses.
Recent developments, such as gProfiler (13) or GSEA (14)
extended the value of this approach by considering a ranked
or continuous scale of gene expression differences, as op-
posed to methods using unranked sets of genes chosen with
fixed gene expression p-value thresholds (e.g. DAVID (15)).
However, interactions and potential co-regulation of genes
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are not considered in these approaches, thus they can only
be used to assign previously determined fixed gene sets en-
riched in the data. Accordingly, these methods do not allow
the discovery of novel functional groups relevant to distinct
physiological and pathologically states. One approach to
partly overcome this limitation is to incorporate databases
with rich information on gene or protein interactions, such
as BioGRID (16), IntAct (17), STRING (18) or GeneMA-
NIA (19), and identifying networks with altered gene ex-
pressions. Numerous examples using this approach exist,
such as GeneMANIA (19), ReactomeFIViz (20), STRING
(18), ResponseNet (21), NetBox (22), MEMo (23) and En-
richNet (24). Whilst these approaches were proven success-
ful in identifying altered core pathways in several patholo-
gies, they are based on prior knowledge of network compo-
nents and structures, thus still have limited potential to dis-
cover novel co-regulated large-scale networks determining
cellular phenotypes. In this paper we argue that large-scale
differences in gene expression, for instance between differ-
ent physiological and pathological states, go undiscovered
due to these limitations and that novel methods discovering
large-scale co-regulated gene networks are needed.

Another difficulty is that the large datasets, which these
days are commonly used for network discovery, typically
are not generated by experimental design based on a priori
knowledge but are more often mass data collection projects
containing vastly heterogeneous samples. In many cases it is
unclear how to divide these samples into subclasses, due to
the many unknown factors distinguishing subtypes with dif-
ferent gene expression patterns. Hierarchical clustering has
notably been used to find related subgroups of samples, no-
tably first by Eisen (25) but also by Perou (26) who used this
technique to identify the intrinsic subtypes of breast cancer.
These standard clustering techniques however are only use-
ful at finding strong patterns within the data, since they clus-
ter all the samples against all the genes or vice versa, risk-
ing to omit more global weaker patterns, due to high noise.
Modes of gene regulation could be present in only a sub-
set of samples, with genes being conditionally co-regulated
only on specific cellular or environmental signals (27). With
only a subset of samples having this regulation, standard
clustering techniques would not detect this co-regulation in
the noise of the data. Thus our second consideration for
developing a method solving this problem and discriminat-
ing heterogeneous samples with co-regulated genes in large
datasets was to use biclustering algorithms.

Biclustering techniques were first applied to gene expres-
sion by Cheng and Church (28), but the technique itself
dates back to the 1970s in the work of Hartigan who re-
ferred to it as direct clustering (29). Biclustering algorithms
select a subset of the rows and columns of a data matrix
such that a particular measurement describing the quality
of the bicluster is maximised. It is not known a priori how
many significant biclusters there are within a data matrix,
and the number and size of found biclusters depend on (i)
the definition of bicluster (e.g. correlation of gene expres-
sion across samples), (ii) the method of measuring its qual-
ity and (iii) the method for searching for biclusters. There
are a large number of existing biclustering algorithms in-
volving different quality metrics as well as search heuristics
for finding them (30), but we have found them of limited use

for the scope of finding large co-regulated gene sets in a sub-
set of samples within massive datasets. Mean square residue
score for evaluating biclusters (28) is used in many biclus-
tering techniques (MSB (31), FLOC (32), BiHEA (33) etc.).
As a quality metric it does find biologically relevant biclus-
ters but is limited to finding bicluster involving a simple shift
in gene expression between samples but not patterns which
involve more pronounced scaling of gene expression (34).
Moreover, most of these methods are not computationally
efficient on very large datasets, since finding biclusters has
been shown to be an NP-hard problem (35), much more dif-
ficult than normal clustering. Accordingly, existing biclus-
tering algorithms are adept at finding many small sized bi-
clusters involving relatively few genes but not suitable for
discovering large-scale biclusters.

Here, we describe the development of a conceptually
novel biclustering algorithm, based on evaluating corre-
lated gene expression across large sets of heterogeneous
samples. The approach, in contrast to previous methods,
is (i) computationally feasible to be applied to large data
matrices containing whole genome transcriptomic data of
more than a thousand samples, and (ii) capable to identify
correlated, biologically relevant large gene sets and by in-
cluding a ranking function defines subsets of heterogeneous
samples where the gene set is differentially regulated. The
method addresses key questions in functional genome biol-
ogy. First, by quantifying correlations and expression levels
of the discovered gene sets the method can be applied to
classify samples. In addition, the gene sets can be used for
discovery of large networks, controlled by master transcrip-
tional regulators, which thus likely determine fundamental
cellular phenotypes.

MATERIALS AND METHODS

The MCbiclust workflow

Massively correlated biclustering (MCbiclust) is a stochas-
tic iterative search based method that uses Pearson’s corre-
lation coefficient as a quality metric to find biclusters (Fig-
ure 1). The input of MCbiclust is a gene expression matrix
with several parameters chosen such as a gene set of interest.
Different functions have been created in R to compute the
different steps of the MCbiclust pipeline, the final output of
MCbiclust for a given bicluster is a ranked list of samples
with each sample having an associated PC1 value along with
the score of each gene’s relation to the bicluster in a ‘correla-
tion vector’. Additionally a threshold of the bicluster output
can be calculated to precisely define the genes and samples
within the bicluster. Further functions then exist and can
be applied to understand the biology of the bicluster, for
instance by identifying significant gene sets associated with
the bicluster.

The basic strategy of MCbiclust is to start with around
1000 seed genes and a small number of seed samples, then
through random replacement of samples find a bicluster
that can be then expanded. MCbiclust is specifically de-
signed to find biclusters composed of large numbers of
genes and samples within data sets. The hypothetical ideal
bicluster is one whose genes are highly correlated across all
samples in the bicluster, and it is not important whether
these correlations are positive or negative. The algorithm
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Figure 1. Schematic overview of the MCbiclust pipeline. The schematic shows (i) the methods used to find a core bicluster how this process is repeated
and compared by Silhouette analysis to identify the unique biclusters (upper panel); (ii) how these biclusters are then extended (middle panel); and (iii)
functionally and structurally analyzed (lower panel). The overall description of the process is given in the Materials and Methods section, with full details
of each step describes in Supplementary Methods. A key step in the bicluster analysis is the calculation of correlation vectors, which is further explained
in Supplementary Figure S1.
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is stochastic and each run will end with a different mas-
sively correlated bicluster being discovered. So generally,
the method is run many times, typically up to a thousand, to
discover the key large-scale biclustering structure within the
given data collection. All the biclusters discovered are com-
pared to determine how many different biclustering group-
ings exist.

For each individual run, the algorithm starts with an ini-
tial seed of 1000 genes that are either chosen randomly for
discovering general large-scale features in the data collec-
tion, or are chosen for functional relevance to direct the
discovery of biclusters (for instance a mitochondrial related
gene set). Each run starts with a random seed of 10 sam-
ples. A greedy search is then undertaken where individual
samples are randomly replaced by other samples, with the
aim of always increasing the overall correlation score of the
bicluster. Once 10 samples have been determined that max-
imize the bicluster correlation score, the pipeline focuses on
the genes involved to further maximize this score. Hierar-
chical clustering of the genes is carried out, dividing the
genes into eight groups with tightly correlated genes over
the samples, only the genes from the group which has max-
imum bicluster score are kept with all the other genes being
removed.

Now that the nucleus of a highly correlated bicluster has
been formed, the bicluster is extended in terms of both sam-
ples and genes included. An ‘average gene expression vec-
tor’ is determined from the bicluster, by dividing the genes
into groups with hierarchical clustering and finding the av-
erage gene expression of this group across the 10 samples.
The correlation of every gene measured to this average gene
expression vector can be calculated forming a ‘correlation
vector’. The genes can then be ordered by their values in the
correlation vector (see Supplementary Figure S1). Follow-
ing gene extension, all the other samples within the data col-
lection can be ranked according to how well they preserve
the correlation of the bicluster. At each step, the sample that
preserves most the correlation is added, until all the samples
have been ranked. MCbiclust therefore returns a ranked list
of the samples and genes matching the pattern found in the
bicluster. In order to determine which genes and samples
are in the bicluster a method to threshold the bicluster is
applied as described in Supplementary Methods.

The biclusters discovered are often complex and thus we
have used two key approaches to interpret them in terms of
either the samples or genes involved. Samples are analyzed
by doing Principal Component Analysis (PCA) across gene
values across the 10 most prominent samples. The first prin-
cipal component (PC1) is then used to visualize each of the
samples within the bicluster ranked according to correla-
tion. Generally such plots split the samples into two forks
with anti-correlated gene expression between two groups of
genes identified (see Supplementary Figure S2). The key ap-
proach employed to analyze the genes within a bicluster in
order to help identify its biological nature is gene enrich-
ment analysis. Although it can be seen later that bicluster
interpretation often needs investigation driven by intuition
based on considering both the samples and genes involved.

Detailed information about the algorithm can be found
in Supplementary Methods and in the Vignette accompany-

ing the Bioconductor package developed to perform custom
MCbiclust analysis.

Synthetic data and benchmarking

A preliminary synthetic dataset was created using an
adapted version of the method used in (36) for the biclus-
tering method FABIA, using the R package ‘FABIA’. This
method implants a set number of multiplicative biclusters
that match the FABIA model, into a dataset. This was
done by creating eight separate synthetic datasets, using
the FABIA model. Each dataset contained only one biclus-
ter, on average containing approximately 500 genes and 130
samples, and each dataset was mean centered according to
the genes before being combined. Eight biclusters were cho-
sen so that the final combined synthetic dataset contained
1000 genes and 1059 samples. Enforcing sample exclusive-
ness to a single bicluster was done primarily to make the
comparison between the different bicluster algorithms fea-
sible. If a sample belonged to two or more biclusters, due to
each bicluster affecting a large number of the genes, there
would be a significant number of genes belonging to both
biclusters and this overlap of genes could potentially con-
found the classification of samples to their correct bicluster.

MCbiclust was compared with the FABIA (36), FABIAS
(36), biMax (37), CC (28), Plaid (38), ISA (39), FLOC
(40), QUBIC (41), CPB (42) and CTWC (43) bicluster-
ing methods (see Supplementary Table S1) all run with
default parameters. These methods were chosen due to
their availability of access as R packages on Biocon-
ductor (www.bioconductor.org), or due to similarity with
MCbiclust (CPB and CTWC). CPB was run with a
python script available at http://bmi.osu.edu/hpc/software/
cpb/index.html and CTWC was run using software available
at http://www.weizmann.ac.il/complex/compphys/software.

Following analysis of the preliminary data the three top
biclustering methods (MCbiclust, ISA and FABIA) were
chosen for more detailed investigation using synthetic data.
This was done in two steps: (i) optimization of the param-
eters used in each biclustering method, (ii) application on
additional synthetic datasets with the optimized parameters
to investigate the effect of the number of biclusters, overlap-
ping samples between different bicluster and noise level.

Full details of how the biclustering methods were opti-
mized can be found in the supplementary material. The ad-
ditional synthetic data sets were designed to address four
properties that may affect the efficiency of the biclustering
algorithm: (i) the number of biclusters in the data set, (ii)
whether the biclusters have overlapping samples, (iii) the
size of the bicluster and (iv) the level of noise present in the
data. Full details of how these additional data sets were de-
signed is given in the supplementary material. FABIA, ISA
and MCbiclust were run on these synthetic data sets using
the optimised parameters.

Workflow to compare biclusters obtained with different meth-
ods

Figure 2A provides an overview of how the results of each
biclustering method (shown as biclusters A1 to Ax, where
x is the variable number of biclusters predicted) were com-
pared to the real biclusters present in the synthetic data
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Figure 2. Benchmarking of MCbiclust against previous biclustering methods. (A) Outline of the evaluation pipeline. Known biclusters in the synthetic
datasets are compared with the biclusters found with different biclustering methods. Jaccard Index and the Munkres algorithm is used to solve the assign-
ment problem of matching the known synthetic biclusters with the found biclusters, from which statistical evaluations such as true and false positive rates
(TPR, FPR) and relative operating characteristics (ROC) curves are produced. (B) Heatmaps of the gene-gene correlation matrices for all the synthetic
data, the known synthetic biclusters (S1–S8) and the biclusters found with FABIA (F1–F8) and MCbiclust (M1–M6). Numbers of gene and samples are
shown in parenthesis (gene, sample) to compare the sizes of real biclusters with the ones found with either method.
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(shown as S1 to S8). First, a similarity matrix is constructed
where all possible predicted biclusters from the results are
compared to all of the eight known biclusters in the syn-
thetic data. The Jaccard score is used since this is appro-
priate for comparing the similarity between two different
sets (being equal to the number of elements in the inter-
section of the two sets divided by the number of elements
in the union of the two sets). Identical sets will have a Jac-
card score of 1.0 and completely different sets will have a
Jaccard score of 0.0. Once all predicted biclusters are com-
pared to all known biclusters in the matrix, the Hungarian
or Munkres algorithm (44,45) for solving the assignment
problem is used to efficiently determine the most optimal
matching of predicted biclusters to known biclusters which
maximises the sum of the scores. At this point each real bi-
cluster (S1 to S8) would be matched to its most optimal pre-
dicted bicluster (A1 to A8) by the method. With this match-
ing complete, traditional measurements of accuracy, false
positive and true positive scores can be used both for the
samples matched and the genes matched, and receiver op-
erating characteristic (ROC) curves can be plotted.

Analysis on E. coli many microbe microarray database (M3D)

MCbiclust was applied to a extensive Escherichia coli K-
12 microarray data set from the Many Microbe Microar-
ray database (M3D) (46). This dataset includes 907 sam-
ples and 7459 probes measured with Affymetrix microar-
rays and collated from a wide range of experimental setups
from 39 different researchers, uniformly normalized using
robust multi-array average (RMA) (47). Faith et al. (46)
notes that post normalisation systematic researcher biases
are small relative to the biological changes present across
the experimental conditions. To find biologically relevant
biclusters the MCbiclust pipeline was run 1000 times on
random gene sets. For additional comparison FABIA and
ISA using the optimized parameters previously found were
run on this dataset and compared to the MCbiclust results.

Analysis on cancer cell line encylopedia (CCLE)

MCbiclust was applied to the CCLE dataset (48) composed
of 969 samples with gene expression levels measured as
mRNA using Affymetrix U133 plus 2.0 arrays and updated
probe set definition files from Brainarray (49). Before anal-
ysis completed by Barretina et al. (48) the dataset was back-
ground corrected using RMA (47) and quantile normaliza-
tion methods, with quality assessment to identify low per-
forming microarrays. To study mitochondrial related biclus-
ters, MCbiclust was run 1000 times on the 1098 MitoCarta
(50) genes known to be related to mitochondria. MCbiclust
was additionally run 1000 times on random gene sets con-
taining 1000 genes to find biclusters affecting general path-
ways.

RESULTS

MCbiclust is uniquely designed to identify large biclusters
with non-overlapping samples

In order to validate MCbiclust and compare its perfor-
mance with all other selected biclustering methods using de-
fault parameters, we first used a preliminary synthetic data

set, modeling large biclusters, and a custom scoring system
(see Materials and Methods and Figure 2A). The dataset
contained eight known biclusters (on average a matrix of
130 samples and 500 genes), and 10 biclustering methods
were tested (see Supplementary Table S1). Comparison of
the known biclusters with the found biclusters was carried
out as previously described ((36), see Figure 2A). Based on
these similarity analyses the quality of bicluster identifica-
tion of each method was assessed. Table 1 shows the con-
sensus score (36) as well as the F1 score for both genes and
samples for each biclustering method as well as the number
of biclusters found. The consensus score is taken from the
work of Hochreiter et al. (36) and uses Jaccard Index simi-
larities of the predicted biclusters to their match known bi-
clusters, divided by the size of the larger set. In this way, the
consensus score includes a penalty for finding the incorrect
number of biclusters. The F1 score is the harmonic mean of
the recall and precision and in general measures the accu-
racy of identifying the genes or samples within the bicluster.

MCbiclust has identified six out of eight biclusters, and
massively outscored the existing methods in precisely iden-
tifying large, so far hidden, biclusters within the massive
dataset. This includes outperforming FABIA, whose data
model was used to design the synthetic data. ISA, which is
designed to be used on large datasets, found over 500 biclus-
ters. Indeed, eight of these were reasonable matches for the
synthetic bicluster, but it thus also had a very large false pos-
itive rate, by detecting small random biclusters. Even when
considering only the correct eight biclusters, ISA still had
a lower performance than MCbiclust. For further evalua-
tion of the different methods, we have plotted relative op-
erating characteristics (ROC) curves for each synthetic bi-
cluster. These results confirmed the higher sensitivity and
specificity of MCbiclust compared to methods existing so
far (see Supplementary Figure S2).

Next, the top performing biclustering algorithms: MCbi-
clust, ISA and FABIA had their parameters optimised on
a synthetic dataset (see Supplementary Figures S3 and S4),
and a detailed analysis of these algorithms with optimised
parameters was performed on additional synthetic data sets
to investigate the effect of bicluster size, noise, number and
the presence of different biclusters having overlapping sam-
ples. The results of this analysis with the consensus score
used as a comparative measure is given in Figure 3. First, we
determined the effect of noise and bicluster size on MCbi-
clust, ISA and FABIA (Figure 3A). Each individual dataset
in this analysis only contained a single bicluster and was
made up of 1000 genes and 1000 samples. For large biclus-
ters containing approximately 100 samples and 600 genes
MCbiclust outperformed ISA and FABIA, for biclusters
containing 50 samples and 300 genes MCbiclust and ISA
are comparable, and for biclusters containing 25 samples
and 150 genes, ISA outperformed MCbiclust. In each case
the effect of noise decreased performance. Next, we ana-
lyzed the effect of number of biclusters in the dataset and
the presence of overlapping samples (Figure 3B). When the
biclusters had non-overlapping samples MCbiclust outper-
formed both ISA and FABIA, however when the biclusters
had overlapping samples, ISA was the most efficient. The
decreased performance in MCbiclust is likely due to MCbi-
clust finding too many biclusters and identifying samples
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Figure 3. Comparison of FABIA, ISA and MCbiclust on addition synthetic data. (A) The effect of different sizes and levels of noise on the consensus
score for the different biclustering methods including the difference between ISA with optimum and default parameters. (B) The effect of different number
of biclusters in the consensus score in the data set, either with overlapping or non-overlapping samples. For details of the approach see Materials and
Methods and Supplementary information.
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Table 1. Summary statistics for comparing the different biclustering methods

Method Biclusters Found Consensus Score Genes F1 Samples F1

MCbiclust optimum 6 0.4368 0.8145 0.6634
MCbiclust threshold 6 0.3462 0.8043 0.5864
FABIA 8 0.04106 0.1962 0.549
FABIAS 8 0.02475 0.2498 0.2878
biMax 8 0.002343 0.5697 0.01672
CC 8 0.0001895 0.02177 0.03344
Plaid 2 0.004164 0.1299 0.1747
ISA 504 0.001191 0.3256 0.5459
FLOC 8 0.0006008 0.06603 0.03746
QUBIC 9 0.0003819 0.008219 0.2113
CPB 24 0.0001685 0.02989 0.06277
ISA best 8 0.07504 0.3256 0.5459
CTWC 17 0.03591 0.5397 0.3329

MCbiclust optimum refers to choosing the top samples and genes that maximise the Jaccard index to the known synthetic bicluster while MCbiclust
threshold is the top samples and genes chosen from MCbiclust’s threshold method (see Supplementary Methods). ISA with the default parameters scans
a large threshold range for bicluster size and thus a large number of biclusters, the ‘ISA best’ row indicates the result of selecting the top eight biclusters
that match the known synthetic biclusters. The sizes of the known synthetic biclusters are given in Supplementary Table S3.

present in two biclusters as being different from samples
only present in one or the other. This is expected since the
correlations between samples change dramatically if they
were part of more than one bicluster. Since biologically
MCbiclust is concerned with gene expression programs in
the cell affecting large number of genes at one time, if two
or more of these programs are activated at the same time
the interaction of these programs would cause significant
changes in the overlapping gene set and would likely appear
as a gene expression program distinct from its component
biclusters.

Most importantly however, MCbiclust has an additional
unique feature compared to existing methods. Apart from
finding biclusters, it also ranks samples according to the
strength of correlation between genes found in the biclus-
ter. Principal component analysis can thus be further used
to determine subclasses of samples in the ranking space.
PCA value versus ranking plots revealed the distribution of
the clustered samples in a characteristic fork pattern (Figure
4A), probably indicating the polar distribution of samples
along the average expression of the gene sets, responsible
for the high correlation (see Figure 4B, C, Supplementary
Figure S5 and Supplementary Methods).

MCbiclust discovers biologically relevant gene expression
patterns in E. coli data sets

Next, we applied the algorithm to increasingly complex
gene expression datasets from heterogeneous sample col-
lections. First, we used an extensive E. coli K-12 microar-
ray data set from the Many Microbe Microarray database
(M3D) (46). The probes of this dataset cover ORFs or tran-
scripts of unknown function as well as non-coding inter-
genic regions such as operon elements, 5′-UTRs, 3′-UTRs
and small RNAs. The E. coli K-12 model is currently the
best characterised prokaryotic model for studying gene reg-
ulatory networks on different scales, including large gene
sets controlled by � factors and smaller sets by transcrip-
tional regulators. In addition, the dataset contains a large
number of annotated experimental conditions, thus it was
ideal for the initial characterization of MCbiclust’s ability

to discover co-regulated gene sets in heterogeneous experi-
mental conditions.

By running MCbiclust 1000 times, starting from random
gene sets of 1000 genes, silhouette width analysis (51) re-
vealed three large distinct biclusters from the resulting cor-
relation vectors (Figure 5A and B). These groups were de-
noted E1, E2 and E3 and were obtained after 656, 229 and
115 runs, respectively, with the numbers indicating the runs
required to reach dominance of the bicluster. These biclus-
ters were all large; after thresholding with a sample P-value
of 0.05 they contained 4822, 4700 and 6086 probes from
131, 130 and 96 samples, respectively.

To understand the biological relevance of these biclusters,
we first analyzed the distribution of the samples in the found
biclusters by PCA analysis and ranking according to the
strength of correlation of gene expression (Figure 5C). As
described above, the PCA versus ranking distribution plot
typically gives a fork pattern, where the samples with highly
correlated gene expressions are divided into high and low
PC1 groups, where PC1 is mainly determined by the aver-
age expression level of the gene set defining the bicluster (see
Supplementary Figure S5). The plot allows the classifica-
tion of the samples and helps to further determine corre-
lations with sample types and experimental conditions. As
shown in Figure 5C, the samples identified in the E1 clus-
ter were distributed along experimental conditions such as
growth phase, aerobic/anaerobic status or treatment with
antibiotics affecting growth. Cluster E2 clearly identified
samples treated with a specific antibiotic, norfloxacin. In
contrast, cluster E3 was determined by the highly deviant
PC1 value associated with an outlier sample forming the
lower fork of the distribution, while most of the samples re-
mained in the upper half. Overall, the distribution analysis
demonstrated the value of MCbiclust to identify biological
(E1), pharmacological (E2) conditions, and outliers which
otherwise would remain undetected (E3).

To identify more details of gene regulation in the bi-
clusters we performed custom gene set enrichment analysis
based on a Mann-Whitney test (see Supplementary Meth-
ods) to identify gene ontology (GO) terms related to E. coli,
including Sigma factors and other E. coli transcription reg-
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Figure 4. First principal component versus correlation based ranking plots of samples in biclusters identified by MCbiclust. (A) Fork patterns of the
six biclusters found with MCbiclust in the synthetic data. Y axes show the first principal component (PC1) value for each sample in each bicluster.
Principal component analysis was run on the most highly correlating samples and captures the correlation pattern present in the samples. X axes show the
ordering according to how well the samples preserve this correlation. Ranking is obtained as described in the ‘Extending the bicluster – samples’ section
of Supplementary Methods. (B) Mean centered average gene expression values of the two separate gene groups in the samples of the two forks of bicluster
M1 determining the correlation. Expression levels in the two gene groups follow an antiparallel pattern. Relationship of average gene expression to PC1
values are shown in Supplementary Figure S5. (C) Schematics showing the gene-gene heatmaps of the M1 bicluster showing the division of the genes into
two groups with different regulation in the upper and lower fork samples.
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Figure 5. Biologically relevant biclusters discovered by MCBiclust in E. coli. (A) MCbiclust was run 1000 times on the E. coli K-12 microarray data set from
the Many Microbe Microarray database (M3D). Results are visualised in a heatmap of the correlation matrix from the correlation vectors. Hierarchical
clustering reveals three large bicluster groups (E1–E3). (B) Correlation vectors are divided into three unique bicluster groups (E1–E3) from the output of
the silhouette analysis. The silhouette plot of the optimum number of clusters is shown as chosen by maximizing the average silhouette width of all the
correlation vectors. (C) PC1 versus sample ranking plots of the unique biclusters E1, E2 and E3. The plots have been overlaid with experimental conditions:
aeration and growth phases for E1 (left panels), the gyrase inhibitor norfloxacin treatment for E2 (upper right panel) and the different strains used in the
experiments for E3 (lower right panel). (D) Plot of average gene expression values (median centered log2) close (<0.25 genome) versus far (>0.25 genome)
to the origin of replication. The distribution of norfloxacin treated (red) and control (non treated, gray) samples are shown. (E) Heatmap of correlation
vector values for E2 in relation to genome position (oriC, origin of replication). (F) Box plot of correlation vector values for all biclusters in coding (black)
and intergenic (red) regions. The non-parametric Mann-Whitney test was used to calculate significance between pairs of each bicluster. ****P <0.0001
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ulators from EcoCyc (52) and RegulonDB (53) databases.
Additionally, terms for probes targeting either coding genes
or intergenic regions were added. E1 and E3 had a large
number of associated significant terms, 175 and 196, while
E2 only had 25. Full tables of these terms are given in Sup-
plementary Data. The custom analysis allowed the associa-
tion of terms with positive and negative correlation vectors,
informing on the average gene expression of pathways de-
termining the distribution of samples in the upper or lower
fork. The analysis revealed three important regulatory fea-
tures.

First, the upper fork of E1 was driven by the correlated
overexpression of genes with positive correlation vector val-
ues. Accordingly, those genes are predicted to drive an aer-
obic metabolic phenotype characteristic of slow growth in
late log or stationary bacterial cultures or biofilms (see Fig-
ure 5C). The terms cover wide range of metabolic path-
ways comprising biosynthetic routes of all major cellular
components, lipids, proteins and ribonucleotide acids (see
Supplementary Data), likely representing a specific global
metabolic phenotype associated with the aerobic conditions
in these experiments.

Second, the significant terms from E2 are relatively few
and had relatively large P-values. Thus we looked at addi-
tional features of the genes determining the bicluster. In-
triguingly, the average correlation vector values were dis-
tributed according to the position of genes in the E. coli
genome (Figure 5D). Indeed, Figure 5E shows that this as-
sociation can be explained by up-regulation of genes close
to the origin of replication, which gradually decreased with
the distance from the ORI. Examination of the conditions
of the samples in this bicluster (see Figure 5C) revealed that
they have been grown in the presence of norfloxacin, a DNA
gyrase inhibitor that prevents the division of the strands of
E. coli DNA during replication, thus there would be two
strands of DNA close to the ORI and a single strand fur-
ther away, hence the gene dosage would be double around
the ORI compared to genes further away resulting in this
large-scale transcriptional difference in gene expression. In-
terestingly, a similar effect has been recently shown to exist
in Streptococcus pneumonia and E. coli by (54).

Finally, when we examined the terms which drive corre-
lations in all three biclusters, the most significant associa-
tions were found with probes targeting either gene encoding
or intergenic regions, which showed strong anti-correlation
(Figure 5F, Supplementary Data). Since average gene ex-
pression levels primarily determine PC1, our results show
that expression of RNAs from intergenomic regions tend to
exert inhibitory effects. This result is indicative of small non-
coding regulatory RNAs that are intergenic inhibiting cod-
ing genes involved in biosynthetic processes and cell prolif-
eration.

Altogether, MCbiclust therefore revealed three large-
scale biologically relevant biclusters in the examined E.
coli dataset: (i) one with terms linked to global metabolic
changes during cellular growth in aerobic conditions, (ii)
one showing how DNA gyrase targeting drug treatment
stalls large-scale DNA replication and affects global gene
expression and (iii) one that discovers a hidden sample
preparation anomaly that seriously affects global gene ex-
pression in a single Affymetrix chip and possible other chips

less severely (suggesting these chips should be removed be-
fore further analysis of this data collection). The results
clearly indicate the value of MCbiclust to expose global
trends in co-regulation of bacterial gene expression and
other effects that cause changes in large-scale correlated
gene expression within subsets of the biological samples.

Additionally, FABIA and ISA were applied to the E.
coli data for comparison to the MCbiclust results. Neither
FABIA nor ISA succeeded in identifying the same biclus-
ters as MCbiclust, full details are given in the Supplemen-
tary Information Table S2.

MCbiclust reveals cancer subtypes in the cancer cell line en-
cylopedia data set

Next, in order to validate MCbiclust on highly complex and
heterogeneous eukaryotic gene expression data, we have
used a recently created cancer microarray dataset com-
prising ∼1k cancer cell lines from diverse tissues of ori-
gin (CCLE, (48)). Gene expression level heterogeneity be-
tween samples in this set arises from two main sources: (i)
de-regulated gene expression triggered by the oncogenic ge-
netic lesions and (ii) expression patterns distinctive of the
tissue of origin of specific tumors. Here, due to the larger
genome and sample numbers as compared to the E. coli
dataset, we assumed that selection of the initial gene set
might have substantial impact on the biclusters found and
thus we have followed two different strategies. First, as de-
scribed above we have run MCbiclust 1000 times utilizing
random gene sets, in order to discover potential large-scale
regulations affecting a subset of samples. In addition, how-
ever, we also sought to characterize specifically the regula-
tion of multi-gene controlled global processes such as cel-
lular metabolism and organelle biogenesis. Cancer evolu-
tion is known to involve radical rearrangements of cellular
metabolism, in recent years deregulation of cellular ener-
getics has even been recognized as an important hallmark
of cancer (55). The aerobic glycolytic phenotype of many
cancers for producing ATP has long been recognized, but
it is less well understood how changes in mitochondrial
biogenesis (here defined as co-regulation of the transcrip-
tion of nuclear encoded mitochondrial genes, NEMGs) and
hence energetic function affects cancer growth and survival.
Thus our aim here was to investigate mitochondrial involve-
ment in cancer using MCbiclust. Therefore, in the second
instance MCbiclust was run on the CCLE dataset another
1000 times using a gene set composed of 1098 MitoCarta
(50) genes, classified as NEMGs.

Silhouette analysis identified two distinct biclusters (R1
and R2) using random gene sets and one distinct biclus-
ter (denoted M1) when using the MitoCarta gene set (see
Figure 6A and Supplementary Figure S6). These biclusters
can be directly compared by plotting the average correlation
vectors of each measured gene in the genome between indi-
vidual biclusters, as shown in Figure 6B. Overall, we have
found that the M1 and R2 biclusters are highly similar, with
both having mitochondrial genes with high correlation val-
ues, thus both random and function-specific initial gene se-
lection led to the identification of essentially the same bi-
cluster.
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Figure 6. Biologically relevant biclusters in the cancer cell line encyclopedia (CCLE) microarray dataset. (A) Heatmaps of the MitoCarta gene–gene
correlation matrices across all the samples (left panel) and in the Mito bicluster of samples and genes established by the MCbiclust and Hicor algorithms
(right panel), illustrating the biclustering process (see also Figure 1 and Materials and Methods). Heatmaps and Silhouette plots of the distinct R1 and
R2 biclusters identified using random initial gene sets are shown in Supplementary Figure S6. (B) A matrix of plots comparing the correlation vectors in
all three distinct biclusters (Mito, R1 and R2). The diagonal plots show density histograms of the correlation values in the mitochondrial (blue) and non-
mitochondrial gene sets (red) to the respective biclusters (Mito, upper left; R1 central; R2, lower right). Off-diagonal scatter plots show the relationships
between the correlations of genes to the respective biclusters (Mito, R1 and R2, labeled left versus bottom) for mitochondrial (lower left triangle, blue) or
non-mitochondrial genes (upper right triangle, red). (C) PC1 versus sample ranking plots of the Mito and R2 biclusters, which are highly correlated (see
scatter plots in panel B). The tissue of origin of the different sample cell lines is overlaid on the distribution plot. Clustered samples with the same tissue
of origin are marked in the upper (Mito: H–L: hematopoietic and lymphoid, LI: large intestine; R2: H–L: hematopoietic and lymphoid) and lower (both
Mito and R2: AG: autonomic ganglia, breast, bone) forks.
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Next we performed the same custom gene set enrich-
ment analysis (see Materials and Methods) done on each
of the average correlation vectors as with the E. coli data.
As shown in Supplementary data, the M1 and R2 biclus-
ters define a functional group of genes highly related to the
mitochondrial respiratory chain, but also ribosomes, ribo-
some biogenesis. This most likely represents activation of a
novel gene regulatory pathway in a subset of samples (Fig-
ure 6C and D), coupling increased mitochondrial biogenesis
to cell growth. On the other hand, the R1 bicluster is highly
enriched in immune system components and their regulated
genes, and particularly overexpressed in a subset of carcino-
mas of different tissue origin (see Figure 7A and B).

Finally, we further analyzed the data to understand the
potential association of the clustered gene expression pat-
terns with the actual tissue of origin, pathology, genotype
and pharmacological phenotype of the individual cancer
cell lines. First, we mapped the relationship of the gene
expression patterns of different cancer cell lines compared
to the various biclusters. We ranked all samples according
to the strength of correlations found in each bicluster, and
plotted the rankings against the PC1 value for each sample.
As shown above, PC1 values are mostly determined by the
average gene expression values of a subgroup of genes in the
bicluster (see Supplementary Figure S2). Each bicluster was
thus represented by the typical fork like distribution pattern
(see Figures 6C, D and 7A, B). This allowed us to over-
lay the tissue of origin and pathological subtype informa-
tion on the distribution patterns. While the mitochondrial
M1 and R2 biclusters mainly separated cancer cell lines of
hematopoietic origin from the rest of the tissues, the R1 bi-
cluster had no tissue specificity. However, this bicluster was
enriched in immune system related pathways and was typi-
cal to a subset of carcinomas (see Figure 7A and B). Next,
we calculated enrichment of locuses with gene copy num-
ber alterations (Figure 7C) and pharmacological sensitiv-
ity to 24 anticancer drugs utilized in the CCLE study (48)
(Figure 7D). Importantly, various copy number alterations
were found to be specifically associated with each bicluster,
probably indicating the genetic, oncogenic origin of the gene
expression patterns. Strikingly, the distribution between the
upper and lower fork of the pattern also determined sig-
nificant differences between the sensitivity to the growth in-
hibiting effects of various anticancer drugs in each bicluster
(Figure 7D), indicating the potential therapeutical predict-
ing value of MCbiclust based cancer sample classification.

Predicting metabolic flux rearrangements based on correlat-
ing metabolic gene expression profiles by MCbiclust in human
tumor samples

In our last set of analysis, we tested the capacity of MCbi-
clust to identify gene expression patterns of large gene
sets with correlated biological function. Cellular metabolic
fluxes have been shown to be partly controlled by the cor-
related expression of metabolic enzymes determining the
specific activity of metabolic pathways (56). This control
mechanism is particularly evident when metabolic path-
ways show remarkable plasticity to rearrange in response
to defects in particular enzymes. To test whether such re-
arrangement can be detected at the gene expression level

by MCbiclust we analyzed a dataset compiled from can-
cers where tumorigenesis and cancer cell metabolism is de-
termined by the deficiency of the mitochondrial succinate
dehydrogenase (SDH) enzyme. Germline mutations in the
four genes encoding SDH subunits (SDHA, SDHB, SDHC
and SDHD) are linked to the development of neuroen-
docrine tumors such as pheochromocytomas and paragan-
gliomas. Importantly, tumors with identical pathology can
also be related to VHL, RET1 and NF1 mutations, indicat-
ing a similar pathogenesis for tumor formation. However,
apart from similar pathology of these cancers, a specific fea-
ture of SDH deficient tumors is the enforced rearrangement
of their mitochondrial metabolism to adapt to a truncated
tricarboxylic acid (TCA) cycle, which adaptation is indis-
pensable for their growth (57).

In order to assess whether MCbiclust can identify gene
expression patterns in a set of genes underlying mitochon-
drial metabolism, we have analyzed gene expression data
(Affymetrix HG-U133 Plus 2.0) from a set of 239 pheochro-
mocytoma and paraganglioma tumor samples collected by
the Cartes d’Identité des Tumeurs (CIT) project (58) and
the Erasmus MC University Medical Center Rotterdam
(GSE67066), including 110 tumors with germline muta-
tions in known causative genes (Figure 8). For generat-
ing the biclusters, we have followed the strategy applied to
the CCLE dataset (see previous section), thus either used
the MitoCarta (50) gene set of 1098 nuclear encoded mi-
tochondrial genes, or started from thousand randomly se-
lected gene sets. Both approaches identified multiple biclus-
ters, Silhouette analysis identified four distinct biclusters
both using the MitoCarta gene set (M1 to M4) and ran-
dom gene sets (R1 to R4; Figure 8A, B and Supplementary
Figure S7). By calculating the PC1 of the gene expression
patterns, which is dominated by the average gene expression
of the biclustered genes, and plotting it against the ranking
of the sample according to the correlation strength of the
genes in the biclusters in individual samples, we have gener-
ated typical fork like distribution patterns for each biclus-
ter, and determined the distribution of the different muta-
tions. We have found two major distribution patterns, rep-
resented by the ones based on the R1 and M1 biclusters
(Figure 8C and D). All other clusters generated a distri-
bution similar to M1 (M2–M4; R2–R4, data not shown).
Whilst the distribution of samples with different mutations
in the M1 bicluster clearly separated VHL mutants from
both a group of sporadic and RET mutant tumors based
on the average expression of clustered genes, SDHx mu-
tants were rather separated by their low correlation. Thus,
the R1 cluster distribution, where VHL and SDHx mutant
tumors were clearly separated fork patterns, was represent-
ing better the biclustered gene group of which the expres-
sion determines the differences between the VHL and SDH
deficiency driven phenotype. GO analysis of the gene group
most highly correlated with the pattern revealed several en-
riched GO terms, indicating large scale changes in cellu-
lar phenotype. In order to determine whether mitochon-
drial metabolic pathways are implicated in the adaptation,
we have selected for further analysis a custom gene group
of a particular pathway, the TCA cycle. Cardaci et al. (57)
demonstrated that metabolic adaptation to SDH deficiency
relies on pyruvate carboxylase generated aspartate through
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Figure 7. Pathological relevance of biclusters in the CCLE dataset. (A and B) PC1 versus sample ranking plots of the R1 bicluster. The tissue of origin
(A) and tumor histology (B) of the different sample cell lines is overlaid on the distribution plots. Clustered samples with the same tissue of origin or
histology are marked across the distribution plots (LI: large intestine, AG: autonomic ganglia, H–L: hematopoietic and lymphoid origins). (C) Association
of copy-number differences across the whole genome with the distribution of samples in the upper and lower forks in all biclusters. Chromosome numbers
and genes (labelled at left) with differences significant with a P-value < 0.05 are shown. (D) Association of differences in pharmacological sensitivity to
anticancer drugs with the distribution of samples in the upper and lower forks in all biclusters. To represent pharmacological sensitivity the Amax value
was used from the CCLE dataset, signifying maximum inhibition of growth for each drug treatment. Drugs (out of 24 tested, see main text and ref) with
significant differences between the lower and upper forks of each bicluster are shown. All differences are significant with a P-value <0.05. Significance in
C and D was calculated using a permutation method randomly reassigning samples to the upper and lower fork and recalculating the average difference
in copy-number or Amax values between the forks, and using this to form the distribution from which the p-values were calculated.
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Figure 8. The effect of underlying germline mutations on gene expression patterns in pheochromocytoma and paraganglioma samples determined by
MCbiclust. Heatmaps of the correlation matrices from the correlation vectors of the biclusters found by MCbiclust in the set of 239 pheochromocytoma
and paraganglioma tumor samples collected by the Cartes d’Identité des Tumeurs (CIT) project (58) and the Erasmus MC University Medical Center
Rotterdam (GSE67066), using the MitoCarta gene set (M biclusters, A) and random gene sets (R biclusters, B) are shown. Silhouette plots of the distinct M
and R biclusters are shown in Supplementary Figure S7. (C and D) PC1 versus sample ranking plots of the distinct M1 and R1 biclusters. The underlying
germline mutations (or sporadic - no identified mutation) is overlaid on the distribution plot. Samples clustered in the upper and lower forks of the
distributions are labelled: sporadic/RET versus VHL in the M1 bicluster, and SDHx versus VHL in the R1 bicluster. (E) Effect of rearrangement of gene
expression in the TCA cycle identified by the M1 and R1 biclusters. Scheme (left panel) shows the experimentally identified rearrangement of metabolic
fluxes by Cardaci et al. (57). Right panel: Correlation of the expression of TCA cycle enzymes with M1 and R1 biclusters, calculated by the method
described in the ‘Extending the biclusters’ section in Materials and Methods and supplementary material. Heatmap indicates the correlation of genes with
the M1 bicluster, distinguishing between the forks sporadic/RET versus VHL and the R1 bicluster, distinguishing between the forks SDHx versus VHL.
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elevated flux through glutamic-oxaloacetic transaminase
(GOT1, cytosolic, GOT2 mitochondrial isoforms), associ-
ated with malate production through malate dehydrogenase
(MDH1 cytosolic, MDH2 mitochondrial isoforms). Anal-
ysis of the correlation strength of TCA enzymes is shown
in Figure 8E. Importantly, while most TCA cycle enzymes
in the VHL mutants samples appear to be suppressed as
compared to sporadic and RET mutant samples (M1 bi-
cluster, lower fork), probably reflecting the activation of
the HIF1� pathway, differential expression of specific sets
of TCA enzymes between SDHx and VHL samples is re-
vealed by the R1 bicluster. The expression of the enzymes
PC, GOT and MDH is highly correlated with the SDHx
fork (R1 bicluster, upper fork), indicating their central role
in gene expression mediated adaptation to SDH deficiency.
These results wholly predict the metabolic phenotype char-
acterized by Cardaci et al. (57), as depicted in the scheme
in Figure 8E. Crucially, comparison of average TCA cycle
enzyme gene expressions between the SDHx and VHL mu-
tant samples by standard Limma differential gene expres-
sion analysis could not faithfully reveal the pattern (Sup-
plementary Figure S7), likely due to the noise caused by the
inclusion of a small number of outlier samples which do
not show high correlation with the bicluster pattern. This
analysis demonstrated the advantage of using correlation
based sample ranking by MCbiclust in identifying the key
elements contributing to the specific gene expression pat-
tern.

DISCUSSION

To tackle problems of biclustering, more recent bicluster-
ing methods have attempted to introduce some kind of bias
to their algorithm to make the searching for relevant biclus-
ters in the NP-hard problem more efficient. BicNet (59) uses
a pattern based algorithm method to find biclusters based
on interactions in sparse data networks such as those rep-
resenting biological networks. The work by Nepomuceno
et al. (60) meanwhile inputs biological annotation data into
the fitness function to identify biclusters. Most biclustering
methods would use this annotation data to validate found
biclusters (37), Nepomuceno et al. (60) however argues that
their approach is less likely to identify biclusters composed
of co-expressed genes that are the result of independent ac-
tivation.

It is important to note that some biclustering methods
(61) seek biclusters where not just the genes but also the
samples are highly correlated. A bicluster with highly cor-
relating samples however need not have highly correlat-
ing genes, for instance a group of replicate samples will be
highly correlated with each other yet their genes would be
expected to randomly vary around a mean value leading to
close to zero correlation between the genes. Thus seeking bi-
clusters with highly correlated samples would bias towards
finding samples that are very similar but with no signifi-
cant change in gene expression between them. Additionally
biclusters composed of large number of genes with signifi-
cant alterations are of interest since they represent large pat-
terned changes in transcriptional programs within the cell.
Such changes are well known to occur, an example would be

metabolic adaptations such as up-regulation of mitochon-
drial biogenesis in response to cold (62).

In addition to this theoretical considerations, the direct
comparison of MCbiclust with other common classifica-
tion and data reduction methods revealed important dif-
ferences. On the one hand, MCbiclust bears some simi-
larity to Weighted Gene Co-expression Network Analysis
(WGCNA) (63); in WGCNA there is a concept of mod-
ules, that are clusters of highly interconnected genes with
high absolute correlations, the difference is that in WGCNA
these correlations are across all the samples while in MCbi-
clust they are found only in a subset. In addition to this
other workings of WGCNA also have some similarity to
MCbiclust. The correlation vector in MCbiclust can be
compared to WGCNA’s intramodular connectivity mea-
sure; the module eigengene in WGCNA is defined as the first
principal component and is considered a representative of
the gene expression profile in a module and is very similar
to what is done in MCbiclust. However, despite these simi-
larities WGCNA and MCbiclust are fundamentally differ-
ent in that WGCNA studies global co-expression across all
samples while MCbiclust aims to find co-expression across
subsets of samples. This feature makes MCbiclust more pro-
ficient in classifying samples according to gene expression
patterns, a much sought after characteristics of algorithms
aimed to stratify large amount of samples. In the same way
when compared to dimensional reduction techniques such
as PCA, ICA (64) or t-SNE (65) the aims of these techniques
are fundamentally different to that of MCbiclust. The bi-
clusters found in MCbiclust not being universal across all
samples are not expected to be much use in dimensional re-
duction, while dimensional reduction methods seeking uni-
versal patterns would not be expected to identify individual
biclusters.

MCbiclust outperforms other biclustering methods in
terms of identifying large biclusters. The approach pre-
sented in this paper offers a new paradigm in the anal-
ysis of gene expression levels. This approach is pattern-
centric, with large numbers of significantly co-regulated
genes being sought unsupervised in a minority of the sam-
ples, once found both genes and samples can be ranked by
how strongly an individual gene is being co-regulated in the
pattern or how strong is this co-regulation in the sample.
It has been demonstrated that the patterns it finds are bio-
logically relevant and meaningful and it has great potential
use in the analysis of transcriptomic datasets and classify-
ing samples in a novel, biologically relevant way, according
to their large-scale gene transcription pattern.

A simple example for improving transcriptome analysis
stems from the finding of a DNA replication effect hidden
in the gene expression data within the M3D E. coli data set
(Figure 5D and E). By revealing this effect, MCbiclust now
makes it possible to normalise for it, e.g. in order to remove
bias, allowing analysis of other gene sets with low signal
strength.

Similar improvement in analysis can result from the find-
ing in the third E3 bicluster. It is unusual in that a sin-
gle sample with extreme global differences in gene expres-
sion has driven the formation of this bicluster. This sam-
ple was from an original study involving 16 Affymetrix
arrays with two replicates over eight conditions (66). Ex-
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amining the images of the raw Affymetrix CEL files re-
veals that this sample (MGD1 t0 A.CEL) has very weak
intensities over most of the chip compared to its replicate
(MGD1 t0 B.CEL) and other samples within this study.
This has probably arisen due to some problem with sample
preparation since other aspects of the chip (such as spike-
in concentration gradients) are normal. RMA normaliza-
tion of this chip has brought these low gene expression val-
ues in line with other chips, but the normalization in turn
causes a number of genes (mostly intragenic) to have abnor-
mally high values. The resulting large-scale transcriptional
pattern is what MCbiclust has detected within E3, and al-
though not biological in nature, it does show the methods
impressive power to find a single chip that has either sample
or normalization issues within a very large data collection;
thus potentially of use for data cleansing large –omics data
collections. Interestingly Figure 5C shows a few other sam-
ples within this data collection that potentially have similar
sample preparation issues but not as extreme as this sample.

An intriguing feature of MCbiclust is that by creating
PC1 versus ranking plots, the distribution and classification
of samples can be better understood. Thus MCbiclust first
discriminates samples according to the strength of correla-
tion of a specific gene set, thus recognizes classes of sam-
ples with high and low correlation, indicating that a specific
gene expression pattern is being regulated or not in a spe-
cific class. However, since this regulation can be either posi-
tive or negative (creating anti-correlation patterns, see Fig-
ure 4), samples with higher expression of a subset of genes
from the bicluster are clearly separated from samples hav-
ing the gene set suppressed. This next level of classification,
e.g. in the Mito bicluster, most probably reflects mitochon-
drial biogenesis (high in the upper fork samples), which is
either activated or suppressed according to the metabolic
needs of tumors (67). Such classifications have high chance
of applicability both in discovery or clinical science based
on gene expression data. For instance, since the correla-
tion vector of the bicluster is known, expression of each
gene of the genome, even outside the bicluster, can be cor-
related with it. Thus, a correlation value can be associated
with any gene, allowing the analysis of other cellular pro-
cesses either acting upstream (e.g. master gene regulators
of large gene sets or genetic changes), or downstream of
the action of the bicluster. Of clinical relevance, correlation
with clinical pathological phenotypes, differences in phar-
macological sensitivity as shown in Figure 7C and D, or
differences in metabolic phenotypes (Figure 8C and D) can
be revealed by MCbiclust, suggesting that it may be pos-
sible to use these biclusters in future for prediction of the
phenotype of tumors, potentially informing on drug sen-
sitivity or serve as base to find new pharmacological tar-
gets. Interestingly, similar biclusters such as Mito and R1 in
the CCLE dataset, or the series of mitochondrial and ran-
dom biclusters in the pheochromocytoma/paraganglioma
dataset, predict slightly different tissue distributions (com-
pare Figure 6C and D, not shown for the latter example),
indicating that the cellular phenotype is somewhat sensitive
to small changes in the correlation vectors and the genes in-
volved. In addition, the two CCLE biclusters predicted dif-
ferential sensitivity between upper and lower fork samples

to a common set of drugs (Figure 7D), but bicluster-specific
drugs have also been found.

Another feature, and a current potential weakness of the
current method is that a few biclusters with strong correla-
tion signals will dominate the results. This feature on the
one hand ensures the discrimination of robust biclusters
from noise, but at the same time might exclude some fur-
ther biclusters to be found. Probably this characteristics is
responsible for MCbiclust missing two synthetic biclusters
(Figure 2). By enriching the algorithm, we need to build an
adapted version of MCbiclust that can be enabled to also
identify weak signaled biclusters. In addition, apart from
further developing the mathematical system, it will be of
value to seek applications across all areas of gene expres-
sion research, from gene network regulation to biomarker
discovery.
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